JPH02294570A - Exciting system for electromagnetically-driven type reciprocating compressor - Google Patents

Exciting system for electromagnetically-driven type reciprocating compressor

Info

Publication number
JPH02294570A
JPH02294570A JP11581189A JP11581189A JPH02294570A JP H02294570 A JPH02294570 A JP H02294570A JP 11581189 A JP11581189 A JP 11581189A JP 11581189 A JP11581189 A JP 11581189A JP H02294570 A JPH02294570 A JP H02294570A
Authority
JP
Japan
Prior art keywords
piston
compressor
fundamental wave
pistons
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11581189A
Other languages
Japanese (ja)
Other versions
JPH06105074B2 (en
Inventor
Futoshi Fujinami
藤並 太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11581189A priority Critical patent/JPH06105074B2/en
Publication of JPH02294570A publication Critical patent/JPH02294570A/en
Publication of JPH06105074B2 publication Critical patent/JPH06105074B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Electromagnetic Pumps, Or The Like (AREA)

Abstract

PURPOSE:To maintain performance of a compressor and to relieve generating vibration by a method wherein a driver coil is excited by means of an AC in which a high frequency having a frequency higher than that of a fundamental wave is overlapped with a fundamental wave of a frequency responding to the reciprocating motion of a compressor. CONSTITUTION:A pair of pistons 3A and 3B are positioned facing each other in a single cylinder 2 with a compression space 2a of a working medium formed therebetween. Diver coils 11A and 11B coupled to the pistons 3A and 3B, respectively, are arranged in the magnetic field of a constant magnetic field magnet device. The driver coils 11A and 11B are excited by means of an AC in which a high frequency having a frequency higher than that of a fundamental wave and amplitude lower than that of the fundamental wave is overlapped with a fundamental wave of a frequency responding to the reciprocating motion of a compressor. This method maintains performance of the compressor and relieves generating vibration.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電磁力でピストンを往復動作する電磁駆動式
往復動圧縮機を対象とした、圧縮機の駆動子コイルの励
磁方式に関する. 〔従来の技術〕 往復動式圧I1iIIlは、ピストンが直線的に往復動
ずることから、運転に伴って脈動的な振動が発生し、こ
れが騒音,寿命低下の大きな原因となっている.このた
めに従来より様々な防振対策が採られており、その一対
策としてピストンをリニアモー夕で電磁駆動する方式を
採用し、さらに構造面では、両端を開放した単一シリン
ダ内に作動媒体の圧縮空間を挟んでその両側に一対のピ
ストンを対向配置するとともに、各ピストンに結合した
駆動子コイルを定磁界磁石装置の磁場内に配置し、かつ
相互に180度の位相差を与えて各駆動子コイルを交流
励磁してピストンを電磁駆動するようにした?!磁駆動
式の往復動圧縮機が同じ出願人より特開昭61−210
276号としてすでに提案されている. 上記提案の構成によれば、単一シリンダに対して一対の
ピストンが互いに同期して逆向きに往復動ずるので、各
ピストンの慣性力が相殺し合い、圧縮機全体での振動発
生を低く抑えることができる. 〔発明が解決しようとする課題〕 ところで、前記圧縮機では、シリンダとピストンとの間
の摺動摩擦を小さく抑えるために、一般にクリアランス
シール方式を採用している.このクリアランスシール方
式は、シリンダとピストンとの間の微少な隙間にシリン
ダの圧縮空間側から作動媒体であるガスを放流し、その
ガス流の粘性抵抗でガスをシールする方式である.この
場合に圧縮機の効率を高めるには、シールガスとして放
流されるガス量を抑えるように、シリンダとピストンの
嵌め合い隙間をできるだけ小さくする必要がある. 一方、ピストン,シリンダを機械加工する際には真円度
,円筒度の精度面での加工誤差を伴うため、この加工誤
差が基で圧縮機の運転時にはピストンとシリンダとが局
部的に接触しあってこの部分にいわゆる値りが生じ、こ
の躍りがピストンの運動に摩擦抵抗力として作用するよ
うになる.しかして、このような加工誤差に起因して生
成するピストンとシリンダとの躍り発生箇所はランダム
的であるため、前記のように単一シリンダに一対のピス
トンを組合せた圧縮機では、双方のピストンの間でPX
擦抵抗に差異が生じる.しかも双方のピストンに対し個
別に作用する摩擦抵抗の差異はピストン駆動の際の加速
,!li達にも大きく影響を及ぼし、このために運転時
にはピストン相互間で180度の位相差が維持できな《
なって厳密に同期が取れなくなる他、各ピストンの往復
動のストローク振幅にも差異が生じるようになる.この
結果、圧縮機の有効吐出量の低下を来すほかに、ピスト
ンの慣性力の差によって大きな振動,騒音が発住すると
言った問題が発生する. 本発明は上記の点にかんがみなされたものであり、ピス
トンに結合した駆動子コイルの励磁方式を改良すること
により、ピストンとシリンダとの間の摩擦力を低減させ
て圧縮機の性能維持,並びに発生振動の軽減化を図るよ
うにした電磁駆動式往復動圧縮機の励磁方式を提供する
ことを目的とする. 〔課題を解決するための手段〕 上記課題を解決するために、本発明は、前記した電磁駆
動式の往復動圧縮機を対象に、圧縮機の往復動作に対応
する周波数の基本波に、基本波よりも周波数が高く.か
つ振幅の小さな重畳波を重畳した交流電流で駆動子コイ
ルを励磁するようにしたものである. 〔作用〕 上記により、駆動子コイルと定磁界磁石装置との間には
、基本波の周波数に対応してピストンを往復動させる大
きな交番電磁力の他に、基本波と比べて周波数が高い重
畳波による微少な交番電磁力(重畳波による電磁力は圧
縮機のピストン往復動作に影響を与えないよう低い値に
設定されている)が発生する.これにより、ピストンは
基本波に相応した周期でシリンダ内を往復駆動されると
同時に、往復勤行程におけるストロークエンドの上下死
点位置(この位置ではピストンの運動方向が反転するの
で動きが一時的に停止する.)を含めて、ピストンには
常に重畳波の励磁による微少な加振力が加わるようにな
る. したがって、先述のように製作時における機械加工誤差
が基でピストンとシリンダとが局部的に接触する奮り部
分が残っていたとしても、ピストンの往復行程における
ストローク上下死点位置では前記した重畳波による微少
な加振力が加わるので、ピストンとシリンダとの間には
静止摩擦が作用せず、常に動Wl擦の状態に置かれる.
一方、周知のように動摩擦係数は静止摩擦係数と比べて
1かに小さい.したがって、前記のように駆動子コイル
に与えた重畳波の励磁電流分でピストンに微少な加振力
を加え、ピストンとシリンダとの間の接触面に常に動摩
擦が働くようにして運転することにより、ピストンとシ
リンダとの間の摩擦抵抗が極少となり、かつシリンダに
装備した一対のピストンの相互間に生じる摩擦抵抗力の
差異も僅少となる.これにより圧縮機は安定よく運転動
作するようになる. (実施例〕 第1図は本発明実施例の構成図、第2図は励磁電流とし
て加える基本波と重畳波の波形図を示すものであり、ま
ず第1図により電M1駆動式往復動圧縮機の構成を説明
する. 図において、ケース1内には、胴内に作動媒体の圧縮空
間2aを形成した単一シリンダ2が設置されており、こ
のシリンダ2に対し前記圧縮空間2aを挟んでシリンダ
の左右両側には寸法,重量の仕様が同一な一対のピスト
ン3A. 3Bが対向配備されている.また、シリンダ
2の胴中央に通じてケース1には作動媒体の吸込管5.
吐出管6が開口し、ここに吸込弁7,吐出弁8が設けて
ある.また、前記ピストン3^, 3BにはtM1駆動
81!114^,4Bが付属している.この電磁駆動機
横4A. 4Bは、ピストン軸9に結合した非磁性材の
スリーブ10にS装した駆動子コイル11^, 111
1と、該駆動子コイルの内外周に対向配備した円筒状の
磁気ヨーク12.13(但し図示実施例ではシリンダ2
が内周側のコーク12を兼ねている)と、およびヨーク
l2と13の間に介装した永久磁石14からなる定磁界
磁石装置とで構成されている.また、前記の駆動子コイ
