JPH02295105A - Charged particle beam lithography equipment - Google Patents

Charged particle beam lithography equipment

Info

Publication number
JPH02295105A
JPH02295105A JP11492489A JP11492489A JPH02295105A JP H02295105 A JPH02295105 A JP H02295105A JP 11492489 A JP11492489 A JP 11492489A JP 11492489 A JP11492489 A JP 11492489A JP H02295105 A JPH02295105 A JP H02295105A
Authority
JP
Japan
Prior art keywords
sample
column
lithographed
charged particle
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11492489A
Other languages
Japanese (ja)
Inventor
Teruo Iwasaki
照雄 岩崎
Fumio Murai
二三夫 村井
Masahide Okumura
正秀 奥村
Norio Saito
徳郎 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11492489A priority Critical patent/JPH02295105A/en
Publication of JPH02295105A publication Critical patent/JPH02295105A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize uniform lithography accuracy and improve a throughput by a method wherein electron beams are generated by two columns whose acceleration voltages are high and low respectively and, after large area patterns are lithographed on a resist surface on a substrate sample by the low acceleration voltage with a high speed, successively, the remaining fine patterns are lithographed on the same resist surface by the high acceleration voltage. CONSTITUTION:When a stage 10' on which a sample 9' is placed is directly under a column 1'', switches SW1 and SW2 are selected in accordance with the instruction of a computer 15 and the large area patterns such as electrode wirings and bonding pads of an LSI or the like are lithographed on a resist surface on the sample 9' by the control of a blanking circuit 13' and so forth with a high speed. Successively, after the sample 9' is transferred to the position directly under a column 1 by the stage 10', the switches SW1 and SW2 are selected again in accordance with the instruction of the computer 15 and the fine patterns such as fine gate electrodes and contact holes of transistors are lithographed by the control of a blacking circuit 13 and so forth with high accuracy.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は半導体基板上に種々のICやLSI等のパター
ンを形成する荷電粒子線装置に係り、特に高速・高精度
でパターン形成可能な装置の改良に関する。
The present invention relates to a charged particle beam device for forming patterns of various ICs, LSIs, etc. on semiconductor substrates, and particularly relates to improvements in devices capable of forming patterns at high speed and with high precision.

【従来の技術】[Conventional technology]

近年、半導体基板上にLSI等のパターンを高速、高精
度に加工形成する装置として、イオンや電子を用いた荷
電粒子線装置が脚光を浴びている。 その中でも電子を用いた電子線描画装置においてはLS
I等のパターン発生から基板面への描画、該パターンに
よる加工層の製作に至るまでのスループットは著しく改
善されてきた。 しかしながら、加工精度の点では優位であっても、ステ
ッパーに代表される光学式パターン転写装置に比べてス
ループットの点では到底及ばず、更なる改善が望まれて
いた。 そこで近年、高スループット化を目指した手段の一つと
してマルチ力ラム方式が出現した(たとえば、特開昭6
2−137835)。 第3図はその一例である。同図は、全く同じ仕様のカラ
ム(電子光学鏡筒)1、1′が2本設置されている場合
である。ここでその動作を簡単に説明する。カラム1内
の構成機能はカラム1′と全く同じであるので、カラム
1のみについて説明する。 まず、電子銃2から放出された電子線3は高圧電源12
による加速電圧Voによって加速され、照射レンズ4、
プラン力−5を経て基板試料9上に対物レンズ6によっ
てフォーカスされ、所定描画領域を偏向回路14を介し
て偏向系7で制御される。プラン力−5は、計算器15
,プランキング回路13を通じ描画パターンデータの有
無に応じて電子線3をオン(ON)/オフ(OFF)制
御するものである。また信号検出器8は、基板試料9上
に予め作製されてあるマーク等に電子線3を照射した際
の反射電子または二次電子を検出し描画位置の確認に用
いられる。ステージ1oはX−Y平面内を自在に移動し
て、試料9上の所望の描画位置を電子線3の直下に位置
制御するものである。 上記動作に基づきカラム1および1′は共通の計算器1
5によってそれぞれ同時に制御され,最終的には基板試
料9上に所望のLSIパターンを描画する。 しかし、第3図の従来例では、カラム1および1″はそ
の加速電圧vOが同じであるため、サブミクロンの微l
線から数十ミクロンの大面vt.領域にわたる複雑なL
SIパターンを全体的に均一な精度で能率良く描画する
には限度がある。それは、パターン内あるいはパターン
間に関する近接効果現象の存在による。つまり、電子線
径に関与する加速電圧の高低は,描画パターンの微細精
度を重視するか、又はスループットの方を重視するかの
選択性にも関係する。 そこで従来は比較的前者の立場を取っていたが、微細線
部から大面積部に渡る全体の精度均一化が難点で、描画
データ作成の段階で近接効果補正等の煩雑なデータ変換
操作などを必要としていた。 この様な手段はパターンデータ数を増やすことになり、
スループットの向上には不十分であった。
In recent years, charged particle beam devices using ions and electrons have been in the spotlight as devices for processing and forming patterns for LSIs and the like on semiconductor substrates at high speed and with high precision. Among them, in electron beam lithography equipment using electrons, LS
The throughput from generation of a pattern such as I to drawing on a substrate surface to fabrication of a processed layer using the pattern has been significantly improved. However, even though they are superior in terms of processing accuracy, they are far from being comparable in throughput to optical pattern transfer devices such as steppers, and further improvements have been desired. Therefore, in recent years, the multi-force ram method has emerged as one of the means to achieve high throughput (for example,
2-137835). Figure 3 is an example. This figure shows a case where two columns (electron optical lens barrels) 1 and 1' having exactly the same specifications are installed. Here, its operation will be briefly explained. Since the structural functions within column 1 are exactly the same as column 1', only column 1 will be described. First, the electron beam 3 emitted from the electron gun 2 is transmitted to the high voltage power supply 12.
is accelerated by the acceleration voltage Vo, and the irradiation lens 4,
It is focused onto the substrate sample 9 by the objective lens 6 via the planning force -5, and a predetermined drawing area is controlled by the deflection system 7 via the deflection circuit 14. Plan power -5 is calculator 15
, the electron beam 3 is controlled to be turned on or off through a planking circuit 13 depending on the presence or absence of drawing pattern data. Further, the signal detector 8 is used to confirm the drawing position by detecting reflected electrons or secondary electrons when the electron beam 3 is irradiated onto a mark or the like prepared in advance on the substrate sample 9. The stage 1o moves freely within the X-Y plane to control a desired drawing position on the sample 9 directly below the electron beam 3. Based on the above operation, columns 1 and 1' are common calculator 1
5 and 5 simultaneously, and finally a desired LSI pattern is drawn on the substrate sample 9. However, in the conventional example shown in FIG. 3, columns 1 and 1'' have the same accelerating voltage vO, so the submicron
A large surface of several tens of microns from the line VT. complex L across domains
There is a limit to how efficiently an SI pattern can be drawn with uniform precision throughout. This is due to the existence of a proximity effect phenomenon within or between patterns. In other words, the level of accelerating voltage, which is related to the electron beam diameter, is also related to the selectivity of whether to emphasize fine precision of the drawn pattern or throughput. Conventionally, we have taken the former position, but it is difficult to make the overall accuracy uniform from fine line parts to large area parts, and complicated data conversion operations such as proximity effect correction are required at the drawing data creation stage. I needed it. Such means will increase the number of pattern data,
This was not sufficient to improve throughput.

【発明が解決しようとする課題】[Problem to be solved by the invention]

上記従来のマルチ力ラム方式は,同一の加速電圧のカラ
ムから発生させた複数の電子線を用いるため、微細パタ
ーンと大面積パターンに対する精度の均一化およびスル
ープット向上の双方について充分な配慮がなされていな
かった。 本発明の目的は、描画すべきパターン面積の大小によら
ず精度の均一化を図り、同時にスルーブットをさらに向
上できる装置を提供することにある。
The conventional multi-force ram method described above uses multiple electron beams generated from columns with the same accelerating voltage, so sufficient consideration has been given to both uniformity of precision and improvement of throughput for fine patterns and large-area patterns. There wasn't. An object of the present invention is to provide an apparatus that can achieve uniform accuracy regardless of the size of the pattern area to be drawn, and at the same time can further improve throughput.

【課題を解決するための手段】[Means to solve the problem]

上記目的は,マルチ力ラム構造において、少なくとも相
異なる高低2種類の加速電圧に分けたカラムから電子線
を発生させ、同一の基板試料に対してまず低い加速電圧
で大面積部を高速に描画後,引き続いて残りの微細部を
高加速で描画し、迅速に処理することにより達成される
The above purpose is to generate an electron beam from a column divided into at least two different high and low acceleration voltages in a multi-force ram structure, and then write a large area at high speed on the same substrate sample at a low acceleration voltage. This is achieved by subsequently writing the remaining fine parts at high acceleration and processing them rapidly.

【作用】[Effect]

基板試料上に塗布された電子線レジストを電子線照射に
よって感光させる際、該レジスト中における電子の堆積
エネルギーは加速電圧の低いほど、大きいことが知られ
ている。つまり、低い加速電圧の場合ほどレジスト感度
は高まる(但し、電子線径は太り、微細精度は逆に劣る
傾向を示す)。 従って、パッドや電極配線の如き大面積パターンJL士
低い加速電圧による電子線で素早く描画し、占有面積の
少ないゲート電極の如き微細なパターンは高い加速電圧
の電子線で描画する。これにより、一種の近接効果補正
による精度の均一化を図り、かつスループットの向上を
実現するものである。 [実施例】 以下、本発明の実施例を第1図および第2図により説明
する。 まず、第1図中の部品番号の中で前記第3図と重複して
いるものは同一物を意味する。 本実施例における第1図において、カラム1と1′″と
が同じ真空雰囲気に連通した共通の試料室11′上に載
置した理由は次の点にある。 即ち、従来の第3図においても,カラム1と1′のそれ
ぞれの加速電圧を高低2種類に違えれば本発明の如き効
果は得られるが、その場合には以下のような欠点がある
。つまり、試料室11が装置的に分離されているため、
描画し終えた試料をカラム1からカラム1′へ移行させ
るには,カセットのロード/アンロード操作を経る必要
があり、排気時間ロスが増加する。また、カラム1側で
描画した試料9を一旦大気中に取り出してから再びカラ
ム1′側に挿入し直すため、着塵の問題が生じてくる。 さらに,両カラム間の試料用カセットの移行に際しては
、それぞれのカラム特有の癖による合わせ精度の劣化が
発生し易い,などの欠点が挙げられる。 上記理由の結果、本発明の第1〜2図は、2つの相異な
る加速電圧vOおよびVo’ を有する各々のカラム1
と1”を、それぞれ共通の試料室11′上に載置してい
る。 そこで、カラム1側に関しては、前記第3図の時と同様
に、電子線3に対してレンズ系4,6の励磁電流あるい
は偏向系7の偏向電流等を個別に予備調整しておく。他
方、本発明ではVoより低いVo’のカラム1”側に関
しても、同様に、電子線3′に対してレンズ系4’ ,
6’の励磁電流および偏向系7′の偏向電流等もVo’
の大きさに対応して予備調整しておく。これは、レンズ
系およびプランキング偏向電圧や偏向回路のゲイン等が
電子線の加速エネルギーに対応して決められるからであ
り、前もって調整しておくことが必要である。 一方、二つのカラム1,1”に対して共通な試料室11
′内には同様の基板試料9′が移動可能なステージ10
′上に固定されている9そこで、まず本発明における描
画手順としては、今Vo’ =15kVに設定して図示
のステージ10′の位置で、計算機15の指令に基づき
SWI、SW2を選択しLSI等における電極配線ある
いはボンディングパッドなどの大面積パターンをプラン
キング回路13′の制御等を介して試料9′上のレジス
ト面に高速に描画していく。引き続き、試料9′をステ
ージ10′により、V o = 3 0 kVとしだカ
ラム1の直下に移動後、再び計算機15の指令にしたが
ってSWI、SW2を再選択し、プランキング13の制
御等よってトランジスタの微細なゲート電極やコンタク
トホールの微細パターン部を高精度で描画していく。 カラム1と1″との使い分けは、たとえば複数チップ構
成のブロック毎、あるいはウエハ毎というように、選択
は任意である。また、カラム1,1″の利用順序は、こ
の逆でも同等の効果が得られる。 ここで、加速電圧変化に関する筆者等の実験では、一例
として、V o = 3 0 k Vで5μC/cJの
レジスト感度は、Vo’ =15kVでは感度が約1.
7倍の2.9μC/cdにまで向上することが確認でき
た。また.Vo’ =20kVでは約1.3倍の3.8
μC/dであった。 第2図に実施例2を示す。 本実施例は、前記実施例1の機能に、独立に移動可能な
ステージ19を加えたものである。つまり、カラム1″
側で試料9′に描画時、カラム1側は待機中となり時間
的にロスとなる。そこで独立に移動のできるステージ1
9を設け,これに固定した別の試料17(図示しない左
方から挿入)上に電子a3で、並列的に、描画を進行さ
せるものである。 この場合制御計算機15の能力が不足であれば、カラム
1用として別途増設しても構わない。なお、本実施例に
おける描画試料の交換手順としては、たとえば、先に描
画完了した試料9′はカセット16に固定された状態で
右方ヘステージ10′の移動により大気中へ回収される
。次に、ステージ10′は試料室11′内の中央の渡し
台20近くまで移動する。ここで試料17の描画が終了
すると、ステージ19はローラーガイド付きの渡し台2
0近くに移動し、カセット18を引出し棒(図示なし)
でステージ10′上に載置し直し、再びカラム1″側で
の描画を再開する。渡し台20はこの場合特に設けなく
ても、ステージ19から直接ステージ10’への受け渡
しでもよい。 上記動作を繰り返すことにより、実施例2は両方のカラ
ム1と1″の待機時間を最小化することで、高スループ
ット化にさらに大きく貢献できるものである。 【発明の効果} 以上、本発明によれば、大面積パターンは比較的低い加
速電圧の太めの電子線で高速に描画し、サブミクロンパ
ターンは高い加速電圧の細い電子線で描画するため一種
の近接効果補正が得られることとなり、煩雑な近接補正
データの変換作業が非常に軽減される。これにより,均
一な描画精度の実現と相まってスループットの向上が可
能となる6また本発明では荷電粒子線として電子線を例
にとって説明したが、イオン線でも同様の効果は得られ
る。
It is known that when an electron beam resist coated on a substrate sample is exposed to light by electron beam irradiation, the deposition energy of electrons in the resist increases as the accelerating voltage decreases. In other words, the resist sensitivity increases as the accelerating voltage decreases (however, the electron beam diameter tends to increase and the fine precision tends to deteriorate). Therefore, large-area patterns such as pads and electrode wiring are quickly drawn with an electron beam at a low acceleration voltage, and fine patterns such as gate electrodes, which occupy a small area, are drawn with an electron beam at a high acceleration voltage. Thereby, it is possible to equalize the precision by a type of proximity effect correction and to improve the throughput. [Example] Hereinafter, an example of the present invention will be described with reference to FIGS. 1 and 2. First, the parts numbers in FIG. 1 that are the same as those in FIG. 3 above refer to the same parts. The reason why columns 1 and 1'' are placed on a common sample chamber 11' that communicates with the same vacuum atmosphere in FIG. 1 in this embodiment is as follows. However, if the accelerating voltages of columns 1 and 1' are different from high to low, the effect of the present invention can be obtained, but in that case, there are the following drawbacks.In other words, the sample chamber 11 is Because it is separated into
In order to transfer the sample that has been drawn from column 1 to column 1', it is necessary to load/unload the cassette, which increases evacuation time loss. Further, since the sample 9 drawn on the column 1 side is once taken out into the atmosphere and then reinserted into the column 1' side, the problem of dust accumulation occurs. Furthermore, when transferring a sample cassette between both columns, there is a drawback that alignment accuracy is likely to deteriorate due to the peculiarities of each column. As a result of the above reasons, FIGS. 1-2 of the present invention provide for each column 1 with two different accelerating voltages vO and Vo'.
and 1" are respectively placed on a common sample chamber 11'. Therefore, regarding the column 1 side, as in the case of FIG. The excitation current or the deflection current of the deflection system 7, etc. are individually pre-adjusted.On the other hand, in the present invention, regarding the column 1" side of Vo' lower than Vo, the lens system 4 ',
The excitation current of 6' and the deflection current of deflection system 7' are also Vo'
Make preliminary adjustments according to the size. This is because the lens system, planking deflection voltage, gain of the deflection circuit, etc. are determined in accordance with the acceleration energy of the electron beam, and must be adjusted in advance. On the other hand, a common sample chamber 11 for the two columns 1, 1"
'A similar substrate sample 9' is mounted on a movable stage 10.
Therefore, as a drawing procedure in the present invention, first, Vo' is set to 15 kV, and at the stage 10' shown in the figure, SWI and SW2 are selected based on the command from the computer 15, and the LSI is Large-area patterns such as electrode wiring or bonding pads are drawn on the resist surface of the sample 9' at high speed through control of the blanking circuit 13'. Subsequently, the sample 9' is moved by the stage 10' to V o = 30 kV directly under the column 1, and then SWI and SW2 are reselected according to the instructions from the computer 15, and the transistor is The fine patterns of gate electrodes and contact holes are drawn with high precision. The use of columns 1 and 1'' can be selected arbitrarily, for example for each block of a multi-chip configuration or for each wafer.Also, the order in which columns 1 and 1'' are used can be used in the reverse order with the same effect. can get. Here, in experiments conducted by the authors regarding acceleration voltage changes, as an example, resist sensitivity of 5 μC/cJ at Vo = 30 kV is approximately 1.5 μC/cJ at Vo' = 15 kV.
It was confirmed that it was improved to 2.9 μC/cd, which is 7 times. Also. At Vo' = 20kV, it is 3.8 which is approximately 1.3 times
It was μC/d. Example 2 is shown in FIG. This embodiment adds an independently movable stage 19 to the functions of the first embodiment. That is, column 1″
When writing on the sample 9' on the side, the column 1 side is on standby, resulting in a time loss. Stage 1 where you can move independently
9 is provided, and drawing progresses in parallel on another sample 17 (inserted from the left, not shown) fixed to this using electrons a3. In this case, if the capacity of the control computer 15 is insufficient, it may be added separately for column 1. In the procedure for exchanging the drawing sample in this embodiment, for example, the sample 9', which has been drawn first, is recovered into the atmosphere by moving the stage 10' to the right while being fixed to the cassette 16. Next, the stage 10' moves to near the central transfer table 20 within the sample chamber 11'. When the drawing of the sample 17 is completed here, the stage 19 is moved to the transfer table 2 with a roller guide.
0 and pull out the cassette 18 using the pull-out rod (not shown).
The stage 10' is then placed again on the stage 10', and drawing on the column 1'' side is resumed.The transfer table 20 does not need to be provided in this case, and the transfer may be carried out directly from the stage 19 to the stage 10'. By repeating this, the second embodiment can further contribute to high throughput by minimizing the waiting time of both columns 1 and 1''. [Effects of the Invention] As described above, according to the present invention, large-area patterns are drawn at high speed with a thick electron beam with a relatively low acceleration voltage, and submicron patterns are drawn with a thin electron beam with a high acceleration voltage. Proximity effect correction can be obtained, and the complicated work of converting proximity correction data can be greatly reduced. This makes it possible to achieve uniform drawing accuracy and improve throughput.6Although the present invention has been described using an electron beam as an example of a charged particle beam, the same effect can be obtained with an ion beam.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ本発明の実施例の荷電粒
子線装置の概略構成図、第3図は従来技術の荷電粒子線
装置の概略構成図である。 符号の説明 1,1′・・・カラム、2・・・電子銃、3,3′・・
・電子線、5,5′・・・プランカー 9.9’l7・・・基板試料, 10.10’  19・・・ステージ,12.12’・
・・高圧電源、13.13’・・・プランキング回路、
15・・・計算機、16.18・・・カセット。 馬,9′:加速t斤 /6,/♂:カぐット 20:j農b台
FIGS. 1 and 2 are schematic diagrams of a charged particle beam device according to an embodiment of the present invention, and FIG. 3 is a schematic diagram of a conventional charged particle beam device. Explanation of symbols 1, 1'... Column, 2... Electron gun, 3, 3'...
・Electron beam, 5,5′...Plunker 9.9'l7...Substrate sample, 10.10' 19...Stage, 12.12'・
...High voltage power supply, 13.13'... Planking circuit,
15...Calculator, 16.18...Cassette. Horse, 9': Acceleration t catty/6, /♂: Kagut 20: j agricultural b platform

Claims (1)

【特許請求の範囲】[Claims] 1、基板試料上に荷電粒子線を照射して種々のパターン
を形成する荷電粒子線装置において、該荷電粒子線は複
数の電子光学鏡筒から少なくとも高低2種類の加速電圧
により発生され、かつ、該複数の電子光学鏡筒は互いに
共通な真空雰囲気で連通した一つの試料移動可能な試料
室上に載置され、一台の計算機によって制御されること
を特徴とする荷電粒子線装置。
1. In a charged particle beam device that forms various patterns by irradiating a charged particle beam onto a substrate sample, the charged particle beam is generated from a plurality of electron optical lens barrels using at least two types of high and low accelerating voltages, and A charged particle beam apparatus characterized in that the plurality of electron optical lens barrels are placed on a single sample chamber in which the sample can be moved and communicated with each other in a common vacuum atmosphere, and are controlled by a single computer.
JP11492489A 1989-05-10 1989-05-10 Charged particle beam lithography equipment Pending JPH02295105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11492489A JPH02295105A (en) 1989-05-10 1989-05-10 Charged particle beam lithography equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11492489A JPH02295105A (en) 1989-05-10 1989-05-10 Charged particle beam lithography equipment

Publications (1)

Publication Number Publication Date
JPH02295105A true JPH02295105A (en) 1990-12-06

Family

ID=14650033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11492489A Pending JPH02295105A (en) 1989-05-10 1989-05-10 Charged particle beam lithography equipment

Country Status (1)

Country Link
JP (1) JPH02295105A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100947154B1 (en) * 2007-05-30 2010-03-12 가부시키가이샤 뉴플레어 테크놀로지 Charged particle beam writing apparatus and charged particle beam writing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100947154B1 (en) * 2007-05-30 2010-03-12 가부시키가이샤 뉴플레어 테크놀로지 Charged particle beam writing apparatus and charged particle beam writing method

Similar Documents

Publication Publication Date Title
US4465934A (en) Parallel charged particle beam exposure system
US4785189A (en) Method and apparatus for low-energy scanning electron beam lithography
JPH11317353A (en) Electron beam projection device and its operation method
GB2349737A (en) Electron beam exposure apparatus
EP0980541A1 (en) Method and apparatus for direct writing of semiconductor die using microcolumn array
JPS60224220A (en) Electron image projecting device
JPH02125609A (en) Semiconductor manufacturing equipment
EP1141995A1 (en) Array of multiple charged particle beamlet emitting columns
US7566882B1 (en) Reflection lithography using rotating platter
US4829444A (en) Charged particle beam lithography system
EP0035556B1 (en) Electron beam system
US8564225B1 (en) Accelerator on a chip having a grid and plate cell
JP2843249B2 (en) Method and apparatus for manufacturing a device
JPH02295105A (en) Charged particle beam lithography equipment
US8648315B1 (en) Accelerator having a multi-channel micro-collimator
US8680792B2 (en) Accelerator having acceleration channels formed between covalently bonded chips
Broers High‐resolution systems for microfabrication
EP0200083B1 (en) Apparatus for low-energy scanning electron beam lithography
JP2001015428A (en) Electron beam exposure system
Fujii et al. Applicability test for synchrotron radiation x‐ray lithography in 64‐Mb dynamic random access memory fabrication processes
JPH10241615A (en) Electron ray exposure device
US8541757B1 (en) Accelerator on a chip having a cold ion source
JPS60262419A (en) Pattern forming device and production of semiconductor device utilizing the same
JP4206296B2 (en) Pattern evaluation method and device manufacturing method using the method
JPH02125608A (en) Semiconductor manufacturing equipment and manufacture of semiconductor device