JPH02292826A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH02292826A
JPH02292826A JP11397989A JP11397989A JPH02292826A JP H02292826 A JPH02292826 A JP H02292826A JP 11397989 A JP11397989 A JP 11397989A JP 11397989 A JP11397989 A JP 11397989A JP H02292826 A JPH02292826 A JP H02292826A
Authority
JP
Japan
Prior art keywords
protective film
film
nitrogen
stress
sin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11397989A
Other languages
Japanese (ja)
Inventor
Hisaharu Kiyota
清田 久晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP11397989A priority Critical patent/JPH02292826A/en
Publication of JPH02292826A publication Critical patent/JPH02292826A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a passivation film in high step coverage which causes no warp of a substrate and suffers no damage such as cracks, etc., by a method wherein the first protective film containing silicon and nitrogen having tensile stress in formed on metallic wirings and then the second protective film containing silicon and nitrogen having compressive stress is formed on the first protective film. CONSTITUTION:Within a semiconductor device wherein a protective film containing silicon and nitrogen is formed on metallic wirings 11, the first protective film 12 containing silicon and nitrogen having tensile stress is formed on the metallic wirings 11 and then the second protective film 13 containing silicon and nitrogen having compressive stress is formed on the first protective film 12. For example, the inner stress of silicon nitride (P-SiN) film to be formed is changed by changing the impressing ratio of high-frequency voltage and low-frequency voltage during plasma CVD process so as to firstly form the P-SiN (T.) film 12 in the tensile stress of 10<9>dyne/cm<2> as the first protective film in thickness of 3000Angstrom on the aluminum wirings 11. Finally, the P-SiN (C.) film 13 in the compressive stress of 2X10<9>dyne/cm<2> as the second protective film in thickness of 7000Angstrom is successively formed on the first protective film.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、金属配線上に保護膜を形成した半導体装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device in which a protective film is formed on metal wiring.

[発明の概要] 本発明は、金属配線上に、ケイ素(Si)と窒声(N)
を含む保護膜を形成した半導体装置において、金属配線
玉に引張り応力を有するケイ素(Si)と窒素(N)を
含む第!の保護膜を形成し、前記第1の保護膜上に圧縮
応力を有するケイ素(Si)と窒素(N)を含む第2の
保護膜を形成したことにより、 半導体装置のソリ量を少なくし、表面の耐クラック性を
高めるようにしたものである。
[Summary of the invention] The present invention provides silicon (Si) and nitrogen (N) on metal wiring.
In a semiconductor device in which a protective film containing silicon (Si) and nitrogen (N) containing tensile stress is formed in a metal wiring ball, A protective film is formed on the first protective film, and a second protective film containing silicon (Si) and nitrogen (N) having compressive stress is formed on the first protective film, thereby reducing the amount of warpage of the semiconductor device. It is designed to improve the crack resistance of the surface.

[従来の技術] パッシベーション技術は、半導体装置の表面に、ある種
の処理を施し、特性の安定化を図ることであり、外界の
影響を受けないようにすると共に、デバイス表面にすで
に存在する不安定性要因も除去する一種の表面不働態化
処理方法である。
[Conventional technology] Passivation technology is a process of performing a certain type of treatment on the surface of a semiconductor device in order to stabilize its characteristics.It prevents it from being influenced by the outside world and also eliminates concerns that already exist on the surface of the device. It is a kind of surface passivation treatment method that also removes qualitative factors.

従来、この種のパッシベーション膜を形成した半導体装
置としては、基板上にシリコンナイトライドSiN(プ
ラズマCVD)を単層で形成したものが知られている。
Conventionally, as a semiconductor device in which this type of passivation film is formed, one in which a single layer of silicon nitride SiN (plasma CVD) is formed on a substrate is known.

しかしながら、このようなシリコンナイトライド(P−
SiN)単層膜を形成した半導体ウェハは、第8図に示
すように(この場合4インチウエハを用いている)、ウ
ェハ厚にかかわらず大きなソリが生ずるという問題があ
る。これは、大きな圧縮ストレスのために、例えば、基
板上に形成されるアルミ配線にストレスマイグレーシツ
ンが生じたり、アルミパッドの底部に亀裂か生じたりし
て半導体装置の信頼性を低下させるという問題を惹起す
る。
However, such silicon nitride (P-
As shown in FIG. 8 (in this case, a 4-inch wafer is used), a semiconductor wafer on which a single layer (SiN) film is formed has a problem in that large warpage occurs regardless of the wafer thickness. This causes problems such as stress migration in the aluminum wiring formed on the substrate and cracks in the bottom of the aluminum pad due to large compressive stress, reducing the reliability of the semiconductor device. cause

そこで、このような半導体ウエハのソリを大幅に低減す
るため、第9図に示すような構造がとられている。例え
ば、同図に示すように、半導体ウエハであるシリコン基
板lに、アルミ配線2.2を形成し、その上にリンシリ
ケートガラス(PSG)膜3を杉成し、更にその上にン
リコンナイトライド(P−SiN)膜4を形成するとい
う2層構造のパッシベーション膜を設けている。
Therefore, in order to significantly reduce such warping of semiconductor wafers, a structure as shown in FIG. 9 has been adopted. For example, as shown in the figure, an aluminum wiring 2.2 is formed on a silicon substrate 1, which is a semiconductor wafer, a phosphosilicate glass (PSG) film 3 is formed on it, and phosphorous silicate glass (PSG) film 3 is formed on it. A passivation film having a two-layer structure in which a Ride (P-SiN) film 4 is formed is provided.

[発明が解決しようとする課題] しかしながら、このような従来例にあっては、基板のソ
リ量は低減されるものの、アスベクト比の高くなるよう
な微細ルールの場合、PSG膜3はステップカバレージ
(段差被覆性)が悪いため、アルミ配線2の下部側面に
PSG膜3を形成出来なかったり、又は第9図に示すよ
うにPSG膜がアルミ配線2上に撓み(オーバーハング
)を生じたりして、アルミ配線2.2間にP−SiN膜
4を形成出来ず空隙5が生じてしまったりする問題点が
あった。
[Problems to be Solved by the Invention] However, in such a conventional example, although the amount of warpage of the substrate is reduced, in the case of a fine rule that increases the aspect ratio, the PSG film 3 has a step coverage ( Due to poor step coverage), the PSG film 3 could not be formed on the lower side surface of the aluminum wiring 2, or the PSG film may be bent (overhang) on the aluminum wiring 2 as shown in FIG. However, there was a problem in that the P-SiN film 4 could not be formed between the aluminum wiring lines 2 and 2, resulting in a gap 5.

また、PSGは、吸湿性か高いため、直接アルミ配線2
と当接させると、アルミ配線2側にボイドや、H t 
Oとの反応による腐蝕等を生じさせ、アルミ配線2の信
頼性を著しく低下させる問題点を有していた。
In addition, since PSG is highly hygroscopic, it can be directly connected to aluminum wiring 2.
When it comes into contact with the aluminum wiring 2 side, voids or H t
This has the problem of causing corrosion etc. due to reaction with O, and significantly reducing the reliability of the aluminum wiring 2.

本発明は、このような従来の問題点に着目して創案され
たものであって、基板にソリが生じず、高ステップカバ
レージのパッシベーション膜か形成され、しかもアスペ
クト比の高い部分にクラック等の損傷が生じない半導体
装置を得んとするものである。
The present invention has been devised by focusing on these conventional problems, and is capable of forming a passivation film with high step coverage without causing warpage on the substrate, and without causing cracks or the like in areas with high aspect ratios. The object is to obtain a semiconductor device that does not cause damage.

[課題を解決するための千段] そこで、本発明は、金属配線上に、ケイ素(Si)と窒
素(N)を含む保護膜を形成した半導体装置において、
金属配線上に引張り応力を有するケイ素(Si)と窒素
(N)を含む第1の保護膜を形成し、前記第1の保護膜
上に圧縮応力を有するケイ素(Si)と窒素(N)を含
む第2の保護膜を形成したことを、その解決手段として
いる。
[A thousand steps to solve the problem] Therefore, the present invention provides a semiconductor device in which a protective film containing silicon (Si) and nitrogen (N) is formed on a metal wiring.
A first protective film containing silicon (Si) and nitrogen (N) having tensile stress is formed on the metal wiring, and silicon (Si) and nitrogen (N) having compressive stress are formed on the first protective film. A solution to this problem is to form a second protective film containing

[作用] 第1の保護膜と第2の保護膜とは、互いに引張り応力と
圧縮応力とを相殺して半導体装置全体にソリが生じるこ
とを防止する。このため、例えばビエゾ効果(圧電効果
)等の発生による抵抗等の変化が防止される。また、金
属配線上に形成される第1の保護膜は、ケイ素(Si)
と窒素(N)を含む例えばプラズマCVDによるシリコ
ンナイトライド膜であるため、金属配線を害する作用が
ない。
[Operation] The first protective film and the second protective film mutually cancel out tensile stress and compressive stress to prevent warpage from occurring in the entire semiconductor device. Therefore, changes in resistance and the like due to, for example, the Viezo effect (piezoelectric effect) are prevented. Further, the first protective film formed on the metal wiring is made of silicon (Si).
Since it is a silicon nitride film produced by plasma CVD, for example, containing nitrogen (N) and nitrogen (N), it does not have the effect of damaging metal wiring.

[実施例] 以下、本発明に係る半導体装置の詳細を図面に示す各実
施例に基づいて説明する。
[Example] Details of the semiconductor device according to the present invention will be described below based on each example shown in the drawings.

本発明は、保護膜としてのパッシベーンヨン膜を、内部
応力の異なるシリコンナイトライド(以下P−SiNと
称する)系膜で連続あるいは2層に分けて、プラズマC
VD法を用いて形成する乙のであり、このP−SiN膜
の内郎応力の制御方法としては、以下の方法を用いる。
In the present invention, the passivation film as a protective film is continuously or divided into two layers with silicon nitride (hereinafter referred to as P-SiN) films having different internal stresses, and plasma
This is formed using the VD method, and the following method is used to control the internal stress of this P-SiN film.

■周波数制御法 プラズマCVDは、真空中で原料ガスに、直流電圧.高
周波電圧.低周波電圧等を印加し、グロー放電プラズマ
と呼ばれる励起分子,原子.イオン,ラジカル.電子が
共存する状態をつくって薄膜を形成する方法であるが、
上記した高周波電圧と低周波電圧との印加する割合を変
えることにより、形成されるP−SiN膜の内部応力を
変化させることが可能となる。第4図のグラフは、プラ
ズマCVDにおいて、低周波の割合を変化させた場合の
P−SiN膜の応力の変化を示している。
■Frequency control method Plasma CVD uses direct current voltage applied to the raw material gas in a vacuum. High frequency voltage. By applying a low frequency voltage, etc., excited molecules and atoms, called glow discharge plasma, are generated. Ions, radicals. This is a method of forming a thin film by creating a state where electrons coexist.
By changing the applied ratio of the high frequency voltage and the low frequency voltage described above, it is possible to change the internal stress of the P-SiN film to be formed. The graph in FIG. 4 shows the change in stress of the P-SiN film when the proportion of low frequency waves is changed in plasma CVD.

なお、同グラフ中、応力が正の値の場合は、引張り応力
(T)が生じ、負の場合場合は圧縮応力(C)が生じて
いることを示している。また、第5図は高周波と低周波
を両方用いた場合、圧力を変えて応力の変化を見たグラ
フである。
In addition, in the same graph, when stress is a positive value, tensile stress (T) is generated, and when it is negative, compressive stress (C) is generated. Furthermore, FIG. 5 is a graph showing changes in stress as the pressure is changed when both high frequency and low frequency waves are used.

■ナローギャップ制御法 本方法は、プラズマCVDにおける電極間に距離間間隔
を変えることで堆積するP−SiN膜の内部応力を制御
しようというものであって、第6図のグラフは窒素(N
!)の今量を変えることにより、真空度を変化させ電極
間間隔を制御した場合を示しており、第7図のグラフは
、出力を変えることにより電極間間隔を制御した場合を
示している。
■Narrow gap control method This method attempts to control the internal stress of the deposited P-SiN film by changing the distance between electrodes in plasma CVD.
! ) shows a case in which the degree of vacuum is changed to control the distance between the electrodes, and the graph in FIG. 7 shows a case in which the distance between the electrodes is controlled by changing the output.

■組成制御法 プラズマCVDに際して、堆積されるP−SiN中に酸
素を混入させてP−SiN中の水素量を変えることによ
り、P−SiN膜の内部応力を制御するものであって、
例えば周波数13.56MH zの条件でプラズマCV
Dを行なった場合、酸素を混入しない時は引張り応力が
生じ、酸素を混入していくと、圧縮応力が生じてくる。
■Composition control method During plasma CVD, the internal stress of the P-SiN film is controlled by mixing oxygen into the deposited P-SiN and changing the amount of hydrogen in the P-SiN.
For example, plasma CV under the condition of frequency 13.56MHz
When performing D, tensile stress occurs when no oxygen is mixed, and compressive stress occurs when oxygen is mixed.

(第1実施例) 本実施例は、第1図A及び第1図Bに示すように、半導
体ウエハであるシリコン基板10上にアルミ配線2−2
が微細ルール(lμm)で形成された半導体装置に本発
明を適用したものである。
(First Example) In this example, as shown in FIGS. 1A and 1B, aluminum wiring 2-2 is placed on a silicon substrate 10, which is a semiconductor wafer.
The present invention is applied to a semiconductor device formed with a fine rule (1 μm).

本実施例においては、第1図八に示すように、先ず、プ
ラズマCVDにより、アルミ配線ll上に引張り応力1
 0 @dyne/cod’のP − S i N (
Tensile)膜12を第1の保護膜として形成する
。このP−SiN(T.)膜l2の膜厚は、3000人
である。
In this example, as shown in FIG. 18, first, a tensile stress of 1
0 @dyne/cod' P − S i N (
A tensile film 12 is formed as a first protective film. The thickness of this P-SiN (T.) film l2 is 3000 mm.

次に、P−SiN(T.)膜t2の上に続けて圧縮応力
2 X I O ’dyne/cm”の第2の保護膜と
してP − S i N (Compressibil
ity)膜13を膜厚7000人で形成する。
Next, on the P-SiN (T.) film t2, a P-SiN (compressible film) is formed as a second protective film with a compressive stress of 2
ity) The film 13 is formed to a thickness of 7000.

このようにして、2層の保護膜を形成した後は、通常の
パターンニング,パッド窓明け等の工程を経て半導体装
置が完成する。
After the two-layer protective film is formed in this manner, the semiconductor device is completed through ordinary steps such as patterning and pad window opening.

本実施例においては、上記した周波数制御法.ナローギ
ャップ制御法及び組成制御法のいずれか又はこれらの組
合せを用いてP−SiN(T.)膜及びP−SiN(C
.)膜の内部応力を制御したが、以下の各実施例におい
てら同様である。
In this embodiment, the frequency control method described above is used. P-SiN (T.) film and P-SiN (C.
.. ) The internal stress of the film was controlled, but the same applies to each of the following examples.

(第2実施例) 本実施例においては、先ず、第2図Aに示すように、プ
ラズマCVDにより、アルミ配線11上に引張り応力l
O″″dyne/cm”のP−SiN(T.)膜l2を
第1の保護膜として膜厚3000人に形成する。
(Second Example) In this example, first, as shown in FIG. 2A, tensile stress l is applied onto the aluminum wiring 11 by plasma CVD.
A P-SiN (T.) film 12 of 0''dyne/cm'' is formed as a first protective film to a thickness of 3000 mm.

次に、テトラエトキシシラン(TEOS)膜をプラズマ
CVD法により厚く形成し、エッチバックを行ない、第
2図Bに示すように平坦化する。
Next, a thick tetraethoxysilane (TEOS) film is formed by plasma CVD, etched back, and planarized as shown in FIG. 2B.

次に、p − S i N(T.)膜l2及びTEOS
膜l4の上に、第1実施例と同様なP − S iN(
C.)膜l3を7000人の膜厚で形成する(第2図C
)。
Next, p-S i N (T.) film l2 and TEOS
On the film l4, P-SiN (
C. ) A film l3 is formed with a thickness of 7,000 people (Fig. 2C).
).

なお、本実施例における平坦化は、プラズマCVDによ
るTEOSを用いたが、この他、TEOS+オゾン(0
,)を用いたCVDによる膜や塗布したSOG膜を用い
ても勿論よい。
In addition, although TEOS by plasma CVD was used for planarization in this example, TEOS+ozone (0
, ) or a coated SOG film may also be used.

(第3実施例) 本実施例においては、先ず、第3図Aに示すように、プ
ラズマCVDを用いてTEOS膜l4を形成し、エッチ
バックを行ない平坦化する。
(Third Embodiment) In this embodiment, first, as shown in FIG. 3A, a TEOS film 14 is formed using plasma CVD and is planarized by etching back.

次に、引張り応力1 0 @dyne/am’のP−S
iN(T.)膜l2を膜厚3000人で形成し(第3図
B)、次いで、圧縮応力2 X 1 0 ”dyne/
c+a”のP−SiN(C.)膜l3を形成する。
Next, P-S of tensile stress 1 0 @dyne/am'
An iN(T.) film l2 was formed to a thickness of 3000 mm (FIG. 3B), and then a compressive stress of 2×10” dyne/
A P-SiN (C.) film 13 of "c+a" is formed.

なお、TEOS膜14は、第2実施例と同様に他の平坦
化膜を用いてもよい。
Note that, as the TEOS film 14, another planarization film may be used as in the second embodiment.

上記した各実施例の保護膜の内部応力の制御方法の具体
例としては、例えば、第1の保護膜の形成の初期に低周
波50%.高周波50%程度のプラズマCVDを開始し
、順次低周波の割合を減してゆき、低周波が25%で膜
形成を完了するようにに連続的に形成条件を変える方法
を行なう。
As a specific example of the method for controlling the internal stress of the protective film in each of the above embodiments, for example, a low frequency 50%. A method is used in which plasma CVD is started with a high frequency of about 50%, the ratio of low frequency is gradually reduced, and the formation conditions are continuously changed so that the film formation is completed when the low frequency is 25%.

また、他の内部応力制御の具体例としては、第5図に示
すグラフに基づいて、プラズマCVDにおける圧力を3
.5〜2.5Torrの間で変化させる方法、第6図に
示すグラフに基づていN,流量を8〜4L/min.間
で変化させる方法、第7図に示すグラフに基づいてRF
出力を320Wから400Wに変化させる方法等をとる
ことが可能である。
In addition, as another specific example of internal stress control, based on the graph shown in FIG.
.. The method of changing the Torr between 5 and 2.5 Torr is based on the graph shown in FIG. 6. The flow rate is 8 to 4 L/min. Based on the graph shown in Figure 7, the RF
It is possible to take a method such as changing the output from 320W to 400W.

以上、実施例にってい説明したが、本発明においては、
この他各種の設計変更が可能であり、第1及び第2の保
護膜はP−SiNの他ケイ素(Si)と窒素(N)を含
む他の膜でもよい。
Although the embodiments have been explained above, in the present invention,
Various other design changes are possible, and the first and second protective films may be P-SiN or other films containing silicon (Si) and nitrogen (N).

また、保護膜の膜厚も上記実施例のものに限られるもの
ではない。
Further, the thickness of the protective film is not limited to that of the above embodiment.

さらに、基板上に形成される金属配線の材料は、アルミ
ニウムに限られず、タングステン.多結晶シリコン等で
もよい。
Furthermore, the material of the metal wiring formed on the substrate is not limited to aluminum, but also tungsten. Polycrystalline silicon or the like may also be used.

また、第1の保護膜の引張り応力は、0〜10”dyn
e/am”程度にし、第2の保護膜の圧縮応力はIO9
〜5 X 1 0 ”dyne/cm”の範囲に設定す
ることが可能である。
Further, the tensile stress of the first protective film is 0 to 10" dyn.
The compressive stress of the second protective film is IO9.
It is possible to set it in the range of ~5×10 “dyne/cm”.

[発明の効果] 以上の説明から明らかなように、本発明に係る半導体装
置にあっては、保護膜を形成してもソリが発生せず、ま
た、保護膜のステップ力バレージを良好にする効果があ
る。
[Effects of the Invention] As is clear from the above description, in the semiconductor device according to the present invention, warping does not occur even when a protective film is formed, and the stepping force coverage of the protective film is improved. effective.

また、第1と第2の保護膜とか相互に応力を緩和するた
め、アスペクト比の高い部分にクラック等の損傷が生ず
るのを防止する効果がある。
Furthermore, since the first and second protective films mutually relieve stress, there is an effect of preventing damage such as cracks from occurring in portions with a high aspect ratio.

さらに、上記したようにソリの発生を防止出来るため、
ピエゾ効等の不都合が生ずるのを防止する効果がある。
Furthermore, as mentioned above, it is possible to prevent warping, so
This has the effect of preventing inconveniences such as piezo effect from occurring.

さらにまた、保護膜と金属配線との接触部あるいはその
近傍に引張り応力か生じないため、ストレスマイグレー
ションに強い半導体装置の作成が達成出来る効果がある
Furthermore, since no tensile stress is generated at or near the contact portion between the protective film and the metal wiring, it is possible to create a semiconductor device that is resistant to stress migration.

この他、金属配線と接する第1の保護膜がケイ素及び窒
素を含む材料で形成されるため、金属配線に腐蝕やボン
ドが発生するのを防止する効果がある。
In addition, since the first protective film in contact with the metal wiring is formed of a material containing silicon and nitrogen, there is an effect of preventing corrosion and bonding from occurring in the metal wiring.

【図面の簡単な説明】[Brief explanation of the drawing]

第l図A及び第l図Bは本発明に係る半導体装置の第1
実施例の製造工程を示す断面図、第2図A〜第2図Cは
同第2実施例の製造工程を示す断面図、第3図A〜第3
図Cは同第3実施例の製造工程を示す断面図、第4図は
プラズマCVDにおける低周波の割合(高周波との)と
形成される膜の内部応力の関係を示すグラフ、第5図は
低周波と高周波を用いたプラズマCVDにおいて反応ガ
ス圧力と形成応力との関係を示すグラフ、第6図はプラ
ズマCVDの電極間間隔を窒素の流mで制御した場合の
形成膜の内部応力との関係を示すグラフ、第7図はRF
出力と内部応力との関係を示すグラフ、第8図はソリ鍬
を示すグラフ、第9図は従来例を示す断面図である。 10・・・シリコン基板、11・・・アルミ配線(金属
配線)、12・・・P−SiN膜(第1の保護@)、1
3・・・P−SiN膜(第2の保護膜)、l4・・・T
ECCS膜。 11     11      11アルミ西C線第1
実旋偵1の工程と示す析面図 第1図B 第2実湖!ダ弓0エオ呈8示tm而図 第2図A (#2突庶/PIIJ ) 第2図C フ゜ラス゛冫CvDて゛低盾「友の書,J8と応力の関
イ糸1ホすク゛ラフ第4図 2.0    2.5    3.0    3.5 
   4.0圧力(T(1)R) 饗b缶周:&と用いkアクスマCVDて反応ガス圧力と
応力との関係ど爪すグラフ第5図 第3図C 出力(W) 出力と応力との関係をポすク′ラフ 第7図 O    TOO   200   300   40
0   500ウエハ厚(um) o−−−アラχ冫シリコン力イトライト’(P−SiN
)X−−− P=SiN/ PSG 第8図 イ建  釆  イダリ 第9図
FIG. 1A and FIG. 1B are a first diagram of a semiconductor device according to the present invention.
2A to 2C are sectional views showing the manufacturing process of the second embodiment, and FIGS. 3A to 3
Figure C is a cross-sectional view showing the manufacturing process of the third embodiment, Figure 4 is a graph showing the relationship between the ratio of low frequency (relative to high frequency) in plasma CVD and the internal stress of the formed film, and Figure 5 is A graph showing the relationship between reaction gas pressure and formation stress in plasma CVD using low and high frequencies. Figure 6 shows the relationship between the internal stress of the formed film when the spacing between electrodes in plasma CVD is controlled by nitrogen flow m. Graph showing the relationship, Figure 7 is RF
FIG. 8 is a graph showing the relationship between output and internal stress, FIG. 8 is a graph showing a sled hoe, and FIG. 9 is a sectional view showing a conventional example. DESCRIPTION OF SYMBOLS 10... Silicon substrate, 11... Aluminum wiring (metal wiring), 12... P-SiN film (first protection @), 1
3...P-SiN film (second protective film), l4...T
ECCS membrane. 11 11 11 Aluminum West C Line 1
Analytical diagram showing the process of Jitsutei 1 Figure 1B Second Jitsutake! Fig. 2 A (#2 ridge/PIIJ) Fig. 2 C Glass ゛ Medical CvD Te゛ Low Shield ``Book of Friends, J8 and Stress Connection Thread 1 Hosuku Ruff No. 4 Figure 2.0 2.5 3.0 3.5
4.0 Pressure (T(1)R) Can circumference: &K Axuma CVD graph showing the relationship between reaction gas pressure and stress Figure 5 Figure 3 C Output (W) Output and stress Figure 7 shows the relationship between O TOO 200 300 40
0 500 wafer thickness (um)
)

Claims (1)

【特許請求の範囲】[Claims] (1)金属配線上に、ケイ素(Si)と窒素(N)を含
む保護膜を形成した半導体装置において、金属配線上に
引張り応力を有するケイ素(Si)と窒素(N)を含む
第1の保護膜を形成し、前記第1の保護膜上に圧縮応力
を有するケイ素(Si)と窒素(N)を含む第2の保護
膜を形成したことを特徴とする半導体装置。
(1) In a semiconductor device in which a protective film containing silicon (Si) and nitrogen (N) is formed on a metal wiring, a first film containing silicon (Si) and nitrogen (N) having tensile stress is formed on the metal wiring. A semiconductor device comprising: a protective film formed thereon; and a second protective film containing silicon (Si) and nitrogen (N) having compressive stress formed on the first protective film.
JP11397989A 1989-05-06 1989-05-06 Semiconductor device Pending JPH02292826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11397989A JPH02292826A (en) 1989-05-06 1989-05-06 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11397989A JPH02292826A (en) 1989-05-06 1989-05-06 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH02292826A true JPH02292826A (en) 1990-12-04

Family

ID=14626011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11397989A Pending JPH02292826A (en) 1989-05-06 1989-05-06 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH02292826A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102494A (en) * 1995-10-09 1997-04-15 Toshiba Corp Protective film for semiconductor device and forming method therefor
EP1364405A1 (en) * 2001-01-30 2003-11-26 M/A-Com, Inc. High voltage semiconductor device
JP2006043813A (en) * 2004-08-04 2006-02-16 Denso Corp Micro-system structure with protective film and manufacturing method thereof
JP2007049115A (en) * 2005-07-13 2007-02-22 Seiko Epson Corp Semiconductor device
JP2007173325A (en) * 2005-12-19 2007-07-05 Mitsumi Electric Co Ltd Manufacturing method of semiconductor device
JP2008300678A (en) * 2007-05-31 2008-12-11 Oki Electric Ind Co Ltd Manufacturing method for semiconductor device, and semiconductor device
JP2009290073A (en) * 2008-05-30 2009-12-10 Renesas Technology Corp Semiconductor device and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS644703A (en) * 1987-06-27 1989-01-09 Shimadzu Corp Diffraction grating and its production
JPS6447032A (en) * 1987-08-18 1989-02-21 Oki Electric Ind Co Ltd Formation of surface protective film for semiconductor device
JPH0284729A (en) * 1988-09-21 1990-03-26 Nec Corp Aluminum wiring

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS644703A (en) * 1987-06-27 1989-01-09 Shimadzu Corp Diffraction grating and its production
JPS6447032A (en) * 1987-08-18 1989-02-21 Oki Electric Ind Co Ltd Formation of surface protective film for semiconductor device
JPH0284729A (en) * 1988-09-21 1990-03-26 Nec Corp Aluminum wiring

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102494A (en) * 1995-10-09 1997-04-15 Toshiba Corp Protective film for semiconductor device and forming method therefor
EP1364405A1 (en) * 2001-01-30 2003-11-26 M/A-Com, Inc. High voltage semiconductor device
EP1364405A4 (en) * 2001-01-30 2008-12-24 Ma Com Inc High voltage semiconductor device
JP2006043813A (en) * 2004-08-04 2006-02-16 Denso Corp Micro-system structure with protective film and manufacturing method thereof
JP2007049115A (en) * 2005-07-13 2007-02-22 Seiko Epson Corp Semiconductor device
JP2007173325A (en) * 2005-12-19 2007-07-05 Mitsumi Electric Co Ltd Manufacturing method of semiconductor device
JP2008300678A (en) * 2007-05-31 2008-12-11 Oki Electric Ind Co Ltd Manufacturing method for semiconductor device, and semiconductor device
JP2009290073A (en) * 2008-05-30 2009-12-10 Renesas Technology Corp Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4361625B2 (en) Semiconductor device and manufacturing method thereof
JPH02292826A (en) Semiconductor device
KR100248572B1 (en) Semiconductor device and method
JPH0157495B2 (en)
JPH0645281A (en) Formation of interconnection, and semiconductor device, and sputtering method and device usable for them
US20020146909A1 (en) Method of smoothing inter-metal dielectric layers in semiconductor devices
JP2716156B2 (en) Method for manufacturing semiconductor device
JPH0745610A (en) Manufacture of semiconductor device
TW413917B (en) Semiconductor device and method of manufacturing the same
JP2001176875A (en) Semiconductor device
JP2606315B2 (en) Method for manufacturing semiconductor device
JP3197315B2 (en) Method for manufacturing semiconductor device
JP3010824B2 (en) Semiconductor device and manufacturing method thereof
JPH0637069A (en) Manufacture of semiconductor device
KR100713896B1 (en) method for forming a inter metal dielectic layer
JPH05335299A (en) Fabrication of semiconductor device
JP3279737B2 (en) Method for manufacturing semiconductor device
US6309963B1 (en) Method for manufacturing semiconductor device
JPH07263553A (en) Production process of semiconductor device
JPH09246379A (en) Semiconductor integrated circuit device and manufacture thereof
JPH07153759A (en) Manufacture of semiconductor device
JP2674654B2 (en) Method for manufacturing semiconductor device
JPH0669038B2 (en) Method for manufacturing semiconductor device
JPH07115132A (en) Manufacture of semiconductor device
JPH08186170A (en) Manufacture of semiconductor device