ル11Aと118とは互いにコイルの壱回方向が逆であ
り、各駆動子コイルより引出したリード線がケースIに
設けた給電端子15を介して外部のt源16に接続され
ている.なお、17はピストン3A, 3Bを停止状態
でそれぞれ中立位置に保持するためのばね部材である. 一方、T!l源16は基本波発生回路1B.重畳波発生
回路19.加算増輻回路20jr備えている.ここで、
基本波発生回路I8は圧縮機の往復動周期に対応した周
波数の基本波信号を出力し、重畳波発生回路19は基本
波と比べて周波数が高くかつ振幅が極端に小さい重畳波
信号を出力し、これら基本波と重畳波の信号を加算増幅
回路20で増輻して圧m機の駆動子コイルIIA, 1
1Bに給電して励磁する.なお、前記の基本波と重畳波
の波形を第2図に示す.かかる横成において、電R1G
より駆動子コイル11A. 11Bへ交流電流を給電し
てWJJ磁すると、定磁界との間でラレミング法則によ
り交番電磁力が発生し、この電磁力を受けてピストン3
A, 3Bが互いに180度の位相差をもってシリンダ
2の内部で逆方向に往復動ずる.なお、ピストンの往復
動作については先記した特開昭61−210276号公
輯に記載されており、ここではその説明を省略する. ところで、電*t6からの給電による駆動子コイル11
^, IIBの励磁で発生する1!磁力は、前記の基本
波の周波数に対応した大きな電磁力に、重畳波による高
周波の微少な加振方がwit,たちのとなる.そして、
ピストン3A. 3Bは基本波の周波数に対応した周期
でシリンダ2の内部を往復動ずるように駆動されると同
時に、往復動の上下死点を含めたピストンの全ストロー
ク行程では重畳波による周波数の高い微少な加振力が加
わるようになる.なお、この加振力が圧縮機の基本的な
ピストン往復勧に影響を及ぼさないように、重畳波の振
幅は基本波と比べて十分小さく選定されている.これに
より、ピストンの往復勤行程におけるストロークエンド
の上下死点位置でも、ピストン3A,3Bは完全静止状
態になることがな《、微動状態がmuする.したがって
シリンダ2とピストン3A,3Bとの間が機械的に触れ
合う箇所があっても、両者の間には静止3%!11力が
加わらず、抵抗の極小さな動摩擦力のみが作用すること
になり、この結果として圧縮機の往復動に伴うピストン
3^, 3Bとシリンダ2との間に作用する摩擦抵抗力
が僅少に抑えられる.また、このことにより一対のピス
トン3^と38との間の摩擦力の差異を殆ど発生せず、
双方のピストンは所定の位相差(180度).ストロー
ク振幅を保って安定よく往復動作される.なお、図示例
は一般的なガス圧縮機を例示したが、この圧縮機を分離
型の膨張シリンダとしてなるディスプレーサと組合せて
構成した逆スターリングサイクル冷凍機にも適用できる
. 〔発明の効果〕 以上述べたように、本発明による電磁駆動式往復動圧縮
機の励磁方式により次記の効果を奏する.(1)ピスト
ンの往復勤行程におけるストロークエンドの上下死点位
置を含めて、ピストンとシリンダとの間に働く摩擦を常
にI!!擦抵抗の小さな動摩擦状態に維持することがで
きる. (2)これにより、単一シリンダに装備した一対のピス
トンに対するピストン相互間での摩擦力の差が僅少とな
り、圧縮機の運転動作の安定,性能維持、並びに発生振
動の軽減化が図れる.
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an excitation method for a driver coil of an electromagnetically driven reciprocating compressor that reciprocates a piston using electromagnetic force. [Prior Art] Since the piston of the reciprocating pressure I1iIIIl linearly reciprocates, pulsating vibrations occur during operation, which is a major cause of noise and shortened service life. To this end, various anti-vibration measures have been taken in the past, one of which is a method in which the piston is electromagnetically driven by a linear motor, and in terms of structure, the working medium is housed in a single cylinder with both ends open. A pair of pistons are arranged facing each other on both sides of the compression space, and a driver coil coupled to each piston is arranged in the magnetic field of a constant magnetic field magnet device, and a phase difference of 180 degrees is given to each drive element. Did you use alternating current excitation of the child coil to electromagnetically drive the piston? ! A magnetically driven reciprocating compressor was published by the same applicant in JP-A-61-210.
It has already been proposed as No. 276. According to the configuration proposed above, a pair of pistons reciprocates in opposite directions in synchronization with each other in a single cylinder, so the inertial forces of each piston cancel each other out, making it possible to suppress vibrations in the entire compressor. Can be done. [Problems to be Solved by the Invention] By the way, the above-mentioned compressors generally employ a clearance seal system in order to keep the sliding friction between the cylinder and the piston to a minimum. This clearance seal method is a method in which gas, which is a working medium, is discharged from the compression space side of the cylinder into the minute gap between the cylinder and the piston, and the gas is sealed using the viscous resistance of the gas flow. In this case, in order to increase the efficiency of the compressor, it is necessary to reduce the fitting gap between the cylinder and piston as much as possible in order to suppress the amount of gas released as seal gas. On the other hand, when machining pistons and cylinders, machining errors occur in terms of accuracy in roundness and cylindricity, and this machining error causes local contact between the piston and cylinder during compressor operation. As a result, a so-called value is generated in this part, and this jump acts as a frictional resistance force on the movement of the piston. However, since the locations where the piston and cylinder jitter occur due to such machining errors are random, in a compressor that combines a pair of pistons in a single cylinder as described above, both pistons PX between
A difference occurs in the friction resistance. Moreover, the difference in the frictional resistance that acts individually on both pistons is the acceleration when driving the pistons! It also has a great effect on the pistons, and for this reason, it is not possible to maintain a 180 degree phase difference between the pistons during operation.
In addition to not being able to achieve exact synchronization, there will also be differences in the stroke amplitude of the reciprocating motion of each piston. As a result, in addition to a decrease in the effective displacement of the compressor, problems such as large vibrations and noise occur due to the difference in inertia of the pistons. The present invention has been made in consideration of the above points, and improves the excitation method of the driver coil connected to the piston to reduce the frictional force between the piston and the cylinder, thereby maintaining the performance of the compressor. The purpose of this paper is to provide an excitation method for an electromagnetically driven reciprocating compressor that reduces the vibration generated. [Means for Solving the Problems] In order to solve the above problems, the present invention targets the above-mentioned electromagnetically driven reciprocating compressor. It has a higher frequency than waves. The driver coil is excited by an alternating current with a small amplitude superimposed wave. [Function] As a result of the above, in addition to the large alternating electromagnetic force that causes the piston to reciprocate in response to the frequency of the fundamental wave, there is also a superimposed electromagnetic force that has a higher frequency than the fundamental wave between the driver coil and the constant magnetic field magnet device. A minute alternating electromagnetic force is generated by the waves (the electromagnetic force due to the superimposed waves is set to a low value so as not to affect the reciprocating movement of the compressor piston). As a result, the piston is reciprocated within the cylinder at a period corresponding to the fundamental wave, and at the same time, the piston moves to the vertical dead center position at the end of the stroke during the reciprocating stroke (at this position, the direction of movement of the piston is reversed, so the movement is temporarily stopped). Even when the piston stops, a small excitation force due to the excitation of the superimposed wave is constantly applied to the piston. Therefore, even if the piston and cylinder locally contact each other due to machining errors during manufacturing as described above, the above-mentioned superimposed wave will be generated at the stroke top and bottom dead center positions during the reciprocating stroke of the piston. Since a small excitation force is applied by the piston and the cylinder, no static friction acts between the piston and the cylinder, and the piston and cylinder are always in a state of dynamic friction.
On the other hand, as is well known, the coefficient of dynamic friction is only 1 smaller than the coefficient of static friction. Therefore, by applying a slight excitation force to the piston using the excitation current of the superimposed wave applied to the driver coil as described above, and operating the piston so that dynamic friction always acts on the contact surface between the piston and the cylinder. , the frictional resistance between the piston and the cylinder becomes extremely small, and the difference in the frictional resistance that occurs between the pair of pistons installed in the cylinder is also small. This allows the compressor to operate stably. (Example) Fig. 1 shows a configuration diagram of an embodiment of the present invention, and Fig. 2 shows a waveform diagram of a fundamental wave and a superimposed wave applied as excitation current. The configuration of the machine will be explained. In the figure, a single cylinder 2 with a compression space 2a for a working medium formed in the body is installed in a case 1. A pair of pistons 3A and 3B with the same dimensions and weight specifications are arranged facing each other on the left and right sides of the cylinder.In addition, a working medium suction pipe 5.
A discharge pipe 6 is open, and a suction valve 7 and a discharge valve 8 are provided here. Furthermore, the pistons 3^, 3B are attached with tM1 drives 81!114^, 4B. This electromagnetic drive machine horizontal 4A. 4B is a driver coil 11^, 111 that is S-mounted in a sleeve 10 made of a non-magnetic material coupled to the piston shaft 9.
1, and cylindrical magnetic yokes 12 and 13 arranged oppositely on the inner and outer peripheries of the driver coil (however, in the illustrated embodiment, the cylinder 2
(also serves as the inner cork 12), and a constant magnetic field magnet device consisting of a permanent magnet 14 interposed between the yokes 12 and 13. Further, the above-described driver coils 11A and 118 have opposite coil rotation directions, and the lead wires drawn out from each driver coil are connected to an external t-source 16 via a power supply terminal 15 provided in the case I. It is connected. Note that 17 is a spring member for holding the pistons 3A and 3B in their respective neutral positions in a stopped state. On the other hand, T! l source 16 is the fundamental wave generating circuit 1B. Superimposed wave generation circuit 19. Equipped with 20jr addition and expansion circuits. here,
The fundamental wave generating circuit I8 outputs a fundamental wave signal with a frequency corresponding to the reciprocating period of the compressor, and the superimposed wave generating circuit 19 outputs a superimposed wave signal having a higher frequency and an extremely small amplitude than the fundamental wave. , these fundamental wave and superimposed wave signals are amplified by the summing amplifier circuit 20 and sent to the driver coil IIA, 1 of the compressor.
Supply power to 1B and excite it. The waveforms of the fundamental wave and superimposed wave mentioned above are shown in Figure 2. In such Yokonai, electric R1G
The driver coil 11A. When AC current is supplied to 11B and WJJ magnetization is performed, an alternating electromagnetic force is generated between the constant magnetic field and the Lareming law, and the piston 3 receives this electromagnetic force.
A and 3B reciprocate in opposite directions inside cylinder 2 with a phase difference of 180 degrees. The reciprocating motion of the piston is described in the aforementioned Japanese Patent Application Laid-Open No. 61-210276, and its explanation will be omitted here. By the way, the driver coil 11 is powered by electric power *t6.
^, 1 generated by excitation of IIB! The magnetic force consists of a large electromagnetic force corresponding to the frequency of the fundamental wave mentioned above, and a slight excitation of high frequency waves by superimposed waves. and,
Piston 3A. 3B is driven to reciprocate inside the cylinder 2 at a period corresponding to the frequency of the fundamental wave, and at the same time, during the entire stroke of the piston including the top and bottom dead center of the reciprocating movement, a small wave with a high frequency due to superimposed waves is generated. Excitation force will be applied. The amplitude of the superimposed wave is selected to be sufficiently small compared to the fundamental wave so that this excitation force does not affect the basic piston reciprocation of the compressor. As a result, even at the vertical dead center position at the end of the stroke during the reciprocating stroke of the piston, the pistons 3A and 3B do not come to a completely stationary state. Therefore, even if there is a mechanical contact between the cylinder 2 and the pistons 3A and 3B, there is still 3% static between them! 11 force is not applied, and only the dynamic frictional force with extremely small resistance acts, and as a result, the frictional resistance force that acts between the pistons 3^, 3B and the cylinder 2 due to the reciprocating motion of the compressor is minimized. It can be suppressed. Moreover, this causes almost no difference in frictional force between the pair of pistons 3^ and 38,
Both pistons have a predetermined phase difference (180 degrees). It reciprocates stably while maintaining the stroke amplitude. Although the illustrated example shows a general gas compressor, the present invention can also be applied to a reverse Stirling cycle refrigerator configured by combining this compressor with a displacer that serves as a separate expansion cylinder. [Effects of the Invention] As described above, the excitation method of the electromagnetically driven reciprocating compressor according to the present invention provides the following effects. (1) The friction acting between the piston and cylinder, including the vertical dead center position at the end of the stroke during the reciprocating stroke of the piston, is always I! ! It is possible to maintain a state of dynamic friction with low frictional resistance. (2) As a result, the difference in frictional force between a pair of pistons installed in a single cylinder is minimized, making it possible to stabilize compressor operation, maintain performance, and reduce generated vibrations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の構成図、第2図は励磁t流の基
本波.重畳波の波形図である.図において、 2:シリンダ、2a=圧縮空間、3A,ae:ピストン
、4A,48:it磁駆動a構、IIA, IIB:駆
動子コイル、14:永久磁石、16:t源、ts:i本
波発生回路、19:重畳波発生回路. −.i’)
Fig. 1 is a configuration diagram of an embodiment of the present invention, and Fig. 2 shows the fundamental wave of the excitation t current. This is a waveform diagram of superimposed waves. In the figure, 2: cylinder, 2a = compression space, 3A, ae: piston, 4A, 48: it magnetic drive a mechanism, IIA, IIB: driver coil, 14: permanent magnet, 16: t source, ts: i book Wave generation circuit, 19: Superimposed wave generation circuit. −. i')

Claims (1)

【特許請求の範囲】[Claims] 1)両端を開放した単一シリンダ内に作動媒体の圧縮空
間を挟んでその両側に一対のピストンを対向配置すると
ともに、各ピストンに結合した駆動子コイルを定磁界磁
石装置の磁場内に配置し、かつ相互に180度の位相差
を与えて各駆動子コイルを交流励磁してピストンを駆動
するようにした電磁駆動式の往復動圧縮機に対し、圧縮
機の往復動作に対応する周波数の基本波に、基本波より
も周波数が高く、かつ振幅の小さな高周波を重畳した交
流電流で前記駆動子コイルを励磁することを特徴とする
電磁駆動式往復動圧縮機の励磁方式。
1) A pair of pistons are arranged facing each other on both sides of a single cylinder with both ends open, with a compression space for the working medium in between, and a driver coil coupled to each piston is arranged within the magnetic field of a constant magnetic field magnet device. , and for an electromagnetically driven reciprocating compressor in which the piston is driven by alternating current excitation of each driver coil with a phase difference of 180 degrees, the basic frequency corresponding to the reciprocating operation of the compressor is An excitation method for an electromagnetically driven reciprocating compressor, characterized in that the driver coil is excited by an alternating current in which a high frequency wave having a higher frequency and smaller amplitude than the fundamental wave is superimposed on the wave.
JP11581189A 1989-05-09 1989-05-09 Excitation method of electromagnetically driven reciprocating compressor Expired - Fee Related JPH06105074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11581189A JPH06105074B2 (en) 1989-05-09 1989-05-09 Excitation method of electromagnetically driven reciprocating compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11581189A JPH06105074B2 (en) 1989-05-09 1989-05-09 Excitation method of electromagnetically driven reciprocating compressor

Publications (2)

Publication Number Publication Date
JPH02294570A true JPH02294570A (en) 1990-12-05
JPH06105074B2 JPH06105074B2 (en) 1994-12-21

Family

ID=14671683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11581189A Expired - Fee Related JPH06105074B2 (en) 1989-05-09 1989-05-09 Excitation method of electromagnetically driven reciprocating compressor

Country Status (1)

Country Link
JP (1) JPH06105074B2 (en)

Also Published As

Publication number Publication date
JPH06105074B2 (en) 1994-12-21

Similar Documents

Publication Publication Date Title
US4750871A (en) Stabilizing means for free piston-type linear resonant reciprocating machines
JP4149147B2 (en) Linear compressor
US5231337A (en) Vibratory acoustic compressor
US10876524B2 (en) Linear compressor
JP2550492B2 (en) Gas compressor
JP3816814B2 (en) Motor structure of reciprocating compressor
JPH0988817A (en) Vibration-type compressor
JPH02294570A (en) Exciting system for electromagnetically-driven type reciprocating compressor
JP2004056988A (en) Moving coil linear motor, compressor, and refrigerator
JP2002339863A (en) Linear compressor
JP2001251836A (en) Drive with linear motor
JPS61210276A (en) Reciprocation type compressor
JP2005009397A (en) Oscillatory type compressor
JPH11132585A (en) Oscillatory compressor
JP2000297749A (en) Vibration type compressor
JP2626364B2 (en) Linear motor compressor
JP2541406B2 (en) Free piston reciprocating compressor
JP2009213210A (en) Vibrating motor
JP2757820B2 (en) Vibrating compressor
JP2950305B2 (en) Vibration compressor
JP2546081B2 (en) Linear motor compressor
JPH03253778A (en) Vibration isolating device for reciprocating compressor of refrigerator
JPH0749328Y2 (en) Reciprocating compressor for Stirling refrigerator
JPH10331766A (en) Vibration type compressor
JPH04262075A (en) Linear motor-driven compressor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees