JPH02294515A - Separated cooler with pressurized type boiling preventing mechanism - Google Patents

Separated cooler with pressurized type boiling preventing mechanism

Info

Publication number
JPH02294515A
JPH02294515A JP11678489A JP11678489A JPH02294515A JP H02294515 A JPH02294515 A JP H02294515A JP 11678489 A JP11678489 A JP 11678489A JP 11678489 A JP11678489 A JP 11678489A JP H02294515 A JPH02294515 A JP H02294515A
Authority
JP
Japan
Prior art keywords
cooling water
water
engine
temperature
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11678489A
Other languages
Japanese (ja)
Inventor
Taizo Kitada
泰造 北田
Takehiko Katsumoto
勝本 竹彦
Tadashi Hirako
平子 廉
Masatoshi Ninoyu
正俊 二之湯
Yasuyuki Makikawa
牧川 安之
Masao Fujii
雅雄 藤井
Hitoshi Inoue
均 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Motors Corp filed Critical Mitsubishi Electric Corp
Priority to JP11678489A priority Critical patent/JPH02294515A/en
Publication of JPH02294515A publication Critical patent/JPH02294515A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/22Liquid cooling characterised by evaporation and condensation of coolant in closed cycles; characterised by the coolant reaching higher temperatures than normal atmospheric boiling-point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/021Cooling cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/024Cooling cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2023/00Signal processing; Details thereof
    • F01P2023/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/04Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To set a temperature low at the cylinder head side and high at the cylinder block side by dividing a water jacket into a forced convection part and a natural convection part provided with a pressurized type boiling preventing mechanism. CONSTITUTION:In the separated cooler 31A of an engine 1, a water jacket 24 is divided into a forced convection part 24a located above a communicating hole 22 provided in the upper peripheral outside of a cylinder liner 13 and a natural convection part 24b located below the communicating hole 22. The natural convection part 24b is provided with a pressurized type boiling preventing mechanism 30A for pressurizing internal cooling water 19 to prevent boiling. Thus, temperature at the cylinder head 3 side can be held relatively low by the forced convection part 24a. Also, temperature at the cylinder block 2 side which has a lot of slide parts and allows a lot of lubricating oil to circulate can be held relatively high by the natural convection part 24b.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は,エンジンのシリンダヘッド側については強制
対流する冷却水で冷却しシリンダブロック側については
自然対流する冷却水で冷却するようにした分離冷却装置
に関し、特に、自然対流部内の冷却水の沸点を上昇させ
うる加圧式沸騰防止機構をそなえた分離冷却装置に関す
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a separation system in which the cylinder head side of an engine is cooled by forced convection cooling water, and the cylinder block side is cooled by natural convection cooling water. The present invention relates to a cooling device, and particularly to a separation cooling device equipped with a pressurized boiling prevention mechanism capable of raising the boiling point of cooling water in a natural convection section.

[従来の技術コ 一般に,自動車等の車両に装備されるエンジンの冷却装
置では、水冷式のものが主流となっており,この水冷式
のエンジン用冷却装置には,例えば、第4図(エンジン
の縦断面図)及び第5図(エンジンの側面図)に示すよ
うなものがある。
[Conventional Technology Generally speaking, water-cooled type engine cooling systems are the mainstream for engines installed in vehicles such as automobiles. There are some types as shown in FIG. 5 (a vertical sectional view of the engine) and FIG. 5 (a side view of the engine).

第4,5図において、符号1はエンジン,2はエンジン
1の本体を構成するシリンダブロック,3はエンジン1
の本体を楕成するシリンダヘッド、4はシリンダブロノ
ク2の下方のスカート部2aの下端に設けられたオイル
パンであり、シリンダブロソク2の内部には、ピストン
12を慴動自在に内挿されるシリンダライナ13が形成
され、シリンダヘッド3は、ガスケット2oを介してこ
のシリンダライナ13の上端を覆うように装備されてい
る。また、符号5はシリンダヘッド3に接続された吸気
管,6はシリンダヘッド3に接続された排気管であり,
7はシリンダヘッド3及び吸気管5の内部に設けられた
吸気通路、8はシリンダヘッド3及び排気管6の内部に
設けられた排気通路、9は吸気通路7に設けられた吸気
バルブ、10は排気通路8に設けられた排気バルブであ
る。
In Figures 4 and 5, reference numeral 1 is the engine, 2 is the cylinder block that constitutes the main body of the engine 1, and 3 is the engine 1.
4 is an oil pan provided at the lower end of the skirt portion 2a below the cylinder block 2, and a piston 12 is slidably inserted into the cylinder block 2. A cylinder liner 13 is formed, and the cylinder head 3 is installed so as to cover the upper end of this cylinder liner 13 via a gasket 2o. Further, numeral 5 is an intake pipe connected to the cylinder head 3, 6 is an exhaust pipe connected to the cylinder head 3,
7 is an intake passage provided inside the cylinder head 3 and the intake pipe 5; 8 is an exhaust passage provided inside the cylinder head 3 and the exhaust pipe 6; 9 is an intake valve provided in the intake passage 7; 10 is an intake passage provided inside the cylinder head 3 and the intake pipe 5; This is an exhaust valve provided in the exhaust passage 8.

そして、このようなエンジン1には、水冷式のエンジン
用冷却装置11が装侵されている.この冷却装置11は
、シリンダブロック2及びシリンダヘッド3に内部のシ
リンダライナ13やバルブ9,10の周りを覆うように
設けられたウォータジャケット14と、ウォータジャケ
ット14内に蓄えられた冷却水19を冷却するラジェー
タ15と、冷却水19がウォータジャケット14内で強
制対流しつるように(第5図中の矢印参照)冷却水19
を駆動するウォータポンプ16とから構成されている. なお、ウォータジャケット14は冷却水供vt管17と
冷却水排出管18とを通じてラジェータ15と連通する
ように接続さており、また、ウォータボンプ1Gは,冷
却水供給管17とウォータジャケット1l1との間に設
けられている.このように構成された冷却装置11では
、ラジ工一夕15で冷却処理された冷却水19は,ウォ
ータポンブ16に翻動されて,冷却水供給管17を通じ
てウォータジャケット14内に流れ込み,第5図中に矢
印で示すように対流しながら、シリンダライナ13やバ
ルブ9,10の周囲の発熱部分を冷却していき、冷却水
排出管18を通じてラジエータ15内へと排出され,再
びラジェータ15で冷却処理される。このように循環す
る冷却水19によって、エンジンの冷却が行なわれる.
[発明が解決しようとする課題] しかしながら,上述の従来のエンジン用冷却装置におけ
るウォータジャケット14内の冷却水19の温度分布を
みると、上部のシリンダヘッド3の近傍では高温であり
,下方のシリンダブロック2のスカート部2aに近づく
に従って低温となっている.つまり、シリンダライナ1
3の温度分布は冷却水19の温度分布に応じて不均一に
なっており、このようなシリンダライナ13の不均一な
温度分布は,シリンダライナ13の不均一な変形を招き
.潤滑油消費の増大やピストンの片当たりやピストンス
ラップ音の増大の原因となるので,好ましくない。
The engine 1 is equipped with a water-cooled engine cooling system 11. This cooling device 11 includes a water jacket 14 provided in the cylinder block 2 and the cylinder head 3 so as to cover an internal cylinder liner 13 and valves 9 and 10, and a cooling water 19 stored in the water jacket 14. The radiator 15 to be cooled and the cooling water 19 are connected to each other so that the cooling water 19 flows through forced convection within the water jacket 14 (see the arrow in FIG. 5).
It consists of a water pump 16 that drives the. The water jacket 14 is connected to the radiator 15 through a cooling water supply pipe 17 and a cooling water discharge pipe 18, and the water pump 1G is connected between the cooling water supply pipe 17 and the water jacket 1l1. It is set up in In the cooling device 11 configured in this manner, the cooling water 19 that has been cooled by the radiator 15 is moved by the water pump 16 and flows into the water jacket 14 through the cooling water supply pipe 17, as shown in FIG. Convection flows inside as shown by the arrows, cooling the heat-generating parts around the cylinder liner 13 and valves 9 and 10, and is discharged into the radiator 15 through the cooling water discharge pipe 18, where it is cooled again by the radiator 15. be done. The engine is cooled by the circulating cooling water 19 in this manner.
[Problems to be Solved by the Invention] However, looking at the temperature distribution of the cooling water 19 in the water jacket 14 in the conventional engine cooling device described above, the temperature is high near the upper cylinder head 3, and the temperature is high in the vicinity of the upper cylinder head 3. The temperature becomes lower as the skirt portion 2a of the block 2 is approached. In other words, cylinder liner 1
The temperature distribution of the cylinder liner 13 is non-uniform depending on the temperature distribution of the cooling water 19, and such non-uniform temperature distribution of the cylinder liner 13 causes non-uniform deformation of the cylinder liner 13. This is undesirable because it causes increased lubricant consumption, uneven piston contact, and increased piston slap noise.

また、シリンダライナ13のスカート部2aに近い側が
過度に冷却されるのは、ウォータポンプ16を不必要に
働かせることになり、冷却装置としての効率の悪化を招
く。
Further, excessive cooling of the side of the cylinder liner 13 near the skirt portion 2a causes the water pump 16 to work unnecessarily, resulting in deterioration of efficiency as a cooling device.

さらに、吸気の充填効率を考えると、低温で高密度の吸
気を燃焼室内に導くようにすることが望ましく、エンジ
ン内部の摩擦損失を考えると、潤滑油温度を高めてその
潤滑性を向上させておくことが望ましい. そこで、吸気充填効率の向上のために、シリンダヘッド
3側の温度を低くして吸気温度を低める一方で,シリン
ダブロック2側の温度を高くしてシリンダブロック2内
の潤滑油の温度を高く保つようにしたい。
Furthermore, considering intake air filling efficiency, it is desirable to guide low-temperature, high-density intake air into the combustion chamber, and considering friction loss inside the engine, it is desirable to increase the lubricating oil temperature to improve its lubricity. It is recommended to leave the Therefore, in order to improve the intake air filling efficiency, the temperature on the cylinder head 3 side is lowered to lower the intake air temperature, while the temperature on the cylinder block 2 side is increased to maintain the temperature of the lubricating oil in the cylinder block 2. I want to do it like that.

そこで.シリンダライナ部分の温度分布を均一にすると
共に,より効率的な冷却を行なえるようにすべく、第6
,7図に示すように構成されたエンジン用冷却装置21
が提案された. なお,第6.7図はそれぞれ第4,5図に対応しており
,第6,7図中,第4,5図と同符号のものは同様な部
分を示している.このため,こ才tらの部分については
説明を省略する。
Therefore. In order to make the temperature distribution of the cylinder liner uniform and to achieve more efficient cooling, the sixth
, an engine cooling device 21 configured as shown in FIG.
was proposed. Note that Figures 6 and 7 correspond to Figures 4 and 5, respectively, and in Figures 6 and 7, the same symbols as those in Figures 4 and 5 indicate similar parts. For this reason, the explanation of the parts of this example will be omitted.

このエンジン用冷却装置21では、ウォータジャケット
24が、内部の冷却水19をウォータポンプ16で叩動
される強制対流部24aと,内部の冷却水19をウォー
タボンブ16で駆動されない自然対流部24bとに分割
されている.つまり,ウォータジャケット24は,第6
図に示すように、そのシリンダライナ13の外側周囲の
上部に設けられた連通孔22を介して、この連通孔22
よりも上方に位置する部分(強制対流部)2 4 aと
、連通孔22よりも下方に位置する部分(自然対流部)
24bとに分割されている。このうち、強制対流部24
aの内部の冷却水19は、第7図に示すように、ウォー
タポンプ16に駆動されて強制対流するが、自然対流部
24bはウォータポンプ16との間を仕切られており、
この自然対流部24bの内部の冷却水19は、ウォータ
ポンプ16に廓動されないで自然対流するようになって
いる, このような楕成により,ラジエータ15で冷却処理され
た冷却水19は、ウォータボンプ16に叩動されて、冷
却水供給管17を通じてウォータジャケット24の強制
対流部24aの内部に流れ込んで,第7図中に矢印で示
すように対流しながら、シリンダライナ13の上部やバ
ルブ9,1oの周囲の発熱部分を冷却していき,冷却水
排出管18を通じてラジエータ15内へと排出されて,
再びラジエータ15で冷却処理される.これに対して,
ウォータジャケット24の自然対流部24bでは、シリ
ンダライナ13からの熱を吸収して高温になった冷却水
19は、自然対流により上方の連通孔22の近傍に上昇
して強制対流部24a側の冷却水19により冷却されて
下降して,再びシリンダライナ13の冷却を行なう。
In this engine cooling device 21, the water jacket 24 has a forced convection section 24a in which the internal cooling water 19 is pumped by the water pump 16, and a natural convection section 24b in which the internal cooling water 19 is not driven by the water bomb 16. It is divided into. In other words, the water jacket 24
As shown in the figure, the communication hole 22 is
a portion located above the communication hole 22 (forced convection portion) 2 4 a, and a portion located below the communication hole 22 (natural convection portion)
24b. Of these, the forced convection section 24
As shown in FIG. 7, the cooling water 19 inside a is driven by the water pump 16 and undergoes forced convection, but the natural convection section 24b is partitioned off from the water pump 16.
The cooling water 19 inside this natural convection section 24b is not circulated by the water pump 16 but undergoes natural convection. Due to this ellipse, the cooling water 19 that has been cooled by the radiator 15 is The water is struck by the pump 16, flows into the forced convection section 24a of the water jacket 24 through the cooling water supply pipe 17, and flows into the upper part of the cylinder liner 13 and the valve 9 while convecting as shown by the arrow in FIG. , 1o, and is discharged into the radiator 15 through the cooling water discharge pipe 18.
It is cooled again by the radiator 15. On the contrary,
In the natural convection section 24b of the water jacket 24, the cooling water 19, which has become high temperature by absorbing heat from the cylinder liner 13, rises near the upper communication hole 22 by natural convection and cools the forced convection section 24a side. The cylinder liner 13 is cooled by the water 19 and descends to cool the cylinder liner 13 again.

この結果,冷却水19の恥動は、ウォータジャケット2
4の一部(つまり、強制対流部24a)について行なえ
ばよく,冷却水19の循環水路のトータル断面席が減少
することになり、同一出力のウォータポンプ16を用い
ても冷却水19の循環速度が高まり、循環系の強制対流
熱伝達率が向上し.強制対流部24aでの冷却能力を高
めることができる。
As a result, the movement of the cooling water 19 is reduced by the water jacket 2.
4 (that is, the forced convection section 24a), the total cross-sectional area of the circulation channel for the cooling water 19 is reduced, and even if the water pump 16 with the same output is used, the circulation speed of the cooling water 19 will be reduced. increases, and the forced convection heat transfer coefficient of the circulation system improves. The cooling capacity of the forced convection section 24a can be increased.

一方,自然対流部24bは,強制対流部24.aよりも
熱伝達率が低く、その内部の冷却水19も高温になり易
い特徴がある。
On the other hand, the natural convection section 24b is the forced convection section 24. It has a lower heat transfer coefficient than A, and the cooling water 19 inside it also tends to reach a high temperature.

したがって、ウォータジャケット24内の冷却水l9の
温度は、上部のシリンダヘッド3の近傍では従来に比べ
低下し、下方のシリンダブロック2のスカート部2aに
近い部分では上昇するようになり、シリンダライナ13
の周りの冷却水19の温度分布が均一に近くなる。つま
り、シリンダライナ13の温度分布も均一になり、シリ
ンダライナ13の変形も均一となって,潤滑油消費の増
大やピストンの片当たりやピストンスラップ音の増大等
の防止を期待できる. しかしながら、上述のように単にウォータジャケット2
4を強制対流部24aと自然対流部24bとに分割した
だけでは、シリンダブロック2の下部の自然対流部24
bにおける冷却水の温度を高く設定すると,シリンダブ
ロック2の下部周りの冷却水が沸騰してしまい,この部
分に水蒸気が満たされるようになる。こうなると、熱伝
達率が急激に低下して,シリンダブロック2の下部の温
度が急上昇して,ピストンスカツフ等の破損を招くおそ
れがある. このため,吸気充填効率の向上と共にエンジン内部の摩
擦損失の低減を所望通りには実現させることができない
. 本発明は,このような課題に鑑みて案出されたもので,
シリンダヘッド3側の温度を低く設定できてシリンダブ
ロック2側の温度を高く設定できるようにした、加圧式
沸騰防止機構付き分離冷却装置を提供することを目的と
する。
Therefore, the temperature of the cooling water l9 in the water jacket 24 decreases in the vicinity of the upper cylinder head 3 compared to the conventional case, and increases in the lower part near the skirt portion 2a of the cylinder block 2.
The temperature distribution of the cooling water 19 around the area becomes nearly uniform. In other words, the temperature distribution of the cylinder liner 13 becomes uniform, and the deformation of the cylinder liner 13 also becomes uniform, which can be expected to prevent increased lubricating oil consumption, uneven piston contact, and increased piston slap noise. However, as mentioned above, simply water jacket 2
4 into the forced convection section 24a and the natural convection section 24b, the natural convection section 24 at the bottom of the cylinder block 2
If the temperature of the cooling water at point b is set high, the cooling water around the lower part of the cylinder block 2 will boil, and this portion will be filled with steam. If this happens, the heat transfer coefficient will drop sharply, and the temperature at the bottom of the cylinder block 2 will rise rapidly, potentially causing damage to the piston scuff, etc. For this reason, it is not possible to improve the intake air filling efficiency and reduce friction loss inside the engine as desired. The present invention was devised in view of these problems.
It is an object of the present invention to provide a separation cooling device with a pressurized boiling prevention mechanism, which allows the temperature on the cylinder head 3 side to be set low and the temperature on the cylinder block 2 side to be high.

[課題を解決するための手段] このため、本発明の加圧式沸騰防止機横付き分離冷却装
置は,エンジンのシリンダライナの外側周期に設けられ
たウォータジャケットと,該ウォータジャケット内の冷
却水を強制対流させうるウォータポンプと,該冷却水を
冷却するラジエー夕とをそなえたエンジン用冷却装置に
おいて、該ウォータジャケットが,該シリンダライナ外
側周囲の上部に設けられた連通孔を介して、該連通孔よ
りも上方に位置して該ウォータポンブで内部の冷却水を
叩動されて強制対流する強制対流部と,該連通孔よりも
下方に位置して内部の冷却水を該ウォータポンプで駆動
されずに自然対流する自然対流部とに分割され、該自然
対流部内の冷却水を加圧して該冷却水の沸点を上昇させ
うる加圧式沸騰防止’4 4Nが設けられていることを
特徴としている。
[Means for Solving the Problems] Therefore, the pressurized boiling prevention machine side separation cooling device of the present invention has a water jacket provided on the outer side of the cylinder liner of the engine, and a cooling water inside the water jacket. In an engine cooling system that includes a water pump capable of forced convection and a radiator that cools the cooling water, the water jacket communicates with the cylinder liner through a communication hole provided at the upper part of the outer periphery of the cylinder liner. A forced convection part is located above the hole and causes internal cooling water to be forced into convection by being beaten by the water pump, and a forced convection part is located below the communication hole and causes internal cooling water to be driven by the water pump. The natural convection section is divided into a natural convection section where natural convection occurs, and is characterized by being equipped with a pressurized boiling prevention '44N that can pressurize the cooling water in the natural convection section and raise the boiling point of the cooling water. .

[作 用] 上述の本発明の加圧式沸騰防止機構付き分離冷却装nで
は、ラジエータ内で冷却された冷却水は,ウォータボン
プに邸動されてウォータジャケットの強制対流部内に進
入して該ウォータボンブに即動されて該強制対流部内で
強制対流しながら、シリンダライナの外側周囲の上方の
所要部分を冷却した後、再び該ラジエー夕内に戻るとい
う循環を繰り返す。この時、該ウォータジャケットの自
然対流部では、内部の冷却水が沸騰防止機構によって加
圧されその沸点を上昇させられるので,該自然対流部内
の冷却水温度の設定温度を高めても、該冷却水が沸騰し
ないようになる。
[Function] In the above-mentioned separation cooling device n with a pressurized boiling prevention mechanism of the present invention, the cooling water cooled in the radiator is driven by the water pump and enters the forced convection section of the water jacket, where the water is The cylinder liner is immediately moved by the bomb and forced convection occurs within the forced convection section to cool a required portion above the outer periphery of the cylinder liner, and then returns to the radiator, repeating the cycle. At this time, in the natural convection section of the water jacket, the internal cooling water is pressurized by the boiling prevention mechanism and its boiling point is raised, so even if the set temperature of the cooling water in the natural convection section is increased, the cooling water The water will no longer boil.

[実施例] 以下,図面により本発明の実施例について説明すると、
第1図は本発明の第1実施例としての加圧式沸騰防止機
構付き分離冷却装置を示すエンジンの縦断面図,第2図
は本発明の第2実施例としての加圧式沸騰防止機構付き
分離冷却装置を示すエンジンの側面図、第3図は本発明
の第3実施例としての加圧式沸騰防止機植付き分離冷却
装置を示すエンジンの側面図である。なお、第1〜3図
においで,第4,5図及び第6,7図と同符号はほぼ同
様なものを示している。また、各実施例におれるエンジ
ンは自動車用のエンジンである・まず,第1実施例につ
いて説明すると、第1図において、符号1はエンジン(
ここでは4気筒エンジン)、2はエンジン1の本体を構
成するシリンダブロック、3はエンジン1の本体を構成
するシリンダヘット、4はシリンダブロック2の下方の
スカート部2aの下端に設けられたオイルパンであり、
シリンダブロック2の内部には,ピストン12を摺動自
在に内挿されるシリンダライナ13が形成されており,
シリンダヘシド3は,ガスケソ1−20を介してこのシ
リンダライナ13の上端を覆うように装備されている。
[Examples] Examples of the present invention will be described below with reference to the drawings.
FIG. 1 is a vertical sectional view of an engine showing a separation cooling device with a pressurized boiling prevention mechanism as a first embodiment of the present invention, and FIG. 2 is a separation cooling device with a pressurized boiling prevention mechanism as a second embodiment of the present invention. FIG. 3 is a side view of an engine showing a cooling device, and FIG. 3 is a side view of an engine showing a separate cooling device with a pressurized boiling prevention device as a third embodiment of the present invention. Note that in FIGS. 1 to 3, the same reference numerals as in FIGS. 4 and 5 and FIGS. 6 and 7 indicate substantially the same parts. In addition, the engine in each embodiment is an automobile engine. First, to explain the first embodiment, in FIG.
2 is a cylinder block forming the main body of the engine 1; 3 is a cylinder head forming the main body of the engine 1; 4 is an oil pan provided at the lower end of the skirt portion 2a below the cylinder block 2. and
A cylinder liner 13 into which the piston 12 is slidably inserted is formed inside the cylinder block 2.
The cylinder head 3 is installed so as to cover the upper end of the cylinder liner 13 via a gas pipe 1-20.

また、符号5はシリンダヘッド3に接続された吸気管,
6はシリンダヘッド3に接続された排気管であり,7は
シリンダヘッド3及び吸気管5の内部に設けられた吸気
通路、8はシリンダヘッド3及び排気管6の内部に設け
られた排気通路,9は吸気通路7に設けられた吸気バル
ブ、10は排気通路8に設けられた排気バルブである。
Further, reference numeral 5 indicates an intake pipe connected to the cylinder head 3;
6 is an exhaust pipe connected to the cylinder head 3; 7 is an intake passage provided inside the cylinder head 3 and the intake pipe 5; 8 is an exhaust passage provided inside the cylinder head 3 and the exhaust pipe 6; 9 is an intake valve provided in the intake passage 7, and 10 is an exhaust valve provided in the exhaust passage 8.

そして、このようなエンジン1に、加圧式沸騰防止機構
付き分離冷却装置31Aが装備されている。なお、第1
図中には,ラジエータ15,ウォータポンプ16,冷却
水供給管17及び冷却水排出管18は図示しないが、こ
れらの部材は,第7図に示すものとほぼ同様に配設され
ているので、部分的に第7図を参照しながら説明する。
Such an engine 1 is equipped with a separate cooling device 31A with a pressurized boiling prevention mechanism. In addition, the first
Although the radiator 15, water pump 16, cooling water supply pipe 17, and cooling water discharge pipe 18 are not shown in the figure, these members are arranged almost in the same way as shown in FIG. This will be explained with partial reference to FIG.

この分離冷却装置31Aは、第1図に示すように,シリ
ンダブロック2及びシリンダヘッド3に、この内部のシ
リンダライナ13やバルブ9.10の周りを覆うように
設けられたウォータジャケット24と,ウォータジャケ
ット24内に蓄えられた冷却水19を冷却するラジエー
タ15(第7図参照)と、冷却水19がウォータジャケ
ット14内で強制対流しうるように(第7図中の矢印参
照)冷却水19を駆動するウォータポンプ16(第7図
参照)とから構成されている。そして,ウォータジャケ
ット24は冷却水供給管17と冷却水排出管18とを通
じてラジエータ15と連通ずるように接続さている(第
7図参照)。
As shown in FIG. 1, this separation cooling device 31A includes a water jacket 24 provided in the cylinder block 2 and the cylinder head 3 so as to cover the cylinder liner 13 and valves 9 and 10 inside, A radiator 15 (see FIG. 7) cools the cooling water 19 stored in the jacket 24, and a radiator 15 (see FIG. 7) that cools the cooling water 19 so that the cooling water 19 can undergo forced convection within the water jacket 14 (see the arrow in FIG. 7). The water pump 16 (see FIG. 7) drives the water pump 16 (see FIG. 7). The water jacket 24 is connected to the radiator 15 through a cooling water supply pipe 17 and a cooling water discharge pipe 18 so as to communicate with the radiator 15 (see FIG. 7).

そして、この分離冷却装置31Aのウォータジャケット
24は、第1図に示すように、シリンダライナ13の外
側周囲の上部に設けられた連通孔22を介して、この連
通孔22よりも上方に位置する部分(強制対流部)24
aと、連通孔22よりも下方に位置する部分(自然対流
部)24bとに分割されている。このうち,上方に位置
する強制対流部24aの内部の冷却水19は,ウォータ
ボンブ16に昧動されて強制対流するように接続されて
いる(第7図参照)が,下方に位置する自然対流部24
bはウォータポンプ16との間を仕切られており、自然
対流部24bの内部の冷却水L9がウォータポンプl6
に廓動されないで自然対流するようになっている。
As shown in FIG. 1, the water jacket 24 of this separation cooling device 31A is located above the communication hole 22 provided at the upper part of the outer periphery of the cylinder liner 13. Part (forced convection part) 24
a, and a portion (natural convection portion) 24b located below the communication hole 22. Of these, the cooling water 19 inside the forced convection section 24a located above is moved by the water bomb 16 and is connected for forced convection (see Fig. 7), but the cooling water 19 located inside the forced convection section 24a located below is Part 24
b is partitioned off from the water pump 16, and the cooling water L9 inside the natural convection section 24b flows to the water pump l6.
Natural convection occurs without being stirred by the air.

そして.自然対流部24bには、内部の冷却水19を加
圧してその沸騰を防止する加圧式沸騰防止機構30Δが
装備されている。
and. The natural convection section 24b is equipped with a pressurized boiling prevention mechanism 30Δ that pressurizes the internal cooling water 19 to prevent it from boiling.

この沸騰防止機構30Aは、強制対流部24aと自然対
dε部24bの下部との間に介装された冷却水通路33
と5この冷却水通路33の途中に設けられて強制対流部
24a内の冷却水を自然対流部24b内へ駆動するウォ
ータポンプ32と、自然対流部24b内の冷却水の圧力
を検知する圧力センサ35と,自然対流部24b内の冷
却水の温度を検知する温度センサ36と、自然対流部2
4b内が冷却水温度に応じて適切な圧力になるように圧
カセンサ35及び温度センサ36からの情報に基づいて
ポンブ32の吐出量を制御するエンジンコントロールユ
ニット(ECU)34とから構成されている. なお,冷却水温度に応じた適切な圧力とは、冷却水が沸
騰しない程度に加えられる圧力であって,冷却水温度の
上昇に応じて大きくなる圧力であり,具体的には、冷却
水温度が上昇したら、自然対流部24b内の沸点が冷却
水温度よりも高くなるように自然対流部24b内を高圧
に加圧する。
This boiling prevention mechanism 30A includes a cooling water passage 33 interposed between the forced convection section 24a and the lower part of the natural convection section 24b.
and (5) a water pump 32 provided in the middle of the cooling water passage 33 to drive the cooling water in the forced convection section 24a into the natural convection section 24b, and a pressure sensor that detects the pressure of the cooling water in the natural convection section 24b. 35, a temperature sensor 36 that detects the temperature of the cooling water in the natural convection section 24b, and a natural convection section 2
The engine control unit (ECU) 34 controls the discharge amount of the pump 32 based on information from a pressure sensor 35 and a temperature sensor 36 so that the inside of the pump 4b has an appropriate pressure depending on the cooling water temperature. .. Note that the appropriate pressure according to the cooling water temperature is the pressure that is applied to the extent that the cooling water does not boil, and is the pressure that increases as the cooling water temperature rises. When the temperature rises, the inside of the natural convection section 24b is pressurized to a high pressure so that the boiling point inside the natural convection section 24b becomes higher than the temperature of the cooling water.

本発明の第1実施例としての加圧式沸騰防止機構付き分
離冷却装U31Aは,上述のごとく構成されているので
,ラジエータ15内で冷却された冷却水19は、ウォー
タボンプ16に踵動されてウォータジャケット24の強
制対流部24a内に進入しウォータポンプ16の廓動力
で強制対流しながら,シリンダライナ13の外側周囲の
上部及びその上方のバルブ9,10の周囲の発熱部分等
の所要部分を冷却して,この後,冷却水19は再び該ラ
ジエータ15内に戻り冷却される。
Since the separation cooling device U31A with a pressurized boiling prevention mechanism as the first embodiment of the present invention is configured as described above, the cooling water 19 cooled in the radiator 15 is pumped by the water pump 16. It enters the forced convection section 24a of the water jacket 24 and generates forced convection using the recirculating force of the water pump 16, and the necessary parts such as the upper part of the outer periphery of the cylinder liner 13 and the heat-generating parts around the valves 9 and 10 above the cylinder liner 13 are heated. After cooling, the cooling water 19 returns to the radiator 15 and is cooled again.

このような循環を繰り返しながら、冷却水19によるエ
ンジンの冷却が行なわれる一方で,シリンダライナ13
の上部を除いた主要な部分,つまり,ウォータジャケッ
ト24の自然対流部24bでは、シリンダライナ13か
らの熱を吸収して高温になった冷却水19は、自然対流
により上方の連通孔22の近傍に上昇して強制対流部2
4a側の冷却水19により冷却されて下降して,再びシ
リンダライナ13の冷却を行なう。
While repeating such circulation, the engine is cooled by the cooling water 19, while the cylinder liner 13
In the main part excluding the upper part of the water jacket 24, that is, in the natural convection section 24b of the water jacket 24, the cooling water 19, which has become high temperature by absorbing heat from the cylinder liner 13, is moved near the upper communication hole 22 by natural convection. Forced convection section 2
The cylinder liner 13 is cooled by the cooling water 19 on the side 4a and descends to cool the cylinder liner 13 again.

この自然対流部24b内の冷却水19の温度は、温度セ
ンサ36によって検出されECU34へ送られているの
で、自然対流部24b内の冷却水19の温度が上昇する
と、自然対流部24b内がこ九に応じた圧力になるよう
に、圧カセンサ35の検出情報に基づいてECU34が
ポンプ32の吐出量を制御して、ポンプ32により自然
対流部24b内が所定圧に加圧される。
The temperature of the cooling water 19 in the natural convection section 24b is detected by the temperature sensor 36 and sent to the ECU 34, so when the temperature of the cooling water 19 in the natural convection section 24b rises, the temperature inside the natural convection section 24b increases. The ECU 34 controls the discharge amount of the pump 32 based on the detection information of the pressure sensor 35 so that the pressure in the natural convection section 24b is increased to a predetermined pressure.

これにより,自然対流部24b内の圧力を調整できる範
囲内で、ラジエータ15での冷却処理温度,強制対流部
24a内の冷却水の循環速度,連通孔22の流路断而積
や長さ等の諸条件の調整により、強制対流部24a内の
温度を低く保ちつつ,自然対流部24b内の温度を高く
保つように設定することができる。例えば、自然対流部
24b内を1.9気圧程度に加圧すれば、沸点を115
℃程度まで高められ、これに応じた高温域までシリンダ
ブロック2側の温度を設定できる。
As a result, the cooling processing temperature in the radiator 15, the circulation speed of the cooling water in the forced convection part 24a, the flow path intermittent volume and length of the communication hole 22, etc. can be adjusted within the range in which the pressure in the natural convection part 24b can be adjusted. By adjusting the various conditions, it is possible to set the temperature in the forced convection part 24a to be kept low and the temperature in the natural convection part 24b to be kept high. For example, if the inside of the natural convection section 24b is pressurized to about 1.9 atmospheres, the boiling point can be reduced to 115
℃, and the temperature on the cylinder block 2 side can be set up to a corresponding high temperature range.

この結果,シリンダヘッド3側を強制対流部24aによ
って比較的低温に保つことができ、低温で高密度の吸気
を燃焼室内に導いて吸気充填効率の向上によるエンジン
出力アップを図ることができる.また,摺動部分の多く
潤滑油が多量に循環するシリンダブロック2側を自然対
流部24bによって比較的高温に保つことができ,潤滑
浦の温度を高めることでその潤滑性を向上させて、エン
ジンの摩擦損失の低減を実現することができる。
As a result, the cylinder head 3 side can be kept at a relatively low temperature by the forced convection section 24a, and low-temperature, high-density intake air can be guided into the combustion chamber, thereby increasing engine output by improving intake air filling efficiency. In addition, the cylinder block 2 side, which has many sliding parts and where a large amount of lubricating oil circulates, can be kept at a relatively high temperature by the natural convection section 24b, and by increasing the temperature of the lubrication well, its lubricity is improved, and the engine It is possible to achieve a reduction in friction loss.

また,冷却水19の廓動は、ウォータジャケット24の
一部(強ル1対流部)24aについて行なえばよく,冷
却水の循環水路のトータル断面席が減少することになり
,同一出力のウォータボンブ16を用いても冷却水の循
環速度が高まり強制対流熱伝達率が向上し,強制対流部
24aでの冷却能力を高めることができ,反面冷却能力
を得るためには、より小型のポンプ1−6でも十分にな
る。
In addition, the circulation of the cooling water 19 only needs to be carried out in a part of the water jacket 24 (strong convection part 1) 24a, and the total cross-sectional area of the cooling water circulation channel is reduced. Even if the pump 16 is used, the circulation speed of the cooling water increases, the forced convection heat transfer coefficient improves, and the cooling capacity in the forced convection section 24a can be increased.On the other hand, in order to obtain the cooling capacity, a smaller pump 1- 6 would be enough.

さらに、強制対流すべき冷却水量が少なくなり冷却水の
温度上昇を速められるため、エンジン始動時の暖気を促
進でき燃費低減に寄与しうるほか、ヒータの効きを速め
られる効果も得られる。
Furthermore, since the amount of coolant that must be forced into convection is reduced and the temperature of the coolant increases faster, warm-up of the coolant when starting the engine can be promoted, contributing to reduced fuel consumption, as well as the effect of speeding up the effectiveness of the heater.

そして、ウォータジャケソ1−24内の冷却水19の温
度分布については,上部のシリンダヘッド3の近傍では
従来に比べ低下し、下方のシリンダブロック2のスカー
ト部2aに近い部分では過度な冷却とならないような範
囲に調整できるようになるので、冷却水19の温度分布
をほぼ均一にして,シリンダライナ13の温度分布をほ
ぼ均一にさせることができ、これにより、シリンダライ
ナ13の偏った変形が防止され、潤滑油消費の増大やピ
ストンの片当たりやピストンスラップ音の増大等を防止
できるようになる。
Regarding the temperature distribution of the cooling water 19 in the water jacket 1-24, the temperature distribution near the upper cylinder head 3 is lower than before, and the temperature distribution in the lower part near the skirt portion 2a of the cylinder block 2 is excessively cooled. Since it becomes possible to adjust the temperature within a range that does not occur, the temperature distribution of the cooling water 19 can be made almost uniform, and the temperature distribution of the cylinder liner 13 can be made almost uniform, thereby preventing uneven deformation of the cylinder liner 13. This makes it possible to prevent an increase in lubricant consumption, uneven piston contact, and an increase in piston slap noise.

へに、第2実施例について説明すると,第2図に示すよ
うに、この実施例の分離冷却装置31I3では,加圧式
沸騰防止機構30Bの構成が第1実施例のものと異なっ
ている。
Now, to explain the second embodiment, as shown in FIG. 2, in the separation cooling device 31I3 of this embodiment, the configuration of the pressurized boiling prevention mechanism 30B is different from that of the first embodiment.

つまり、この加圧式沸騰防止機130Bでは、ラジエー
タ15のリザーバタンク37に設けられた液面センサ4
1がECU34に接続されており,この液面センサ41
から入力されたリザーバタンクの液面情報に基づいて、
ECU34がポンプ32の味動を制御するように楕成さ
れている.なお,リザーバタンク37にはラジエータキ
ャップ15aからパイプ38が導かれ、ラジエータ15
でオーバーフローした冷却水がリザーバタンク37内部
に導入されるようになっている.また,このリザーバタ
ンク37は、容器底部39の1−に連通孔付きの上部底
板40を配設された2重底構造になっており,ラジエー
タ15内の冷却水19の温度が所定レベル以下ならば、
リザーバタンク37内の冷却水面が上部底板40より下
に位置するように設定されている。この上部底板40は
.下方で動揺した冷却水19が上部底抜40上に流れ込
まないようにしている。
That is, in this pressurized boiling preventer 130B, the liquid level sensor 4 provided in the reservoir tank 37 of the radiator 15
1 is connected to the ECU 34, and this liquid level sensor 41
Based on the reservoir tank liquid level information input from
The ECU 34 is designed to control the operation of the pump 32. Note that a pipe 38 is led from the radiator cap 15a to the reservoir tank 37, and the radiator 15
The overflowing cooling water is introduced into the reservoir tank 37. Moreover, this reservoir tank 37 has a double bottom structure in which an upper bottom plate 40 with a communication hole is disposed at 1- of the bottom part 39 of the container. Ba,
The cooling water level in the reservoir tank 37 is set to be located below the upper bottom plate 40. This upper bottom plate 40 is. The cooling water 19 stirred below is prevented from flowing onto the upper bottom hole 40.

そして,液面センサ41は、上部底板40の上方に配設
されており、ラジエータ15内の冷却水19の温度が所
定レベル以上になって膨張していき、リザーバタンク3
7内の冷却水面が上昇していくと,これを液面センサ4
1が検出するようになっている。
The liquid level sensor 41 is disposed above the upper bottom plate 40, and when the temperature of the cooling water 19 in the radiator 15 reaches a predetermined level or higher, it expands.
When the cooling water level in 7 rises, it is detected by the liquid level sensor 4.
1 is designed to be detected.

E C tJ 3 4は,液面センサ41から検出信号
をうけると、リザーバタンク37内の冷却水面が所定レ
ベル以下になるように、ポンプ32の吐出量が増大され
るようになっている。
When the E C tJ 3 4 receives a detection signal from the liquid level sensor 41, the discharge amount of the pump 32 is increased so that the cooling water level in the reservoir tank 37 becomes below a predetermined level.

これらの箇所を除いて,第2実施例の加圧式沸騰防止機
構30Bは,第1実施例の加圧式沸騰防止機構30Aと
同様に楕成され,また、第2実施例の他の部分について
も第1実施例と同様に構成されるので,これらの説明を
省略する。
Except for these parts, the pressurized boiling prevention mechanism 30B of the second embodiment has the same oval shape as the pressurized boiling prevention mechanism 30A of the first embodiment, and other parts of the second embodiment are also the same. Since the structure is similar to that of the first embodiment, the explanation thereof will be omitted.

本発明の第2実施例としての加圧式沸騰防止機構付き分
離冷却装置31Bは.上述のととく梼成されているので
,シリンダブロック2下部の自然対流部24b内で冷却
水19が沸騰すると,冷却水の水蒸気化により、見掛け
上の循環冷却水量が増加してリザーバタンク37内にあ
ふれ出る。
A separate cooling device 31B with a pressurized boiling prevention mechanism is a second embodiment of the present invention. Because of the above-mentioned structure, when the cooling water 19 boils in the natural convection section 24b at the bottom of the cylinder block 2, the apparent amount of circulating cooling water increases due to the evaporation of the cooling water, which increases the amount of water in the reservoir tank 37. It overflows.

リザーバタンク37内の冷却水面が上部底抜40を滅え
て液面センサ41にまで達すると、液面センサ41がこ
れを検出して,この検出信号がECU34へ送られてポ
ンプ32の吐出量が適当に増大される。
When the cooling water level in the reservoir tank 37 passes through the upper bottom drawer 40 and reaches the liquid level sensor 41, the liquid level sensor 41 detects this, and this detection signal is sent to the ECU 34 to adjust the discharge amount of the pump 32. Appropriately increased.

このポンプ32による冷却水の駆動によって、自然対流
部24b内が加圧されて、内部の冷却水19の沸点が上
昇するので、この自然対流部24b内の冷却水19が沸
騰を停止して発生した水蒸気も液化する. これにより,冷却水の沸騰による熱伝達率の低下が防止
され,冷却水による所定の冷却能力が確保され、第1実
施例とほぼ同様の効果が得られる.また、自然対流部2
4b内が加圧されると,見掛けトの循環冷却水貝の増加
も防止されて,循環冷却水はリザーバタンク37からオ
ーバーフローすることなく、リザーバタンク37内の冷
却水面が液面センサ41の付近以下に保たれる。
As the cooling water is driven by this pump 32, the inside of the natural convection section 24b is pressurized and the boiling point of the cooling water 19 inside rises, so the cooling water 19 inside this natural convection section 24b stops boiling and generates The water vapor also liquefies. This prevents a decrease in heat transfer coefficient due to boiling of the cooling water, ensures a predetermined cooling capacity of the cooling water, and provides almost the same effect as the first embodiment. In addition, natural convection section 2
When the inside of 4b is pressurized, the apparent increase in circulating cooling water shells is also prevented, and the circulating cooling water does not overflow from the reservoir tank 37, and the cooling water level in the reservoir tank 37 is kept below the vicinity of the liquid level sensor 41. is maintained.

なお,この加圧式沸騰防止機構30Bでは,車両の旋回
時や急発進・急停止時等にリザーバタンク37内の冷却
水19が動揺しても、上部底抜40よりも下方で動揺し
た冷却水19はL部底抜40上に流れ込まないので、液
而センサ41に動揺した冷却水が飛び散って、誤って液
面増加が検出されるようなことはない。
In addition, in this pressurized boiling prevention mechanism 30B, even if the cooling water 19 in the reservoir tank 37 is shaken when the vehicle turns or suddenly starts or stops, the coolant that has shaken below the upper bottom opening 40 is removed. Since the cooling water 19 does not flow onto the L portion bottom hole 40, the agitated cooling water will not splash onto the liquid sensor 41 and erroneously detect an increase in the liquid level.

次に、第3実施例について説明すると,第3図に示すよ
うに,この実施例の分離冷却装fi31cでは,加圧式
沸騰防止機構30Cの構成が第1,2実施例のものと異
なっており、ECU34に、第1実施例のものと同様の
圧カセンサ35及び温度センサ,′3Gが接続される上
に、第2実施例のものと同様の液而センサ41が接続さ
れている。
Next, to explain the third embodiment, as shown in Fig. 3, in the separation cooling device fi31c of this embodiment, the configuration of the pressurized boiling prevention mechanism 30C is different from that of the first and second embodiments. , a pressure sensor 35 and a temperature sensor '3G similar to those of the first embodiment are connected to the ECU 34, and a liquid sensor 41 similar to that of the second embodiment is also connected.

このうち,液面センサ41は圧カセンサ35や温度セン
サ36のフェイル時のためのもので、通常時には、第1
実施例と同様に圧カセンサ35及び潟度センサ36から
の情報に基づいてECU34がボンプ32の吐出量を制
御し、圧カセンサ35や温度センサ36のフェイル時に
液面センサ41からの情報に基づいてECU34がポン
プ32の吐出景を制御するように構成されている。
Of these, the liquid level sensor 41 is for when the pressure sensor 35 and temperature sensor 36 fail, and in normal times, the liquid level sensor 41
As in the embodiment, the ECU 34 controls the discharge amount of the pump 32 based on the information from the pressure sensor 35 and the lagoon sensor 36, and when the pressure sensor 35 and the temperature sensor 36 fail, the ECU 34 controls the discharge amount based on the information from the liquid level sensor 41. The ECU 34 is configured to control the discharge mode of the pump 32.

本発明の第3実施例としての加圧式沸騰防止機構付き分
麗冷却装iii31cは、上述のごとく楕成されるので
、第1実施例と同様の作用及び効果が得られる上に,圧
カセンサ35系や温度センサ36系が万−フエイルした
時には、液面センサ41からの情報に基づきポンプ32
の吐出量を制御できるので,装置の信頼性が向上する利
点がある。
Since the separate cooling device III31c with a pressurized boiling prevention mechanism as the third embodiment of the present invention has an oval structure as described above, it can obtain the same operation and effect as the first embodiment, and also has the pressure sensor 35. system or temperature sensor 36 system fails, the pump 32 is activated based on information from the liquid level sensor 41.
Since the discharge amount can be controlled, the reliability of the device is improved.

なお,各実施例では、分離冷却装置31A〜31Cを自
動車用エンジンlに装備しているが,本装置は,自動車
用エンジンに限定されず,他の種々の用途のエンジンに
も適用しうるものである。
In each of the embodiments, the automobile engine 1 is equipped with the separation cooling devices 31A to 31C, but this device is not limited to automobile engines, and can be applied to engines for various other uses. It is.

[発明の効果コ 以上詳述したように,本発明の加圧式沸騰防止機構付き
分雌冷却装置によれば,エンジンのシリンダライナの外
側周囲に設けられたウォータジャケットと,該ウォータ
ジャケット内の冷却水を強制対流させうるウォータボン
プと、該冷却水を冷却するラジエー夕とをそなえたエン
ジン用冷却装置において,該ウォータジャケットが,該
シリンダライナ外側周囲の上部に設けられた連通孔を介
して,該連通孔よりも上方に位置して該ウォータポンブ
で内部の冷却水を叩動されて強制対流する強制対流部と
,該連通孔よりも下方に位置して内部の冷却水を該ウォ
ータポンプで恥動されずに自然対流する自然対流部とに
分割され,該自然対流部内の冷却水を加圧して該冷却水
の沸点を上昇させうる加圧式沸騰防止機楕が設けられる
という枯成により、吸気充填効率の向上によるエンジン
出力のアップと共に,潤滑油の潤滑性の向上によるエン
ジンの摩擦損失力低減を実現することができ、エンジン
性能を大幅に向上させることができる。
[Effects of the Invention] As detailed above, according to the pressurized boiling prevention mechanism-equipped cooling device of the present invention, the water jacket provided around the outside of the cylinder liner of the engine and the cooling inside the water jacket are In an engine cooling system equipped with a water pump capable of forcing water to convect and a radiator that cools the cooling water, the water jacket connects to the cylinder liner through a communication hole provided at the upper part of the outer periphery of the cylinder liner. A forced convection part is located above the communication hole and uses the water pump to pump the internal cooling water for forced convection, and a forced convection part is located below the communication hole and uses the water pump to pump the internal cooling water. The system is divided into a natural convection section where natural convection occurs without being affected, and a pressurized boiling prevention machine is installed that can pressurize the cooling water in the natural convection section and raise the boiling point of the cooling water. In addition to increasing engine output by improving intake air filling efficiency, it is possible to reduce engine friction loss force by improving the lubricity of the lubricating oil, making it possible to significantly improve engine performance.

また,エンジンの冷却効率・冷却能力を向上できるよう
になりこの反面では冷却水聞動ポンプの小型化を図るこ
とができる。さらに、始動時の暖気促進効果も得られる
ほか、潤滑油消費の増大やピストンの片当たりやピスト
ンスラップ音の増大等を防止できる利点もある。
In addition, the cooling efficiency and cooling capacity of the engine can be improved, and on the other hand, the cooling water pump can be made smaller. Furthermore, in addition to the effect of promoting warm-up during startup, it also has the advantage of preventing increased lubricating oil consumption, uneven piston contact, and increased piston slap noise.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例としての加圧式沸騰防止機
楕付き分離冷却装置を示すエンジンの縦断面図,第2図
は本発明の第2実施例としての加圧式沸騰防止機構付き
分離冷却装置を示すエンジンの側面図,第3図は本発明
の第3実施例としての加圧式沸騰防止機構付き分離冷却
装置を示すエンジンの側面図であり,第4,5図は従来
のエンジン用冷却装置を示すもので,第4図はこの装置
を装備したエンジンの縦断面図,。第5図はそのエンジ
ンの側面図であり、第6,7図は本発明の案出過程で提
案されたエンジン用冷却装置を示すもので、第6図はこ
の装置を装備したエンジンの縦断面図、第7図はそのエ
ンジンの側面図である.1−エンジン,2−シリンダブ
ロック.2a・・−シリンダブロック2のスカート部、
3・・−シリンダヘッド、4・−オイルパン,5−・吸
気管,6−・・排気管.7−・吸気通路,8一排気通路
、9−・一吸気バルブ、10一排気バルブ、12−ピス
トン,13−・・シリンダライナ、15−ラジエー夕、
15a・−・・ラジエータキャップ、16・・・ウォー
タポンプ、17一冷却水供給管.IL−冷却水排出管、
19−・・冷却水,20−ガスケット.22一連通管、
24・・・ウォータジャケット、24 a−強制対流部
、24b−・一自然対流部、,30A,30B,30C
・〜加圧式沸騰防止機構、31A,31B,31C・一
加圧式沸騰防止機楕付き分雌冷却装置、32・−ウォー
タポンプ,33一冷却水通路,34.=一エンジンコン
トロールユニット(ECU).35−・・圧カセンサ、
36一温度センサ、37−リザーバタンク、38−パイ
プ,39・−・容器底部、4〇一上部底仮,41一液而
センサ。
Fig. 1 is a longitudinal sectional view of an engine showing a separate cooling device with a pressurized boiling prevention mechanism as a first embodiment of the present invention, and Fig. 2 is a longitudinal sectional view of an engine showing a separate cooling device with a pressurized boiling prevention mechanism as a second embodiment of the present invention. FIG. 3 is a side view of an engine showing a separation cooling device, and FIG. 3 is a side view of an engine showing a separation cooling device with a pressurized boiling prevention mechanism as a third embodiment of the present invention, and FIGS. 4 and 5 are side views of a conventional engine. Fig. 4 is a vertical sectional view of an engine equipped with this cooling system. Fig. 5 is a side view of the engine, and Figs. 6 and 7 show the engine cooling device proposed in the process of devising the present invention. Fig. 6 is a longitudinal cross-section of the engine equipped with this device. Figure 7 is a side view of the engine. 1-engine, 2-cylinder block. 2a...-Skirt portion of cylinder block 2,
3...-Cylinder head, 4--Oil pan, 5--Intake pipe, 6--Exhaust pipe. 7--Intake passage, 8-Exhaust passage, 9--Intake valve, 10-Exhaust valve, 12-Piston, 13--Cylinder liner, 15-Radiator,
15a -- Radiator cap, 16 -- Water pump, 17 - Cooling water supply pipe. IL-cooling water discharge pipe,
19-...Cooling water, 20-Gasket. 22 series of pipes,
24...Water jacket, 24a-forced convection section, 24b--natural convection section, 30A, 30B, 30C
- Pressurized boiling prevention mechanism, 31A, 31B, 31C - Pressurized boiling prevention machine with oval female cooling device, 32 - Water pump, 33 - Cooling water passage, 34. =1 engine control unit (ECU). 35-...Pressure sensor,
36-temperature sensor, 37-reservoir tank, 38-pipe, 39--container bottom, 40--top/bottom temporary, 41-liquid sensor.

Claims (1)

【特許請求の範囲】[Claims] エンジンのシリンダライナの外側周囲に設けられたウォ
ータジャケットと、該ウォータジャケット内の冷却水を
強制対流させうるウォータポンプと、該冷却水を冷却す
るラジエータとをそなえたエンジン用冷却装置において
、該ウォータジャケットが、該シリンダライナ外側周囲
の上部に設けられた連通孔を介して、該連通孔よりも上
方に位置して該ウォータポンプで内部の冷却水を駆動さ
れて強制対流する強制対流部と、該連通孔よりも下方に
位置して内部の冷却水を該ウォータポンプで駆動されず
に自然対流する自然対流部とに分割され、該自然対流部
内の冷却水を加圧して該冷却水の沸点を上昇させうる加
圧式沸騰防止機構が設けられていることを特徴とする、
加圧式沸騰防止機構付き分離冷却装置。
An engine cooling system comprising a water jacket provided around the outside of a cylinder liner of an engine, a water pump capable of forcing cooling water in the water jacket to undergo forced convection, and a radiator that cools the cooling water. a forced convection section in which the jacket is located above the communication hole and is driven by the water pump to cause forced convection of internal cooling water through a communication hole provided at the upper part of the outer periphery of the cylinder liner; It is divided into a natural convection section located below the communication hole where the internal cooling water naturally convects without being driven by the water pump, and the cooling water in the natural convection section is pressurized to lower the boiling point of the cooling water. It is characterized by being equipped with a pressurized boiling prevention mechanism that can raise the
Separate cooling device with pressurized boiling prevention mechanism.
JP11678489A 1989-05-10 1989-05-10 Separated cooler with pressurized type boiling preventing mechanism Pending JPH02294515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11678489A JPH02294515A (en) 1989-05-10 1989-05-10 Separated cooler with pressurized type boiling preventing mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11678489A JPH02294515A (en) 1989-05-10 1989-05-10 Separated cooler with pressurized type boiling preventing mechanism

Publications (1)

Publication Number Publication Date
JPH02294515A true JPH02294515A (en) 1990-12-05

Family

ID=14695623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11678489A Pending JPH02294515A (en) 1989-05-10 1989-05-10 Separated cooler with pressurized type boiling preventing mechanism

Country Status (1)

Country Link
JP (1) JPH02294515A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6532910B2 (en) 2001-02-20 2003-03-18 Volvo Trucks North America, Inc. Engine cooling system
US7152555B2 (en) 2001-02-20 2006-12-26 Volvo Trucks North America, Inc. Engine cooling system
GB2526792A (en) * 2014-06-02 2015-12-09 Jaguar Land Rover Ltd Method of determining the temperature of a cylinder head
WO2018150770A1 (en) * 2017-02-16 2018-08-23 株式会社デンソー Intake air cooling system and pressure transmission device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6532910B2 (en) 2001-02-20 2003-03-18 Volvo Trucks North America, Inc. Engine cooling system
US6886503B2 (en) 2001-02-20 2005-05-03 Volvo Trucks North America, Inc. Engine cooling system
US7152555B2 (en) 2001-02-20 2006-12-26 Volvo Trucks North America, Inc. Engine cooling system
GB2526792A (en) * 2014-06-02 2015-12-09 Jaguar Land Rover Ltd Method of determining the temperature of a cylinder head
WO2015185377A1 (en) * 2014-06-02 2015-12-10 Jaguar Land Rover Limited Method of determining the temperature of a cylinder head
GB2526792B (en) * 2014-06-02 2017-06-07 Jaguar Land Rover Ltd Method of controlling a coolant pump in an internal combustion engine
WO2018150770A1 (en) * 2017-02-16 2018-08-23 株式会社デンソー Intake air cooling system and pressure transmission device

Similar Documents

Publication Publication Date Title
US20160377023A1 (en) Cylinder block water jacket structure having insert
JP6607232B2 (en) Oil circulation device for internal combustion engine
JPH02294515A (en) Separated cooler with pressurized type boiling preventing mechanism
US4825816A (en) Engine with forced air-cooling
JPS6060004B2 (en) Oil pan for internal combustion engines
JP3536632B2 (en) Internal combustion engine lubrication system
JPS59206608A (en) Method and device for rapidly elevating temperature of lubricating oil for internal combustion engine and thermallyadjusting said oil
CN108533350A (en) The lubricating oil supplies of V-type multi-cylinder diesel engine
US4955327A (en) Partial-boil cooling apparatus for engine
JP2006207540A (en) Engine oiling device
JP2001152851A (en) Temperature control device for cylinder wall of engine
JPS595827A (en) Cooling device for internal combustion engine
US2677357A (en) Cooling system for internal-combustion engines
US2285248A (en) Cooling system for internal combustion engines
JP2626337B2 (en) Internal combustion engine lubrication system
CN2288272Y (en) Device for heating or cooling lubricating oil of IC engine
KR19990027355U (en) Automotive Oil Chiller
JPS6228644Y2 (en)
KR100535487B1 (en) Bypass valve of oil cooler
KR0115983Y1 (en) Engine with water jacket for preventing noise
JPH08100619A (en) Lubricating oil supply device for engine
JPH0354315A (en) Partial evaporative cooling device of engine
KR19980027801U (en) Oil Chiller for Automotive Engines
KR20140006473U (en) Cylinder block and system for coolant and oil circulation of diesel engine using the same
KR200178406Y1 (en) Engine oil supply contlol apparatus