JPH02292480A - Damper for flap door using viscous fluid and control method for braking force thereof - Google Patents

Damper for flap door using viscous fluid and control method for braking force thereof

Info

Publication number
JPH02292480A
JPH02292480A JP11328189A JP11328189A JPH02292480A JP H02292480 A JPH02292480 A JP H02292480A JP 11328189 A JP11328189 A JP 11328189A JP 11328189 A JP11328189 A JP 11328189A JP H02292480 A JPH02292480 A JP H02292480A
Authority
JP
Japan
Prior art keywords
door
case
spring
movable shaft
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11328189A
Other languages
Japanese (ja)
Other versions
JPH0723660B2 (en
Inventor
Kazuyoshi Oshima
大島 一吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sugatsune Kogyo Co Ltd
Original Assignee
Sugatsune Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sugatsune Kogyo Co Ltd filed Critical Sugatsune Kogyo Co Ltd
Priority to JP1113281A priority Critical patent/JPH0723660B2/en
Publication of JPH02292480A publication Critical patent/JPH02292480A/en
Publication of JPH0723660B2 publication Critical patent/JPH0723660B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Toilet Supplies (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

PURPOSE:To enable a door to be opened and closed smoothly and at a specified speed by a method wherein a moving shaft and a moving member rotatable only in one way are disposed in a case, and the effect of a spring and the effect of a damper are provided. CONSTITUTION:A moving shaft 2 rotatable by a door and the like is disposed in a case 1. A spring one-way clutch 7 is located so that the clutch is engaged and disengaged depending upon the rotation direction of the moving shaft 2, and a moving member 4 is disposed so that it is rotatable only in one way together with the moving shaft 2. Viscous fluid C is located between the case 1 and the moving member 4, and a spring 8 is located in a state that the both end parts thereof are locked to the case 1 and the moving shaft 2. The effect of the spring 8 and a damper effect by the viscous fluid C are provided, a door is smoothly opened and closed, and regulation is effected so that an opening and closing speed is adjusted to a desired specified value.

Description

【発明の詳細な説明】 《産業上の利用分野》 本発明は、ポリイソブチン等の高分子粘性流体、その他
の粘性流体とスプリングとを用い、これらの夫々粘性剪
断抵抗とスプリング力とを利用することによって、抵抗
力が得られるようにし,当該抵抗力により扉の一方向へ
の回動時には、扉荷重トルクに対する緩衝作用、即ち制
動力を発揮させるようにすると共に、扉の他方向への回
動時には、当該スプリングによる作用により、扉を軽く
回動させ得るように構成の粘性流体を用いたフラップ扉
用ダンパーと、上記制動力の制御方法に関する. 《従来の技術》 従来、粘性流体を用いたダンパーとしては、第6図(イ
)(口)に示した通り、ケースa内に、外力により回転
自在とした回転軸bには当該回転軸bと直交状にて所要
数枚の可動ディスクC.c’ ,c  ・・・・・・を
固定し、これらの可動ディスクC,C’ ,C  ・・
・・・・と交互配置であり、かつケースaとの係合によ
り回転軸bの回転には非連動であるが、板厚方向へは変
動自在である所要数枚の固定ディスクd,d’,d”・
・・・・・が配設され、これら可動ディスクC,C’,
C  ・・・・・・と固定ディスクd,d’ ,d”・
・・・・・との板面間に、ケースa内に充填された粘性
流体eを介在させるようにしたものや,図示しないが、
回転軸に可動ディスクを固定することなく,回転軸の回
転には連動するよう係止されるが、その板厚方向へは変
動自在であるようにしたものもhる, 従って、上記両ダンパーは、回転軸bに回転力としての
外力が加えられることにより、該回転軸bと共に回転す
る可動ディスクc,c’・・・・・・と,ケースaに係
止の固定ディスクd,d’・・・・・・との相対運動に
より、両ディスクc,c’・・・・・・, d,d’・
・・・・・間の粘性流体による粘性剪断抵抗を利用して
,当該外力に対する緩衝作用を発揮させ得ることとなる
. 《発明が解決しようとする課題》 しかし、上記各ダンパーにあっては、回転軸bの回転方
向(正転、逆転)において、その抵抗力を可変にしたい
としても,抵抗力の決定要因となる可動ディスクc ,
c’・・・・・・と固定ディスクd,d’・・・・・・
との相対運動時における両ディスク間の粘性流体に.よ
る粘性剪断抵抗は不変であるから、抵抗力、即ち制動力
を回転軸の正逆回転方向によって,夫々変化させること
はできない. 従って、フラップ扉等の開閉時における軸トルク、即ち
扉荷重トルク曲線fは第5図に示す如く余弦(coS)
荷重曲線となるものであるから,この場合上記各ダンパ
ーの回転軸を扉に固定して使用しても、扉の開閉動作、
特に扉の0°位置(閉扉横向状態)から30″位置(開
扉起立状態)へ開く(又は閉じる)動作は非常に重くな
ってしまい、これを是正して,扉が軽く開けるように、
又扉がゆっくりと閉じるように扉の開閉動作、即ち制動
力を開閉方向によって適切に制御しようとすると,極め
て複雑な付帯機構を用いなければならないこととなる. 本発明は、上記従来の技術の有するこのような問題点に
鑑みてなされたもので,請求項(1)にあっては扉荷重
トルク曲線にほぼ近似的であり,かつ当該扉荷重トルク
曲線よりも低い位置にてスプリングの力が与えられ、又
その時の扉荷重トルク曲線とスプリング力の変化を示す
直線との差を,粘性剪断抵抗力でおぎなうようにして、
扉が何れの閉成角度にあるときでも,略一定のスピード
での降下が確保されるようにし、これにより、扉を06
から80″までは開成するときは,スプリング作用によ
り軽く,又9011からO″までの閉成時にはスプリン
グ作用と粘性剪断抵抗力の作用とによりゆるやかにして
、かつ円滑に閉扉動作が行われるようにし,又、扉の開
閉動作を複雑な機構を用いないで一軸にて制御可能なる
粘性流体を用いたフラップ扉用ダンパーを提供しようと
しており更に請求項(2)にあっては,扉の開閉動作,
即ち制動力を所望値に,かつ容易に制御できるようにし
た制御方法を提供しようとするのが,その目的である. 《課題を解決するための手段》 本発明は上記の目的を達成するため請求項(1)ではケ
ース内に、扉等により回転自在とした可動軸と,その回
転方向によって断続自在なるようスプリングワンウェイ
クラッチを介在して可動軸と共に一方向へのみ回転され
るよう可動部材が配設され,上記ケース内の粘性流体が
,当該ケース,可動部材間に配在されていると共に,上
記ケース内にスプリングが、上記ケースと可動軸とに各
端部が掛止された状態にて配設されていることを特徴と
する粘性流体を用いたフラップ扉用ダンパーを提供しよ
うとしている. さらに,請求項(2)にあってはケースには.M等の開
閉により回転自在なるよう支承されている可動軸に、扉
開閉時における扉荷重トルク曲線とほぼ近似的で、かつ
その扉荷重トルク曲線よりも低い位置にて,上記ケース
と可動軸とに各端部を掛止して配設したスプリングの力
を付与させると共に,上記扉荷重トルク曲線とスプリン
グカとの差を,上記ケース内に可動軸と共に一方向への
み回転自在に配設されている可動部材とケース間に配在
されている粘性流体の剪断抵抗力でおぎなうようにする
ことを特徴とする記載の粘性流体を用いたフラップ扉用
ダンパー及びその制動力制御方法を提供するものである
. 《作   用》 外力が可動軸に一方向の回転力として加えられることで
,該可動軸は一方向へ回転されるが,同軸と可動部材と
はスプリングワンウェイクラッチを介在して断続自在と
なるので,当該可動軸の一方向回転時には、可動部材が
回転されず、従って粘性剪断抵抗は生じないが,例えば
、フラップ扉等が00で閉じ位置,90°開き位置とな
るよう取付けられる場合には、扉を閉じ方向八回動すれ
ば、可動軸はスプリングが巻き方向へねじ込まれていく
ので,このねじ込み抵抗が可動軸に働くこととなり,こ
れにより得られたスプリングの復元力が、開扉操作を容
易にすることとなる.一方,可動軸の反対方向の回転に
よりスプリングワンウェイクラッチを介して該可動軸と
可動部材とが接続される為、可動軌と共に可動部材が回
転されることとなって粘性剪断抵抗が生じる.従って、
スプリングの効果とダンパー効果によって扉はゆるやか
に、スムーズに閉じることとなる. 即ち.、扉は,開成時にあって、何れの角度においても
、所望一定のスピードで閉扉し得ることとなる. 又、扉が閉じるθ°付近においては若干速度が遅くなり
,動きとしては理想的な状態となる.更に、スプリング
を,その定数の異なるものと考えることにより、扉開閉
時における動きを様々に変えることも可能となる. 《実 施 例》 以下,本発明の実施例について図面を参照して説明する
. 第1図、第2図に示したように,横向き円筒形状のケー
ス1は、その端末壁1aの中心に軸孔1bが貫通されて
いると共に,その周壁1cにあって他端側である開口部
側の内周に雌螺子部1dが刻設されている. 可動軸2は、上記軸孔1bに回転可能にして、かつ液密
状態となるよう貫通されていると共に,上記ケースlの
雄螺子部1dに液密状態にて螺着してある蓋板3の中心
には,軸承凹所3aが設けてあり,これに,可動軸2の
一端部が嵌合されることで、当該可動軸2が、軸回り方
向へ回転自在にして、上記ケース1の中心線上に軸承さ
れている.上記可動軸2の他端である突出端部には,外
力としての回転力が作用するように,図示しないフラッ
プ扉等の回転中心部が固定されることとなる. 前記蓋板3からは、その内面から円筒部3bが、軸方向
にあって,上記ケース1の長さよりも所要寸法だけ短く
突設させてあり,該円筒部3bはケースl内にあって,
その周壁1cと,上記可動軸2との略中間部と配置され
ている. 更に、上記可動軸2には、そのケース!内にあって,端
末壁1aに内接する外向きフランジ2aが設けてあり,
これによって可動軸2はケース1からの抜け出しが阻止
されている. 円筒形状の可動部材4は、その軸方向の長さが上記ケー
スlの軸方向における有効長さよりも僅かに短く形成さ
れていると共に、その外径は,上記ケースlの内径より
も小さく、その内径は,上記円筒部3bの外径よりも大
きく各々形成されており,当該可動部材4は上記ケース
lに、その周壁ICと上記円筒部3bとの略中間部配置
にて、かつその一端部が上記外向きフランジ2aに回転
自在なるよう外装された状態にて内装されている.そし
て,上記可動部材4の一端部外周と、ケース1における
周壁1c,端末壁1aとの間に0リング5が介在されて
いることにより、該可動部材4の一端部と端末壁la間
は液密状態にシールされ,方、可動部材4と,上記円筒
部3bの先端部との間にも0リング6が介在されている
ことにより、当該部分も液密状態にシールされ、これに
よりケース1内部は,その中心部の室Aと,外周部の室
Bとに画成されている. 上記各0リング5,8は、可動部材4の周方向回転によ
っても移動してしまったり、脱落してしまうことがなく
,当該部分のシール効果を維持できるよう、可動部材4
の一端部外周及び,同部材4の内周と円筒部3bの外周
に各々段差部4a,4b,3c等を設けて嵌着させてあ
る. このようにして蓋板3により閉成され,0リング5,8
にて2室A, Hに画成されているが、そのうちケース
1内部における外周部の室B内には,例えばポリイソブ
チレン等の高分子粘性体とか、ピッチ或いは高粘度の水
ガラス等による粘性流体Cが収容されている. 一方、スプリングワンウェイクラッチ7は、横断面矩形
状,又は横断面円形状のバネ鋼線条をもって軸方向へ密
に巻回す・ることにより,一定の外径を有して上記可動
部材4の内周面と密着するようにして形成されている. 上記スプリングワンウェイクラッチ7は、軸方向へ曲突
した一端7aを,可動軸2の外向きフランジ2aに掛止
して可動部材4内に密着状態に配設され、その他端は何
れの部材とも掛止等されることなくフリーの状態として
ある. 従って、可動軸2が一方向、即ち第2図に示す矢印D方
向へ回転されると、当該一端?aによってスプリングワ
ンウェイクラッチ7が巻き締られて、その外径が縮径さ
れ、その外周面と可動部材4の内周面との密着が、第2
図に示した如く解かれることとなり,これにより可動軸
2と可動部材4との接続が解かれ,逆に可動軸2が上記
回転方向と反対方向,即ち反矢印方向へ回転されること
により,その外径が拡径され、可動部材4の内周面と密
着し、可動軸2と共に可動部材4も回転されるようにな
っている. 即ち、上記スプリングワンウェイクラッチ7は、可動軸
2の回転方向により、該可動軸2と可動部材4相互間の
動力伝達を断または続の状態に切り変える機能をもって
いる. 次に、本発明の重要部材であるスプリング8としての図
示例では,上記ケースlの前記中心部の室A内にあって
,可動軸2に外装されており,コイルスプリングを用い
るようにし,可動軸2に一方向への回転力を付勢する為
と、該可動軸2が反対方向へ回転される際には同軸2に
抵抗力を付与する為に配設される. 即ち,当該コイルスプリングの場合は,軸方向へ曲突し
た一端8aと他端8bが夫々蓋板3と可動軸2の外向き
フランジ2aとに掛止されることにより.ケースl内に
配設されるが、配設に際して,予め巻き方向へある程度
ねじ込んだ状態にて、各端8a,8bを蓋板3、外向き
7ランジ2aに掛止させるようにしてもよく、この場合
には,その復元力で可動軸2が一方向、即ち,第2図の
矢印D方向へ回転されるよう当該可動軸2に一方向への
回転力が付勢されている. ここで、スプリング8として、コイルスプリングでなく
棒状等のトーシ雪ンスプリングを用いようとするときは
、可動軸を中空とし、これに当該トーションスプリング
を内装することができる.上記のダンパーをフラット扉
等に用いる際には,可動軸2を扉に軸着し、ケースlは
扉取付部材側に固定されるが、例えば,扉が水平状態の
θ°にて閉じ位置となり、垂直状態の90°にて開き位
置となるよう取付けられる場合には,可動軸2の回転方
向(図示の矢印方向)へ扉が開かれるように両者は接続
される. そこで、今扉に開成のための外力が与えられると、可動
軸2が第2図の矢印D方向へ回転力され、これによりス
プリングワンウェイクラッチ7が縮径されることとなる
から、可動軸2と可動部材4との接続が断たれ可動軸3
のみが矢印D方向へ回転されるだけである為、可動部材
4は回転せず、この為当然のことながら粘性剪断抵抗力
は作用しない. しかも,この際可動軸2には、スプリング8の復元力が
回転方向へ蓄勢されているから、扉は軽い力で開かれる
こととなる. 又、扉を閉じ方向へ動かしてやることにより、可動軸2
は反矢印方向へ回転され、これにより、スプリングワン
ウェイクラッチ7は拡径されて,可動部材4と密着し,
該可動部材4は可動軸2と共に回転されるから,この場
合には,粘性剪断抵抗が作用する. 又,可動軸2の反矢印方向の回転により,スプリング8
が巻き方向へねじ込まれ、当該ねじ込みによる抵抗力が
可動軸2に対して作用し,この結果扉はゆっくり、円滑
に閉じて行くこととなる. 第3図は他の実施例を示している. ケース1は、その両端部に液密状態にて嵌着してある蓋
板3,9の中心に軸承凹所3aと軸孔1bが設けてある
と共に、該ケースlの一端部近傍に画壁!eが一体に設
けてあることにより,当該ケース1内部は軸方向へ室A
と室Bに画成されている.玉記画壁1eの中心に貫通の
軸孔ifに,中実状の可動部材4が嵌通され、これによ
り可動部材4がケースlの中心線上にあって、軸回り方
向へ回転自在なるよう軸承されていると共に、上記蓋板
3の軸承凹所3aに,当該可動部材4の一端部が回転可
能なるよう嵌合されている. 一方、蓋板9の軸孔1bに可動軸2が挿通されることに
よりんケースlの中心線上にあって、軸回り方向へ回転
自在に支持されていると共に、該可動軸2の内端が,上
記可動部材4にあって、ケース1の室A内へ突出されて
いる他端部の端面中心に凹設の軸承凹所4cに、回転自
在なるよう嵌合されており,これにより、該可動軸2と
可動部材4とは,ケースl中心である軸線状にあって支
承されている. スプリングワンウェイクラッチ7は、上記可動部材4に
あって、ケース1の室A内へ突出している部分の外周に
,断続自在となるよう密着状態にて配設され,その一端
が上記可動軸2に掛止されている. 即ち,上記スプリングワンウェイクラッチ7は、可動軸
2が図示の矢印D方向へ回転されることで,その巻き方
向と反対方向へ一端7aが回動されることにより,拡径
状態となって可動部材4との密着が解かれ,可動軸2と
可動部材4との動力伝達が断たれ、又可動軸2が反矢印
方向へ回転されることで、縮径され、これにより可動部
材4の外周へ密着されるから,可動軸2と共に反矢印方
向へ回転されるよう機能する. スプリング8の一端8aは、前記実施例では蓋板3に掛
止されていたものが,本実施例では上記画壁1eに掛止
させてある. ケース1の他方の室B内には、一方向(図示の反矢印方
向)へのみ回転自在である上記可動部材4と共に回転可
能なるよう,当該可動部材4と直交状にて係設され、か
つ板厚方向へは変動自在である所要数枚の可動ディスク
10.10゜・・・・・・と,これらの可動ディスク1
0.10’と交互配置にて.ケースlとの係合により可
動部材礁の回転に非連動であるが,板厚方向へは変動自
在である所要数枚の固定ディスク11・・・・・・とが
配設されており,さらにこれらの可動ディスク10.1
0”・・・・・・と固定ディスク11・・・・・・の板
面間に,ケースlの室B内に充填された粘性流体Cを介
在させてある.従って,可動軸2と共に可動部材4が反
矢印方向へ回転されることにより,該可動部材4と共に
回転する可動ディスクto,to゜と固定ディスク11
・・・・・・とが相対運動したときの両ディスク10.
10’,1l間の粘性流体による粘性剪断抵抗が活用さ
れて,可動軸2、つまり扉による外力に対する制動作用
が発揮され得ることとなる. 第4図は,当該ダンパーの制動力を一軸で制御する方法
の扉荷重トルク曲線fに対する制動領域を示すグラフで
ある. この制動力制御方法にあっては、扉荷重トルク曲線fと
ほぼ近似的となり,かつその扉荷重トルク曲線fよりも
低い位置にあってスプリング8による力を可動軸2に与
えることで、スプリング制御領域旦を得、又、その時の
扉荷重トルク曲線fとスプリングカ直線gとの差を、前
記粘性剪断抵抗でおぎなラこととなる粘性剪断抵抗制御
領域Fを得るようにするのである. このようにすることにより,1kは閉成時にあって何れ
の閉成角度においても可成りの一定スピードを確保した
状態で90°から0″へ向け降下し得ることとなり,さ
らに扉がθ°付近まで閉成して来たときは第4図の如く
若干スピードがおそくなり、脚の動作としては理想的な
状態となる.《発明の効果》 本発明は,以上説明したように構成されているので、扉
が水平状態にある06で閉じ位置、又は開き位置となり
,垂直状態にある80°で開き位置、又は閉じ位置とな
るよう扉取付部材に増付けられている扉が06位置から
90°位置へ回動される際に、当該ダンパーの可動軸が
所定方向へ回転されるよう該可動軸2を扉に取付けるこ
とにより,復元力が蓄勢されているスプリング8の降下
により扉を0″位置から90″位置まで軽く回動するこ
とができる. 又,扉を80°位置から06位置へ倒す時は、スプリン
グ8が、その巻き方向へねじ込みをされる抵抗と、粘性
剪断抵抗とにより扉をゆっくり、スムーズに倒すことが
できる. そして、ダンパーの制動力制御方法として,前記方法を
採用することによって,扉を,その開閉角度の範囲内に
おいて、何れの角度においても所望の定速度となるよう
開閉を確保できるだけでな<.o″付近においては,僅
かに減速され、扉の開閉動作としては理想的な状態にコ
ントロールすることができ,又,フラップ扉等を、複雑
な機構によることなく、極めて簡単な一軸にて制御する
ことができる.
[Detailed Description of the Invention] <<Industrial Application Field>> The present invention uses a polymeric viscous fluid such as polyisobutyne, other viscous fluid, and a spring, and utilizes the viscous shear resistance and spring force of each of them. When the door rotates in one direction, this resistance force exerts a buffering effect against the door load torque, that is, a braking force, and when the door rotates in the other direction. In some cases, the present invention relates to a damper for a flap door using a viscous fluid configured to allow the door to be slightly rotated by the action of the spring, and a method for controlling the braking force. <<Prior Art>> Conventionally, as a damper using a viscous fluid, as shown in FIG. A required number of movable disks C. c', c... are fixed, and these movable disks C, C', C...
A required number of fixed disks d, d' are arranged alternately with . ,d"・
... are arranged, and these movable disks C, C',
C... and fixed disks d, d', d"・
There are cases in which a viscous fluid e filled in a case a is interposed between the plate surfaces of the
There is also a movable disk that is not fixed to the rotating shaft, but is locked in conjunction with the rotation of the rotating shaft, but is movable in the thickness direction. Therefore, both of the above dampers are , by applying an external force as a rotational force to the rotating shaft b, the movable disks c, c', etc. rotate together with the rotating shaft b, and the fixed disks d, d', . Due to the relative movement with..., both disks c, c'..., d, d'...
...By utilizing the viscous shear resistance caused by the viscous fluid between the two, it is possible to exert a buffering effect against the external force. <<Problems to be Solved by the Invention>> However, in each of the above dampers, even if it is desired to make the resistance force variable in the direction of rotation of the rotating shaft b (forward rotation, reverse rotation), the determining factor of the resistance force is Movable disk c,
c'...... and fixed disks d, d'...
The viscous fluid between the two disks during relative motion with the disk. Since the viscous shear resistance is unchanged, the resistance force, that is, the braking force, cannot be changed depending on the forward or reverse rotation direction of the rotating shaft. Therefore, the shaft torque when opening and closing a flap door, etc., that is, the door load torque curve f, is expressed as a cosine (coS) as shown in Fig. 5.
In this case, even if the rotation axis of each damper is fixed to the door, the opening/closing operation of the door,
In particular, the operation of opening (or closing) the door from the 0° position (door closed horizontally) to the 30'' position (door open erect) becomes extremely heavy.
In addition, if the door opening/closing operation, that is, the braking force, is to be appropriately controlled by the opening/closing direction so that the door closes slowly, an extremely complicated auxiliary mechanism must be used. The present invention has been made in view of the problems of the above-mentioned conventional technology, and in claim (1), the door load torque curve is approximately approximate to the door load torque curve, and the door load torque curve is The spring force is applied at a low position, and the difference between the door load torque curve at that time and the straight line showing the change in spring force is compensated for by the viscous shear resistance force.
This ensures that the door descends at a substantially constant speed no matter what closing angle the door is at.
When opening from 9011 to 80'', the door is opened lightly by spring action, and when closing from 9011 to 0'', it is made gentle by spring action and the action of viscous shearing resistance, so that the door closes smoothly. In addition, it is an attempt to provide a damper for a flap door using viscous fluid that can control the opening/closing operation of the door in a single axis without using a complicated mechanism. ,
In other words, the purpose is to provide a control method that allows braking force to be easily controlled to a desired value. <<Means for Solving the Problems>> In order to achieve the above object, the present invention in claim (1) includes a movable shaft rotatable by a door etc. in the case, and a one-way spring so as to be disconnectable depending on the direction of rotation of the movable shaft. A movable member is arranged so as to be rotated in only one direction together with the movable shaft via a clutch, and the viscous fluid in the case is distributed between the case and the movable member, and a spring is provided in the case. attempts to provide a flap door damper using viscous fluid, characterized in that each end is hooked to the case and the movable shaft. Furthermore, in claim (2), the case. The case and the movable shaft are connected to the movable shaft, which is supported so as to be rotatable when opening and closing M, etc., at a position that is approximately approximate to the door load torque curve when the door is opened and closed, and is lower than the door load torque curve. At the same time, the difference between the above-mentioned door load torque curve and the spring force is applied to the force of a spring disposed by hooking each end to the spring force, and the difference between the above-mentioned door load torque curve and the spring force is applied to a spring force disposed within the above-mentioned case along with a movable shaft, which is disposed rotatably in only one direction. To provide a damper for a flap door using a viscous fluid as described above, and a method for controlling the braking force thereof, characterized in that the shearing resistance force of the viscous fluid disposed between a movable member and a case is used. It is. <<Operation>> When an external force is applied to the movable shaft as a rotational force in one direction, the movable shaft is rotated in one direction, but since the coaxial shaft and the movable member can be disconnected and disconnected via a spring one-way clutch. , When the movable shaft rotates in one direction, the movable member is not rotated and therefore no viscous shear resistance occurs. If the door is moved eight times in the closing direction, the movable shaft will be screwed in the direction in which the spring is wound, so this screwing resistance will act on the movable shaft, and the resulting restoring force of the spring will prevent the door from opening. This will make it easier. On the other hand, as the movable shaft rotates in the opposite direction, the movable shaft and the movable member are connected via the spring one-way clutch, so the movable member rotates together with the movable track, causing viscous shear resistance. Therefore,
The spring and damper effects allow the door to close gently and smoothly. That is. , the door can be closed at a desired constant speed at any angle when opened. Also, around θ° when the door closes, the speed becomes slightly slower, which is the ideal state for movement. Furthermore, by considering springs as having different constants, it is possible to vary the movement when opening and closing the door. <<Example>> Hereinafter, an example of the present invention will be explained with reference to the drawings. As shown in FIGS. 1 and 2, the horizontally cylindrical case 1 has a shaft hole 1b passing through the center of the end wall 1a, and an opening at the other end of the peripheral wall 1c. A female screw portion 1d is carved on the inner periphery of the side. The movable shaft 2 is rotatably penetrated into the shaft hole 1b in a liquid-tight manner, and a cover plate 3 is screwed into the male screw portion 1d of the case l in a liquid-tight manner. A bearing recess 3a is provided in the center of the case 1, and by fitting one end of the movable shaft 2 into this, the movable shaft 2 is made rotatable in the direction around the axis. It is supported on the center line. A rotational center such as a flap door (not shown) is fixed to the protruding end, which is the other end of the movable shaft 2, so that a rotational force as an external force acts. A cylindrical portion 3b is provided from the inner surface of the cover plate 3 in the axial direction and protrudes by a required dimension shorter than the length of the case 1, and the cylindrical portion 3b is located inside the case l.
The movable shaft 2 is located approximately midway between the peripheral wall 1c and the movable shaft 2. Furthermore, the movable shaft 2 has a case! An outward flange 2a is provided inside and inscribed in the end wall 1a,
This prevents the movable shaft 2 from coming out of the case 1. The cylindrical movable member 4 is formed so that its axial length is slightly shorter than the effective length of the case l in the axial direction, and its outer diameter is smaller than the inner diameter of the case l. The inner diameter is larger than the outer diameter of the cylindrical portion 3b, and the movable member 4 is disposed in the case 1 at an approximately intermediate portion between the peripheral wall IC and the cylindrical portion 3b, and at one end thereof. is installed inside the outward facing flange 2a in a rotatable manner. Since the O-ring 5 is interposed between the outer periphery of one end of the movable member 4 and the peripheral wall 1c and end wall 1a of the case 1, the liquid is kept between the one end of the movable member 4 and the end wall la. On the other hand, since the O-ring 6 is also interposed between the movable member 4 and the tip of the cylindrical part 3b, this part is also sealed in a liquid-tight state, so that the case 1 The interior is divided into chamber A at the center and chamber B at the outer periphery. Each of the O-rings 5 and 8 is designed to prevent the movable member 4 from moving or falling off even when the movable member 4 rotates in the circumferential direction, and to maintain the sealing effect of the relevant portion.
Step portions 4a, 4b, 3c, etc. are provided on the outer periphery of one end of the member 4, the inner periphery of the member 4, and the outer periphery of the cylindrical portion 3b, respectively, for fitting. In this way, the cover plate 3 closes the O-rings 5 and 8.
It is divided into two chambers A and H, of which chamber B at the outer periphery inside case 1 contains a viscous polymer material such as polyisobutylene, pitch or high viscosity water glass, etc. Contains fluid C. On the other hand, the spring one-way clutch 7 has a fixed outer diameter by tightly winding a spring steel wire having a rectangular cross section or a circular cross section in the axial direction. It is formed so that it is in close contact with the surrounding surface. The spring one-way clutch 7 is disposed in close contact with the movable member 4, with one end 7a bent in the axial direction being hooked to the outward flange 2a of the movable shaft 2, and the other end being hooked to any member. It is in a free state without being stopped. Therefore, when the movable shaft 2 is rotated in one direction, that is, in the direction of arrow D shown in FIG. The spring one-way clutch 7 is wound and tightened by a, its outer diameter is reduced, and the close contact between the outer circumferential surface and the inner circumferential surface of the movable member 4 is increased by the second
As shown in the figure, the connection between the movable shaft 2 and the movable member 4 is released, and conversely, the movable shaft 2 is rotated in the opposite direction to the above rotation direction, that is, in the opposite direction of the arrow. Its outer diameter is enlarged and it comes into close contact with the inner peripheral surface of the movable member 4, so that the movable member 4 is rotated together with the movable shaft 2. That is, the spring one-way clutch 7 has a function of switching the power transmission between the movable shaft 2 and the movable member 4 to a disconnected or engaged state depending on the direction of rotation of the movable shaft 2. Next, in the illustrated example of the spring 8, which is an important component of the present invention, it is located in the chamber A at the center of the case L, is externally mounted on the movable shaft 2, uses a coil spring, and is movable. It is provided to apply a rotational force to the shaft 2 in one direction, and to apply a resistance force to the same shaft 2 when the movable shaft 2 is rotated in the opposite direction. That is, in the case of the coil spring, one end 8a and the other end 8b, which are curved in the axial direction, are hooked to the cover plate 3 and the outward flange 2a of the movable shaft 2, respectively. Although it is arranged in the case l, when it is arranged, it may be screwed in advance to some extent in the winding direction, and each end 8a, 8b is hooked to the cover plate 3, the outward 7 flange 2a, In this case, a rotational force in one direction is applied to the movable shaft 2 so that the restoring force rotates the movable shaft 2 in one direction, that is, in the direction of arrow D in FIG. Here, if a torsion spring in the form of a rod or the like is to be used instead of a coil spring as the spring 8, the movable shaft can be made hollow and the torsion spring can be installed inside the movable shaft. When the above damper is used for a flat door, etc., the movable shaft 2 is attached to the door, and the case l is fixed to the door mounting member. When the door is installed in the open position at 90° vertically, the two are connected so that the door opens in the direction of rotation of the movable shaft 2 (in the direction of the arrow in the figure). Therefore, when an external force is applied to the door to open the door, the movable shaft 2 is rotated in the direction of arrow D in FIG. 2, and the diameter of the spring one-way clutch 7 is reduced. The connection between the movable member 4 and the movable shaft 3 is cut off.
Since only the movable member 4 is rotated in the direction of the arrow D, the movable member 4 does not rotate, and therefore, naturally, no viscous shearing resistance is applied. Moreover, at this time, the restoring force of the spring 8 is stored in the movable shaft 2 in the direction of rotation, so that the door can be opened with a light force. Also, by moving the door in the closing direction, the movable shaft 2
is rotated in the opposite direction of the arrow, thereby expanding the diameter of the spring one-way clutch 7 and bringing it into close contact with the movable member 4.
Since the movable member 4 is rotated together with the movable shaft 2, viscous shear resistance acts in this case. Also, due to the rotation of the movable shaft 2 in the opposite direction of the arrow, the spring 8
is screwed in the winding direction, and the resistance force due to the screwing acts on the movable shaft 2, and as a result, the door closes slowly and smoothly. Figure 3 shows another embodiment. The case 1 has a bearing recess 3a and a shaft hole 1b in the center of lid plates 3 and 9 which are fitted in a liquid-tight manner at both ends thereof, and a partition wall near one end of the case 1. ! Since e is provided integrally, the inside of the case 1 has a chamber A in the axial direction.
and room B. A solid movable member 4 is fitted into a shaft hole if penetrating through the center of the jade wall 1e, and a shaft support is installed so that the movable member 4 is on the center line of the case l and can freely rotate in the direction around the axis. At the same time, one end of the movable member 4 is rotatably fitted into the bearing recess 3a of the cover plate 3. On the other hand, the movable shaft 2 is inserted into the shaft hole 1b of the cover plate 9, so that it is on the center line of the case l and is supported rotatably in the direction around the axis, and the inner end of the movable shaft 2 is , in the movable member 4, is rotatably fitted into a bearing recess 4c formed in the center of the end face of the other end protruding into the chamber A of the case 1. The movable shaft 2 and the movable member 4 are supported along an axial line that is the center of the case l. The spring one-way clutch 7 is disposed in close contact with the outer periphery of the portion of the movable member 4 that protrudes into the chamber A of the case 1 so that it can be disconnected and disconnected freely, and one end thereof is connected to the movable shaft 2. It is hung. That is, when the movable shaft 2 is rotated in the direction of the arrow D shown in the figure, the spring one-way clutch 7 is expanded in diameter and the movable member is rotated in the opposite direction to the winding direction. 4 is released, the power transmission between the movable shaft 2 and the movable member 4 is cut off, and the movable shaft 2 is rotated in the opposite direction of the arrow, thereby reducing the diameter. Since they are in close contact with each other, they function to rotate together with the movable shaft 2 in the opposite direction of the arrow. One end 8a of the spring 8 was hooked to the cover plate 3 in the previous embodiment, but in this embodiment, it is hooked to the picture wall 1e. In the other chamber B of the case 1, the movable member 4 is suspended in a state perpendicular to the movable member 4 so as to be rotatable together with the movable member 4, which is rotatable only in one direction (the direction opposite to the arrow shown in the figure). A required number of movable disks 10.10°, which are movable in the thickness direction, and these movable disks 1
0.10' and alternate arrangement. A required number of fixed disks 11 are disposed that are not interlocked with the rotation of the movable member reef by engagement with the case l, but are movable in the thickness direction. These movable discs 10.1
A viscous fluid C filled in the chamber B of the case l is interposed between the plate surfaces of the fixed disk 11 and the fixed disk 11. When the member 4 is rotated in the direction opposite to the arrow, the movable disks to, to° and the fixed disk 11 rotate together with the movable member 4.
. . . Both disks 10 when they move relative to each other.
By utilizing the viscous shear resistance caused by the viscous fluid between the movable shaft 2 and the door 10', the movable shaft 2, that is, the door can exert a braking action against the external force. FIG. 4 is a graph showing the braking area for the door load torque curve f in the method of controlling the braking force of the damper in one axis. In this braking force control method, the force of the spring 8 is applied to the movable shaft 2 at a position that is approximately approximate to the door load torque curve f and is lower than the door load torque curve f, thereby controlling the spring. In addition, the difference between the door load torque curve f and the spring force line g at that time is made to obtain the viscous shear resistance control region F, which is affected by the viscous shear resistance. By doing this, 1k can descend from 90° toward 0'' while maintaining a fairly constant speed at any closing angle, and furthermore, when the door is closed near θ° When the legs are closed, the speed becomes slightly slower as shown in Figure 4, which is the ideal state for leg motion. <<Effects of the Invention>> The present invention is constructed as described above. Therefore, the door is in the closed or open position at 06 when the door is in the horizontal position, and the open or closed position is at 80° when it is in the vertical position. By attaching the movable shaft 2 of the damper to the door so that the movable shaft of the damper is rotated in a predetermined direction when the damper is rotated to the position, the spring 8 in which the restoring force is stored is lowered to move the door to 0''. The door can be rotated easily from the 90" position to the 90" position. Also, when the door is tilted from the 80° position to the 06 position, the door is held in place by the resistance of the spring 8 being screwed in its winding direction and the viscous shear resistance. By adopting the method described above to control the damper's braking force, the door can be moved at a desired constant speed at any angle within the range of its opening/closing angle. Not only can opening/closing be ensured, but the speed is slightly decelerated near <.o'', making it possible to control the opening/closing operation of the door in an ideal state. , it can be controlled with an extremely simple single axis.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る粘性流体を用いたフラップ扉用ダ
ンパーの実施例を示す縦断正面図、第2図は同実施例に
おいて、可動軸を一方向へ回転した状態を示す縦断正面
図、第3図は同ダンパーの他の実施例を示す縦断正面図
,第4図は扉荷重トルク曲線と,制動力制御方法におけ
るスプリング制御領城、粘性剪断抵抗制御領城を示すグ
ラフ,第5図はフラップ扉の扉荷重トルク曲線を示すグ
ラフ、第6図(イ)(口)は,粘性流体を用いたダンパ
ーの従来例を示す縦断正面図と横断平面図!ある. l・・・・・・ケース 2・・・・・・可動軸 4・・・・・・可動部材 7・・・・・・スプリングワンウェイクラッチ8・・・
・・・スプリング C・・・・・・粘性流体 117  周 第211!!! 代理人 弁理士 斎 藤 義 雄 O+ qo’ 第 b 図 (イ〕
Fig. 1 is a longitudinal sectional front view showing an embodiment of a flap door damper using viscous fluid according to the present invention, and Fig. 2 is a longitudinal sectional front view showing the same embodiment with the movable shaft rotated in one direction. Fig. 3 is a longitudinal sectional front view showing another embodiment of the same damper, Fig. 4 is a graph showing the door load torque curve, spring control region and viscous shear resistance control region in the braking force control method, and Fig. 5 Figure 6 is a graph showing the door load torque curve of a flap door, and Figure 6 (a) is a vertical front view and a cross-sectional plan view showing a conventional example of a damper using viscous fluid! be. l...Case 2...Movable shaft 4...Movable member 7...Spring one-way clutch 8...
... Spring C ... Viscous fluid 117 Round 211! ! ! Agent Patent Attorney Yoshio Saifuji O+ qo' Figure b (A)

Claims (2)

【特許請求の範囲】[Claims] (1)ケース内に、扉等により回転自在とした可動軸と
、その回転方向によって断続自在なるようスプリングワ
ンウェイクラッチを介在して可動軸と共に一方向へのみ
回転されるよう可動部材が配設され、上記ケース内の粘
性流体が、当該ケース、可動部材間に配在されていると
共に、上記ケース内にスプリングが、上記ケースと可動
軸とに各端部が掛止された状態にて配設されていること
を特徴とする粘性流体を用いたフラップ扉用ダンパー。
(1) A movable shaft that can be freely rotated by a door, etc. is disposed inside the case, and a movable member that can be rotated in only one direction together with the movable shaft is interposed with a spring one-way clutch so that it can be disconnected or disconnected depending on the direction of rotation. , the viscous fluid in the case is disposed between the case and the movable member, and a spring is disposed in the case with each end hooked to the case and the movable shaft. A damper for flap doors using viscous fluid.
(2)ケースには、扉等の開閉により回転自在なるよう
支承されている可動軸に、扉開閉時における扉荷重トル
ク曲線とほぼ近似的で、かつその扉荷重トルク曲線より
も低い位置にて、上記ケースと可動軸とに各端部を掛止
して配設したスプリングの力を付与させると共に、上記
扉荷重トルク曲線とスプリング力との差を、上記ケース
内に可動軸と共に一方向へのみ回転自在に配設されてい
る可動部材とケース間に配在されている粘性流体の剪断
抵抗力でおぎなうようにすることを特徴とする粘性流体
を用いたフラップ扉用ダンパー及びその制動力制御方法
(2) The case has a movable shaft that is supported so that it can rotate when the door is opened and closed, at a position that is approximately approximate to the door load torque curve and lower than the door load torque curve when the door is opened and closed. , the force of a spring is applied to the case and the movable shaft by hooking each end thereof, and the difference between the door load torque curve and the spring force is applied to the case and the movable shaft in one direction together with the movable shaft. A damper for a flap door using a viscous fluid, and its braking force control, characterized in that the shearing resistance of the viscous fluid is applied between a movable member rotatably arranged and a case. Method.
JP1113281A 1989-05-02 1989-05-02 Damper for flap door using viscous fluid Expired - Fee Related JPH0723660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1113281A JPH0723660B2 (en) 1989-05-02 1989-05-02 Damper for flap door using viscous fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1113281A JPH0723660B2 (en) 1989-05-02 1989-05-02 Damper for flap door using viscous fluid

Publications (2)

Publication Number Publication Date
JPH02292480A true JPH02292480A (en) 1990-12-03
JPH0723660B2 JPH0723660B2 (en) 1995-03-15

Family

ID=14608203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1113281A Expired - Fee Related JPH0723660B2 (en) 1989-05-02 1989-05-02 Damper for flap door using viscous fluid

Country Status (1)

Country Link
JP (1) JPH0723660B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6405410B1 (en) 1999-06-17 2002-06-18 Nishikawa Kasei Co., Ltd. Retractable assist grip and mounting method thereof
EP1331343A2 (en) * 2002-01-25 2003-07-30 Illinois Tool Works Inc. Damper apparatus
CN103485640A (en) * 2013-10-08 2014-01-01 金烈水 Rotating push damper
JP2019088721A (en) * 2017-11-17 2019-06-13 アイシン精機株式会社 Toilet seat device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5886693B2 (en) * 2012-06-07 2016-03-16 オイレス工業株式会社 Slide core guide unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832874U (en) * 1981-08-27 1983-03-03 オイレス工業株式会社 Door check using viscous shear resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832874U (en) * 1981-08-27 1983-03-03 オイレス工業株式会社 Door check using viscous shear resistance

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6405410B1 (en) 1999-06-17 2002-06-18 Nishikawa Kasei Co., Ltd. Retractable assist grip and mounting method thereof
US6477739B2 (en) 1999-06-17 2002-11-12 Nishikawa Kasei Co., Ltd. Retractable assist grip and mounting method thereof
US6526644B2 (en) 1999-06-17 2003-03-04 Nishikawa Kasei Co., Ltd. Retractable assist grip and mounting method thereof
EP1331343A2 (en) * 2002-01-25 2003-07-30 Illinois Tool Works Inc. Damper apparatus
EP1331343A3 (en) * 2002-01-25 2004-06-30 Illinois Tool Works Inc. Damper apparatus
US6922869B2 (en) 2002-01-25 2005-08-02 Illinois Tool Works Inc. Damper apparatus
CN103485640A (en) * 2013-10-08 2014-01-01 金烈水 Rotating push damper
JP2019088721A (en) * 2017-11-17 2019-06-13 アイシン精機株式会社 Toilet seat device

Also Published As

Publication number Publication date
JPH0723660B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
JPH0678703B2 (en) Damper for flap door using viscous fluid
US5231734A (en) Friction hinge assembly
US5031270A (en) Friction hinge
US9725940B2 (en) Door hinge closing mechanism
US20060131111A1 (en) Braking apparatus for closure members
JPH02292480A (en) Damper for flap door using viscous fluid and control method for braking force thereof
JP4150384B2 (en) Self-closing sliding door free stop mechanism
JPH0341919A (en) Control method for damping force of hinge of stool seat or the like
JPH0678705B2 (en) Damper for door etc.
KR100329629B1 (en) Fluid frictional resistance damper device for door closer
JP3512879B2 (en) Damper device for door closer with temperature compensation mechanism
JP3273705B2 (en) Damper device for door closer with temperature compensation mechanism
JPS6367437A (en) Speed regulating mechanism
JPS6236940Y2 (en)
JPH02292481A (en) Damper for flap door using viscous fluid and control method braking force thereof
JPH0678704B2 (en) Damper for door etc.
JPS62270837A (en) Rotary damper
JPH03125773A (en) Hinge
JPH03172482A (en) Rotary damper
JPH0546431B2 (en)
JPH01198983A (en) Hinge device
JPH0239028Y2 (en)
JPH08200407A (en) Fluid type brake device and gate using the same
JPH0461218B2 (en)
JPH02178480A (en) Opening/closing device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080315

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080315

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees