JPH02294922A - Magnetic memory medium and production thereof - Google Patents

Magnetic memory medium and production thereof

Info

Publication number
JPH02294922A
JPH02294922A JP11461489A JP11461489A JPH02294922A JP H02294922 A JPH02294922 A JP H02294922A JP 11461489 A JP11461489 A JP 11461489A JP 11461489 A JP11461489 A JP 11461489A JP H02294922 A JPH02294922 A JP H02294922A
Authority
JP
Japan
Prior art keywords
thin film
carbon
nitride
magnetic
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11461489A
Other languages
Japanese (ja)
Inventor
Shuji Ito
伊藤 周二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP11461489A priority Critical patent/JPH02294922A/en
Publication of JPH02294922A publication Critical patent/JPH02294922A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To enhance the CSS durability with a hard magnetic head by forming microruggedness on a ferromagnetic metallic thin film medium formed on a nonmagnetic substrate and further forming a thin film consisting of an oxide, nitride, carbide or carbon thereon. CONSTITUTION:A mixture composed of liquefied carbon dioxide and dry nitrogen is injected under a high pressure onto the ferromagnetic metallic medium to form the microruggedness thereon. The surface thereof is further coated with the thin film consisting of at least one kind of materials selected from the oxide, nitride, carbide or carbon. The above-mentioned oxide, nitride and carbon have the function to relieve the impact of the magnetic head but are chipped by the CSS with the magnetic head having a high-hardness slider. The microruggedness is, thereupon, formed on the surface of the ferromagnetic metallic medium to enhance the adhesive strength to the oxide, nitride and carbon.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非磁性基板上に強磁性金属薄膜を設けて成る磁
気記憶媒体及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic storage medium comprising a ferromagnetic metal thin film provided on a non-magnetic substrate, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

金属媒体を有する磁気記憶媒体では、磁気ヘッドとの接
触に十分耐えうる機械的信頼性を有することが必要不可
欠である。磁気記憶媒体はドライブ構成の簡略化により
、コンタクト・スタート・ストップ(以下CSS方式と
略す)が採用され、更に磁気記録面の保護のため、磁気
記録面以外のシッピングゾーンの同一トラックでCSS
が行われる場合が多い。
It is essential for a magnetic storage medium having a metal medium to have sufficient mechanical reliability to withstand contact with a magnetic head. For magnetic storage media, contact start/stop (hereinafter referred to as CSS method) has been adopted to simplify the drive configuration, and in order to protect the magnetic recording surface, CSS is used in the same track in the shipping zone other than the magnetic recording surface.
is often done.

また、磁気記録の高密度化にともない磁気ヘッドもフエ
ライトミニモノリシックヘッドから、コンポジットヘッ
ド、薄膜ヘッドと変わり、スライダー材の硬度が増加し
磁気記憶媒体の保護膜の耐久性の向上が求められている
In addition, as magnetic recording density increases, magnetic heads change from ferrite mini-monolithic heads to composite heads and thin film heads, and as the hardness of slider materials increases, there is a need to improve the durability of the protective film of magnetic storage media. .

従来、金属磁性媒体の表面に飽和脂肪酸等の.有機潤滑
層を設ける方法(特公昭56−30609号)脂肪酸ア
ミドとリン系化合物の混合潤滑層を設ける方法(特公昭
59−165238)高級脂肪酸と脂肪酸金属塩の混合
潤滑層を設ける方法(特公昭59−177728)等が
あるが、硬度の高いスライダーを有する磁気ヘッドでの
CSSでは摩擦係数の上昇、クラッシュの問題がある。
Conventionally, saturated fatty acids, etc. were coated on the surface of metal magnetic media. Method of providing an organic lubricating layer (Japanese Patent Publication No. 56-30609) Method of providing a mixed lubricating layer of fatty acid amide and phosphorus compound (Japanese Patent Publication No. 59-165238) Method of providing a mixed lubricating layer of higher fatty acids and fatty acid metal salts (Patent Publication No. 56-30609) 59-177728), etc., but CSS using a magnetic head having a slider with high hardness has problems of increased friction coefficient and crash.

潤滑層と保護膜層との両方の特性を示す炭素質膜(特公
昭54−33521)(特開昭53−143206)(
特開昭56−41524)は、CSS時に傷が入らず磁
気ヘッドの衝撃を緩衝するため、磁気特性の劣化も見ら
れないが、硬度の高いスライダーを有する磁気ヘッドで
のCSSでは、CSS回数の増加につれ炭素質膜が削れ
摩擦係数が増大するという問題を有していた。
Carbonaceous film exhibiting the characteristics of both a lubricating layer and a protective film layer (Japanese Patent Publication No. 54-33521) (Japanese Patent Publication No. 53-143206) (
Japanese Patent Application Laid-Open No. 56-41524) does not cause scratches during CSS and buffers the impact of the magnetic head, so no deterioration of magnetic properties is observed. There was a problem in that as the carbonaceous film increased, the carbonaceous film was scraped and the coefficient of friction increased.

また磁気ヘッドと磁気記憶媒体の吸着と、CSSによる
摩擦係数の増大を防ぐ目的で、非磁性基板にテキスチャ
ー(微小な凹凸)加工する方法もとられるが、十分では
なかった。
In addition, in order to prevent the magnetic head and the magnetic storage medium from attracting each other and to prevent an increase in the coefficient of friction due to CSS, a method of processing a texture (microscopic irregularities) on a non-magnetic substrate has been used, but this method has not been sufficient.

〔発明が解決しようとする課題及び目的〕上述のごとく
従来技術では硬度の高いスライダーを有する磁気ヘッド
とのCSSでは十分な機械的信頼性が得られず摩擦係数
の上昇を押さえることができなかフた。
[Problems and Objectives to be Solved by the Invention] As mentioned above, in the conventional technology, sufficient mechanical reliability cannot be obtained with CSS using a magnetic head having a slider with high hardness, and an increase in the coefficient of friction cannot be suppressed. Ta.

そこで本発明はこの様な問題点を解決するもので、その
目的とするところは硬度の高いスライダーを有する磁気
ヘッドでのCSSでも強磁性金属媒体に機械的ダメージ
を与えず、かつ摩擦係数も増加しない磁気記憶媒体を提
供することである。
The present invention is intended to solve these problems, and its purpose is to avoid mechanical damage to the ferromagnetic metal medium even during CSS in a magnetic head with a highly hard slider, and to increase the coefficient of friction. The objective is to provide a magnetic storage medium that does not.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の磁気記憶媒体は、非磁性基板上に形成された強
磁性金属媒体上に、液化炭酸ガスと乾煉窒素の混合物を
高圧に噴射して微小な凹凸を形成し、更に酸化物、窒化
物、炭化物あるいは炭素から選ばれる少なくとも1種の
物質より成る薄膜を被覆せしめたことを特徴とする。
The magnetic storage medium of the present invention is produced by injecting a mixture of liquefied carbon dioxide gas and dry nitrogen at high pressure onto a ferromagnetic metal medium formed on a non-magnetic substrate to form minute irregularities, and then forming fine irregularities on the ferromagnetic metal medium formed on a non-magnetic substrate. It is characterized by being coated with a thin film made of at least one substance selected from carbon, carbide, and carbon.

酸化物は、S 1 0x、TiO2、C r20s等、
窒化物はTiN,Ta2N,AIN,Si3N4等、炭
化物は、SiC,TiC等、炭素は、ダイヤモンド状、
グラファイト状、アモルフオス状の何れでもよく、膜厚
は、150人〜800人形成する。
Oxides include S10x, TiO2, Cr20s, etc.
Nitride is TiN, Ta2N, AIN, Si3N4, etc. Carbide is SiC, TiC, etc. Carbon is diamond-like,
It may be either graphite or amorphous, and the film thickness is 150 to 800.

以上は真空蒸着法、スパッタリング法、イオ.ンプレー
ティング法やC V’ D法の何れの方法でも形成可能
である。
The above methods include vacuum evaporation method, sputtering method, and iodine method. It can be formed by any method such as a plating method or a C V'D method.

一 3 一 凹凸の粗さは、タワステップによる測定値でRaが0.
005 〜0.02μm,Rma.xが0.03〜0.
2μmがよく、より好ましい粗さは、Raが0.01 
〜0.015μm,Rmaxが0.10〜0.15μm
であった。
1 3 The roughness of the unevenness is measured by tower step and Ra is 0.
005 to 0.02 μm, Rma. x is 0.03 to 0.
The roughness is preferably 2 μm, and the more preferable roughness is Ra of 0.01.
~0.015μm, Rmax is 0.10~0.15μm
Met.

〔作用〕[Effect]

強磁性金属媒体上に形成された酸化物、窒化物、炭化物
、炭素は磁気ヘッドの衝撃を緩衝する機能があるが、硬
度の高いスライダーを有する磁気ヘッドとのCSSでは
削れてしまう。そこで強磁性金属媒体の表面に微小な凹
凸を形成し、酸化物、窒化物、炭化物、炭素との密着力
を上げる。
Oxides, nitrides, carbides, and carbon formed on the ferromagnetic metal medium have the function of buffering the impact of the magnetic head, but they will be scraped during CSS with a magnetic head having a highly hard slider. Therefore, minute irregularities are formed on the surface of the ferromagnetic metal medium to increase its adhesion to oxides, nitrides, carbides, and carbon.

液化炭酸ガスを噴射すると1 mm程度のソフトなドラ
イアイス粒子になる。これが基板上に窒素ガスと一緒に
吹き付けられると、基板に微小な凹凸ができ、更に基板
上の付着粒子を除去する。
When liquefied carbon dioxide is injected, it becomes soft dry ice particles about 1 mm in size. When this is blown onto the substrate together with nitrogen gas, minute irregularities are created on the substrate, and furthermore, the adhered particles on the substrate are removed.

ドライアイスを吹き付けるため、基板には熱ストレスが
かからず、磁気特性の変化がない。
Since dry ice is sprayed on the substrate, no thermal stress is applied to the substrate, and there is no change in magnetic properties.

またこの加工はドライプロセスで行われるため、行程中
に基板が汚れることはない。
Additionally, since this processing is done in a dry process, the substrate will not become contaminated during the process.

次に実施例で具体的に説明する。Next, a concrete explanation will be given in Examples.

一 4 〔実施例−1〕 鏡面仕上げされたディスク状アルミニウム合金基板状に
非磁性合金めっきとしてNi−P合金めっきを約15μ
mの厚さにめっき後、研磨によりlOμmの厚さ、表面
粗さ0.03μm以下にし、更に金属磁性薄膜としてC
o−Ni−P合金を約0.06μm厚にめっきした。
1 4 [Example-1] Ni-P alloy plating of approximately 15 μm was applied as non-magnetic alloy plating to a mirror-finished disc-shaped aluminum alloy substrate.
After plating to a thickness of m, polishing to a thickness of lOμm and a surface roughness of 0.03μm or less, and further plated as a metal magnetic thin film.
An o-Ni-P alloy was plated to a thickness of about 0.06 μm.

次に液化炭酸ガスと乾燥窒素を重量比で1対10に混合
して2kg/c+flの圧力で60秒間全面に噴射した
Next, liquefied carbon dioxide gas and dry nitrogen were mixed at a weight ratio of 1:10 and sprayed over the entire surface for 60 seconds at a pressure of 2 kg/c+fl.

更にマグネトロンスパッタ法でアモルフォス状炭素質膜
を300人連続して形成した。
Furthermore, 300 people successively formed amorphous carbonaceous films using magnetron sputtering.

〔実施例−2〕 実施例1と同様にして金属媒体を有するディスクを作成
した。
[Example 2] A disk having a metal medium was produced in the same manner as in Example 1.

次に液化炭酸ガスと乾燥窒素を重量比で1対20に混合
して4kg/ciの圧力で120秒間全面に噴射した。
Next, liquefied carbon dioxide gas and dry nitrogen were mixed at a weight ratio of 1:20 and sprayed over the entire surface at a pressure of 4 kg/ci for 120 seconds.

次にマグネトロンスバッタ装置でS iOxを500人
形成した。
Next, 500 SiOx layers were formed using a magnetron scattering device.

〔実施例−3〕 実施例1と同様にして金属奴体を有するディスクを作成
した。
[Example 3] A disk having a metal body was produced in the same manner as in Example 1.

次に液化炭酸ガスと乾煙窒素を重量比で1対2oに混合
して4. kg / cmの圧力で6o秒間全面に噴射
した。
Next, mix liquefied carbon dioxide gas and dry smoke nitrogen at a weight ratio of 1:2.4. It was sprayed over the entire surface for 6o seconds at a pressure of kg/cm.

次にマグネトロンスパッタ装置てグラファイj・状炭素
を800人形成した。
Next, 800 pieces of graphite J-shaped carbon were formed using a magnetron sputtering device.

〔実施例−4〕 実施例1と同様にして金属媒体を有するディスクを作成
した。
[Example 4] A disk having a metal medium was produced in the same manner as in Example 1.

次に液化炭酸ガスとg’f= k窒素を重量比で1対2
5に混合して2 kg / cmの圧力て120秒間全
面に噴射した。
Next, mix liquefied carbon dioxide and g'f=k nitrogen in a weight ratio of 1:2.
5 and sprayed on the entire surface for 120 seconds at a pressure of 2 kg/cm.

マグネl〜ロンスパッタ装置でグラファイト状の炭素を
500人形成した。
500 pieces of graphite-like carbon were formed using a magnetron sputtering device.

〔比較例−1〕 実施例1に於いて液化炭酸ガスと窒素ガスを噴射せずサ
ンプルを作成した。
[Comparative Example-1] A sample was prepared in Example 1 without injecting liquefied carbon dioxide gas and nitrogen gas.

〔比較例−2〕 実施例2に於いて液化炭酸ガスと窒素ガスを噴射せずサ
ンプルを作成した。
[Comparative Example-2] A sample was prepared in Example 2 without injecting liquefied carbon dioxide gas and nitrogen gas.

〔比較例−3〕 実施例3に於いて液化炭酸ガスと窒素ガスを噴射せずサ
ンプルを作成した。
[Comparative Example-3] A sample was prepared in Example 3 without injecting liquefied carbon dioxide gas and nitrogen gas.

〔比較例−4〕 実施例4に於いて液化炭酸ガスと窒素ガスを噴射せずサ
ンプルを作成した。
[Comparative Example-4] A sample was prepared in Example 4 without injecting liquefied carbon dioxide gas and nitrogen gas.

〔比較例−5〕 実施例4に於いて窒素ガスのみを2kg/c+flの圧
力で120秒間全面に噴射してサンプルを作成した。
[Comparative Example-5] A sample was prepared by injecting only nitrogen gas over the entire surface for 120 seconds at a pressure of 2 kg/c+fl in Example 4.

以上の実施例、比較例のディスクをCSS試験した。C
SS試験は、浮上量0.20 μm,Hvl200のス
ライダー材質アルミナチタンカーバイドの薄膜ヘッドを
用いてCSS前とCS320000回後の静摩擦係数の
測定を行った。その結果を第1表に示す。
The disks of the above Examples and Comparative Examples were subjected to a CSS test. C
In the SS test, the static friction coefficient was measured before CSS and after 320,000 times of CS using a thin film head made of alumina titanium carbide as a slider material with a flying height of 0.20 μm and Hvl of 200. The results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、非磁性基板上に形
成された強磁性金属薄膜媒体上に、ドライプロセスを用
いて微小な凹凸を形成することにより、CSSの耐久性
が向上した。
As described above, according to the present invention, the durability of CSS is improved by forming minute irregularities on a ferromagnetic metal thin film medium formed on a nonmagnetic substrate using a dry process.

また硬質磁気ヘッドでの耐久特性が向上し、高記録密度
の磁気ディスクを提供することが可能となった。
Furthermore, the durability of hard magnetic heads has been improved, making it possible to provide magnetic disks with high recording density.

第1表 以上 出願人 セイコーエプソン株式会社 代理人弁理士 鈴木喜三郎(他1名)Table 1 that's all Applicant: Seiko Epson Corporation Representative Patent Attorney Kisaburo Suzuki (and 1 other person)

Claims (4)

【特許請求の範囲】[Claims] (1)非磁性基板上に形成された強磁性金属薄膜媒体上
に、微小な凹凸を形成し、更に酸化物、窒化物、炭化物
あるいは炭素から選ばれる少なくとも1種の物質より成
る薄膜を被覆せしめたことを特徴とする磁気記憶媒体。
(1) Fine irregularities are formed on a ferromagnetic metal thin film medium formed on a nonmagnetic substrate, and a thin film made of at least one substance selected from oxide, nitride, carbide, or carbon is further coated. A magnetic storage medium characterized by:
(2)前記微小な凹凸を、液化炭酸ガスと乾燥窒素の混
合物で、高圧に噴射して加工したことを特徴とする第1
項記載の磁気記憶媒体。
(2) A first feature in which the minute irregularities are processed by spraying a mixture of liquefied carbon dioxide gas and dry nitrogen at high pressure.
Magnetic storage medium as described in section.
(3)非磁性基板上に形成された強磁性金属薄膜媒体上
に、微小な凹凸を形成し、更に酸化物、窒化物、炭化物
あるいは炭素から選ばれる少なくとも1種の物質を形成
する工程からなることを特徴とする磁気記憶媒体の製造
方法。
(3) A step of forming minute irregularities on a ferromagnetic metal thin film medium formed on a non-magnetic substrate, and further forming at least one substance selected from oxides, nitrides, carbides, or carbon. A method of manufacturing a magnetic storage medium, characterized in that:
(4)前記微小な凹凸を、液化炭酸ガスと乾燥窒素の混
合物で、高圧に噴射して加工したことを特徴とする第3
項記載の磁気記憶媒体の製造方法。
(4) A third feature in which the minute irregularities are processed by spraying a mixture of liquefied carbon dioxide and dry nitrogen at high pressure.
A method for manufacturing a magnetic storage medium according to section 1.
JP11461489A 1989-05-08 1989-05-08 Magnetic memory medium and production thereof Pending JPH02294922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11461489A JPH02294922A (en) 1989-05-08 1989-05-08 Magnetic memory medium and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11461489A JPH02294922A (en) 1989-05-08 1989-05-08 Magnetic memory medium and production thereof

Publications (1)

Publication Number Publication Date
JPH02294922A true JPH02294922A (en) 1990-12-05

Family

ID=14642265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11461489A Pending JPH02294922A (en) 1989-05-08 1989-05-08 Magnetic memory medium and production thereof

Country Status (1)

Country Link
JP (1) JPH02294922A (en)

Similar Documents

Publication Publication Date Title
KR100418640B1 (en) Magnetic recording medium and its manufacturing method
US5250339A (en) Magnetic recording medium
JP3481252B2 (en) Magnetic recording medium and method of manufacturing the same
JPS62120629A (en) Magnetic disk and its production
JPH05143972A (en) Metal thin film magnetic recording medium and its production
JPH02294922A (en) Magnetic memory medium and production thereof
US5223304A (en) Process for fabricating magnetic disks
JPS62241124A (en) Magnetic recording medium
JPS62103823A (en) Magnetic disk
JP2535410B2 (en) Magnetic recording medium and manufacturing method thereof
JPS61210521A (en) Production of magnetic disk
Honda et al. High recording performance of Co–Cr medium sputter‐deposited at high Ar pressure and high substrate temperature
JPS61220119A (en) Magnetic disk
JPH08329458A (en) Production of magnetic recording medium
EP0422547B1 (en) Magnetic recording medium
JPH02304714A (en) Magnetic recording medium and its production
JP2593590B2 (en) Manufacturing method of magnetic recording media
JPH01271910A (en) Magnetic recording medium
JPH01134714A (en) Magnetic recording medium
JPH0391116A (en) Magnetic recording medium
Onishi et al. Substrate effects on the magnetic characteristics of sputtered media
JPH02294923A (en) Magnetic memory medium and production thereof
JPH01113916A (en) Magnetic recording medium
JPS62214515A (en) Magnetic memory body
JPH01271909A (en) Magnetic recording medium