JPH02291952A - Corrosion monitoring device for metal and electric apparatus provided with said device - Google Patents

Corrosion monitoring device for metal and electric apparatus provided with said device

Info

Publication number
JPH02291952A
JPH02291952A JP1112870A JP11287089A JPH02291952A JP H02291952 A JPH02291952 A JP H02291952A JP 1112870 A JP1112870 A JP 1112870A JP 11287089 A JP11287089 A JP 11287089A JP H02291952 A JPH02291952 A JP H02291952A
Authority
JP
Japan
Prior art keywords
metal
electrode
electrodes
corrosion
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1112870A
Other languages
Japanese (ja)
Other versions
JPH0786496B2 (en
Inventor
Shiro Kobayashi
史朗 小林
Kazumi Fujii
和美 藤井
Emiko Murofushi
室伏 恵美子
Masahiko Ito
雅彦 伊藤
Masakiyo Izumitani
泉谷 雅清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1112870A priority Critical patent/JPH0786496B2/en
Publication of JPH02291952A publication Critical patent/JPH02291952A/en
Publication of JPH0786496B2 publication Critical patent/JPH0786496B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to measure the corrosion of metallic material, especially a metal thin film in atmosphere, highly sensitively and highly accurately by setting the ratio L/P between the facing length L of electrodes and the gap P between the electrodes at 10<3> or more, and providing a means for detecting the impedance value between the electrodes. CONSTITUTION:A main body 1 of an electronic device is housed in a casing 2 having an air intake port 3 and an air discharge port 4. An electrode element 5 for detecting the corrosion of the constituent metal of the electronic device is provided in the casing 2. The electrode element 5 has a pair of electrodes 8 and 8' which are constituted of a metal having the same composition as that of a metal whose corrosion is monitored on an insulating layer. The ratio L/P between the facing length L of the electrodes 8 and 8' and the gap P between the electrodes is set at 10<3> or more. Two AC voltages at a high frequency and a low frequency are applied to the electrodes 8 and 8' from an AC-voltage applying device 6. The impedance value between the electrodes at each frequency is measured with an impedance measuring device 7. In this way, the resistance of a water film formed on the electrode element 5 and the corrosion speed of the metal under test on the electrode element 5 can be directly measured continuously.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、大気中の金属材料の腐食、特に電子装置等に
使用されている金属の腐食状況を監視する腐食監視装置
,並びに該腐食監視装置を備えた装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a corrosion monitoring device for monitoring the corrosion of metal materials in the atmosphere, particularly the corrosion status of metals used in electronic devices, etc. Relating to a device comprising a device.

〔従来の技術〕[Conventional technology]

電子計算機,半導体装置,磁気記録装置等の電子装置あ
るいは空調装置には、配線や僧号記録のための材料とし
て様々な金属材料が用いられている。
BACKGROUND OF THE INVENTION Various metal materials are used for wiring and recording of monk names in electronic devices such as electronic computers, semiconductor devices, and magnetic recording devices, as well as air conditioning devices.

しかし、こうした装置は、様々な環境で使用される。特
に、大気中で使用される場合、大気中の水分,So,,
H,S等の腐食性ガス、あるいはNaCQ等の腐食性物
質の作用によって、配線や電極等に用いられている金属
が腐食され、それが原因となって断線や制御不良等の事
故が発生する。
However, such devices are used in a variety of environments. In particular, when used in the atmosphere, atmospheric moisture, So,...
The metals used for wiring and electrodes are corroded by the action of corrosive gases such as H and S, or corrosive substances such as NaCQ, which causes accidents such as disconnections and control failures. .

こうした金属の腐食に基づく装置の事故を未然に防止す
る上から、これら金属の大気腐食状況を監視する必要が
ある。
In order to prevent equipment accidents caused by the corrosion of these metals, it is necessary to monitor the atmospheric corrosion of these metals.

金属材料の大気腐食状況を連続的に監視するものとして
は、同一金属板(特開昭63−83659号)あるいは
異種金属板〔コロージョンサイエンス(Corrosi
on Science),第20巻,第853〜872
頁(1 9 8 0年)〕を絶縁板を介して積層した金
属板積層方式がある。また、金属膜電極を0.2mm程
度の絶縁層を介して対向〔腐食防食187,第247〜
250頁あるいはジャーナルオブエレクトロケミカルソ
サエテイ(J. of[E1ectrochem. S
oc. )第20巻,第1354〜1358頁,(19
88年)〕させた金凡膜方式がある。
For continuous monitoring of the atmospheric corrosion status of metal materials, the same metal plate (Japanese Patent Application Laid-Open No. 63-83659) or different metal plates [Corrosion Science
on Science), Volume 20, Nos. 853-872
(1980)] is laminated with an insulating plate interposed therebetween. In addition, metal film electrodes were placed opposite each other with an insulating layer of about 0.2 mm in between [Corrosion Prevention 187, No. 247~
250 pages or Journal of Electrochemical Society (J. of [Electrochem.
oc. ) Volume 20, pp. 1354-1358, (19
In 1988), there is the Kinbon Mei method.

前記の方法は、供試金属によって形成した電極の腐食抵
抗を測定するか、あるいは電極間を流れる腐食電流を電
気化学的に測定する方法である。
The above-mentioned method is a method of measuring the corrosion resistance of an electrode formed of a test metal, or electrochemically measuring a corrosion current flowing between electrodes.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

大気中における金属の腐食は、大気中の水分が金屑表面
に吸着されて薄い水膜を形成し,それにSO,,H,S
やNaCQ等の腐食性種が溶解することによって起こる
Corrosion of metals in the atmosphere occurs when moisture in the atmosphere is adsorbed on the surface of the metal scrap, forming a thin water film, and then SO, H, S
This is caused by the dissolution of corrosive species such as NaCQ and NaCQ.

しかし金属表面上の水膜は、その厚さが10〜100単
分子層と極めて薄く、腐食速度を測定するために電極を
構成してその電気抵抗を測定しようとしても電気抵抗が
極めて大いために、正確な測定ができない。
However, the water film on the metal surface is extremely thin, with a thickness of 10 to 100 monolayers, and even if we try to construct an electrode to measure the electrical resistance to measure the corrosion rate, the electrical resistance is extremely large. , accurate measurements cannot be made.

こうした抵抗を下げる手段として、測定用電極の水の吸
着を助けるために,電極上に不活性な微粒子を堆積させ
たり(特開昭63−83659号)、電解貿を塗布した
りする工夫がなされている。
As a means of lowering this resistance, devises have been made to deposit inert fine particles on the electrode (Japanese Unexamined Patent Publication No. 83659/1983) or to coat the electrode with an electrolytic coating in order to help the measurement electrode absorb water. ing.

しかし、こうした方法では、金属の腐食速度を自然状態
で測定することが鴛しく、また、測定環境が海岸地域に
限られる等の問題があった.本発明の目的は、金属材料
、特に大気中での金属薄膜の腐食を、どのような環境下
でも高感度かつ高精度に測定して、電子、電気装置の腐
食事故を未然に防止するための腐食監視装置、並びに該
装置を備えた悶置を提供することにある。
However, with these methods, there are problems such as it is difficult to measure the corrosion rate of metals in natural conditions, and the measurement environment is limited to coastal areas. The purpose of the present invention is to measure corrosion of metal materials, especially thin metal films in the atmosphere, with high sensitivity and precision in any environment, and to prevent corrosion accidents in electronic and electrical equipment. An object of the present invention is to provide a corrosion monitoring device and a storage device equipped with the device.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、金属の腐食監視装置に関し、その要旨は、 (1)絶縁層上に被腐食監視金属と同一組成の金属で構
成された一対の電極を有する電極素子が腐食監視環境中
に設置できるように構成されており、 前記電極の対向長さLと、電極間隙Pとの比L/Pが1
03以上であり, 該電極間のインピーダンス値を検出する手段を有するこ
とを特徴とする金属の腐食監視装置.(2)前記電極間
に周波数1kHz以上の交流および同1Hz以下の交流
の微小電圧を印加する手段を有し、 各周波数における電極間のインピーダンス値を検出する
手段を有することを特徴とする金属の腐食監視装置、並
びに、該腐食監視装置を備えた装置にある. 本発明の特徴は、測定値の精度を高める手段として、測
定電極の電気抵抗を低減したことにあり,その具体的手
段として、絶縁基板上に対向して設けた一対の電極の、
対向部分の電極の長さが該電極間隙に対して十分大きい
電極を設けた電極素子にある. 前記電極素子の電極間の抵抗値から、金属の腐食に関与
する腐食抵抗値と、水膜のみの抵抗値とを分履して求め
ることにより、金属の腐食状況を監視することができる
. 絶縁層上に設けられた一対の電極間に形成されろ水膜の
電気抵抗Rwは,電極の対向部分の長さし,電極間隙P
,水膜の厚さD,水膜の比抵抗ρとすると,(l)式で
示される関係がある。
The present invention relates to a metal corrosion monitoring device, and its gist is as follows: (1) An electrode element having a pair of electrodes made of a metal having the same composition as the metal to be corroded on an insulating layer can be installed in a corrosion monitoring environment. The ratio L/P of the opposing length L of the electrodes to the electrode gap P is 1.
03 or more, and has means for detecting an impedance value between the electrodes. (2) A metal device characterized in that it has means for applying a microvoltage of an alternating current with a frequency of 1 kHz or more and an alternating current of less than 1 kHz between the electrodes, and has a means for detecting an impedance value between the electrodes at each frequency. A corrosion monitoring device and a device equipped with the corrosion monitoring device. A feature of the present invention is that the electrical resistance of the measuring electrodes is reduced as a means to improve the accuracy of measured values.
This is an electrode element in which the length of the opposing electrodes is sufficiently large compared to the electrode gap. The state of corrosion of metal can be monitored by separately determining the corrosion resistance value related to corrosion of the metal and the resistance value of only the water film from the resistance value between the electrodes of the electrode element. The electrical resistance Rw of the drainage film formed between a pair of electrodes provided on the insulating layer is determined by the length of the opposing part of the electrodes and the electrode gap P.
, the thickness of the water film D, and the specific resistance ρ of the water film, there is a relationship shown by equation (l).

Rw=ρP/D L        ・・・(1)pと
Dは測定環境によって決まる値で、ρは水膜中に含まれ
る電解質の種類と量によって左右されるが、一般に10
3〜10@ΩQmの値を示す。
Rw=ρP/D L...(1) p and D are values determined by the measurement environment, and ρ depends on the type and amount of electrolyte contained in the water film, but is generally 10
Indicates a value of 3 to 10@ΩQm.

一方、Dは測定雰囲気中の湿度によって決まる値である
が、一般には100人〜1μmである。
On the other hand, D is a value determined by the humidity in the measurement atmosphere, and is generally 100 to 1 μm.

従って、水膜の電気抵抗Rwを下げるためには、Pに対
してLを極力大きくすればよい。
Therefore, in order to lower the electrical resistance Rw of the water film, L should be made as large as possible with respect to P.

実際には、水膜の抵抗Rwを精度良く測定できる最大限
界値は、10@Ω程度であるので、L/P比を103以
上にしないと、正確にi!Ill定することはできない
In reality, the maximum limit value for accurately measuring the resistance Rw of a water film is about 10@Ω, so unless the L/P ratio is 103 or higher, the i! It cannot be determined.

上記の条件を満足するためには、従来の電極間隙Pが0
.2mm程度のものでは、電極の対向部分の長さしは2
00mm以上のものが必要である。
In order to satisfy the above conditions, the conventional electrode gap P must be 0.
.. For those with a diameter of about 2 mm, the length of the opposing part of the electrode is 2
00mm or more is required.

しかし、Pが1〜10μm程度のものを用いれば、Lは
1〜10mm程度の長さのもので十分測定することがで
きる。
However, if P is used that is about 1 to 10 μm, L can be sufficiently measured with a length of about 1 to 10 mm.

前記後者の微細配線電極を絶縁基板に実装すれば、数m
m角程度のチップとすることができ、電子装置等に組み
込む場合にも非常に有利である。
If the latter micro-wiring electrode is mounted on an insulating substrate, it will be several meters long.
It can be made into a chip of about m square, which is very advantageous when it is incorporated into electronic devices and the like.

前記において、電極間にRil′I!Iされる抵抗成分
には、水膜の抵抗Rtgと金属電極の腐食反応による抵
抗値Reが関与する。
In the above, Ril'I! between the electrodes. The resistance component affected by I involves the resistance Rtg of the water film and the resistance value Re caused by the corrosion reaction of the metal electrode.

Re値は金属電極の腐食速度I corrと、(II)
式の関係にある(但し、Kは金属の種類によって決まる
定数)。
The Re value is the corrosion rate of the metal electrode, I corr, and (II)
(However, K is a constant determined by the type of metal.)

I corr= K / Re         − 
(II )従って、腐食速度I corrを求めるには
、腐食抵抗Re値が分かれば算出することができる。
I corr=K/Re−
(II) Therefore, the corrosion rate I corr can be calculated if the corrosion resistance Re value is known.

?記Rc値を精度良く411定する方法としては、交流
インピーダンス法が最適である。
? The AC impedance method is most suitable as a method for accurately determining the Rc value.

この方法は、一対の電極間に高周波数の微小な交流電圧
と、低周波数の微小な交流電圧を印加し、それぞれの周
波数におけるインピーダンスを測定する方法である。
In this method, a high-frequency minute AC voltage and a low-frequency minute AC voltage are applied between a pair of electrodes, and the impedance at each frequency is measured.

これによると、低周波数で測定されるインピーダンスZ
,は(m)式で示されるのに対し、Z ..= 2 R
c+ Rw         − (m )高周波数で
測定されるインピーダンス値Z}lは、(IV)式で示
される値、即ち水膜の電気抵抗値である。
According to this, the impedance Z measured at low frequency
, is shown by equation (m), whereas Z . .. = 2R
c+Rw-(m) The impedance value Z}l measured at high frequency is the value expressed by equation (IV), that is, the electrical resistance value of the water film.

Zや=Rw             ・・・(IV)
Rc値は、(m)(IV)式から誘導した(V)式によ
り求めることができる。
Zya=Rw...(IV)
The Rc value can be determined using equation (V) derived from equations (m) and (IV).

R c= (Z r.  Z l{)/ 2     
  ”■ (V )ところで、印加する微小交流電圧の
周波数は、1Hz〜1kHzの範囲のインピーダンス値
が電極間の容量成分によって変化してしまうので、低周
波数側ではI H z以下、高周波数側では1kHZ以
上の周波数が適している。
R c= (Z r. Z l{)/2
"■ (V) By the way, the frequency of the applied minute alternating current voltage varies depending on the capacitance component between the electrodes, so the impedance value in the range of 1 Hz to 1 kHz changes depending on the capacitance component between the electrodes. Frequencies of 1 kHz or higher are suitable.

印加電圧値は、電圧印加による腐食反応への影響を考慮
すると極力低いほうがよく、50mV以下が好ましい。
The applied voltage value should be as low as possible in consideration of the influence of voltage application on the corrosion reaction, and is preferably 50 mV or less.

なお、前記二つの周波数の電圧は重畳して印加しても差
し支えない。
Note that the voltages of the two frequencies may be applied in a superimposed manner.

以上詳述した条件の電極素子,交流電圧印加装置および
インピーダンス測定装置から成る腐食監視装置によって
、いろいろな環境における金属の1腐食速度を高精度,
高感度で測定することができる。
A corrosion monitoring device consisting of an electrode element, an AC voltage application device, and an impedance measurement device under the conditions detailed above can be used to measure the corrosion rate of metals in various environments with high accuracy.
Can be measured with high sensitivity.

特に、微細な電極を形成した電極素子は、様々な電子装
置および電気機器の腐食状況を検知する素子として適し
ている。
In particular, electrode elements formed with fine electrodes are suitable as elements for detecting corrosion conditions in various electronic devices and electrical equipment.

また、前記電極素子の電極の一方を供試金萬膜、もう一
方を参服電極とし、Ag/AgCQのような可逆電位を
示す金屈/化合物電極膜を形成させた電極素子を用いて
、供試金属の腐食電位を測定し、予め求めた腐食電位一
腐食速度の関係から7腐食速度を求めることもできる。
In addition, using an electrode element in which one of the electrodes of the electrode element is made of a test gold film and the other is a sample electrode, and a metal/compound electrode film exhibiting a reversible potential such as Ag/AgCQ is formed, It is also possible to measure the corrosion potential of the test metal and determine the corrosion rate from the relationship between corrosion potential and corrosion rate determined in advance.

更に、供試金属膜と参照電極膜を形成した電極素子,電
位測定装置および電位一腐食速度の関係データを記憶し
、腐食電位から腐食速度を演算できる演算装置と組合せ
ることによって、高度な腐食監視装置を得ることができ
る. また、同様に、一方の電極をSo4=,H+,CQ一等
の腐食性イオンに感応する固体膜で形成し、もう一方を
参照電極膜で形成させた電極素子を用い,参照電極と固
体膜電極との電位差から腐食性イオンの濃度を求め、予
め求めた腐食性イオン濃度一腐食速度の関係とから対象
金属の腐食速度を求めることができる。
Furthermore, by combining an electrode element with a test metal film and a reference electrode film, a potential measuring device, and an arithmetic device that stores relational data between potential and corrosion rate and can calculate the corrosion rate from the corrosion potential, advanced corrosion detection can be achieved. You can get monitoring equipment. Similarly, using an electrode element in which one electrode is formed of a solid film sensitive to corrosive ions such as So4=, H+, CQ, etc., and the other is formed of a reference electrode film, the reference electrode and the solid film are used. The concentration of corrosive ions is determined from the potential difference with the electrode, and the corrosion rate of the target metal can be determined from the previously determined relationship between corrosive ion concentration and corrosion rate.

腐食性イオン感応膜と参照電極膜を形成した電極素子,
電位測定装置および腐食性イオン濃度一腐食速度データ
から腐食速度を演算できる演算装置を組合せることによ
って高度な腐食監視装置を得ることができる。
Electrode element with a corrosive ion-sensitive membrane and a reference electrode membrane,
An advanced corrosion monitoring device can be obtained by combining a potential measuring device and an arithmetic device capable of calculating corrosion rate from corrosive ion concentration-corrosion rate data.

電極膜を直接基板上に形成した半導体装置あるいは配線
基板は、腐食監視装置の電極素子としてだけでなく、そ
れ自体の腐食状況を、直接モニタリングするものとして
用いることもできる。
A semiconductor device or a wiring board on which an electrode film is directly formed can be used not only as an electrode element of a corrosion monitoring device, but also as a device for directly monitoring its own corrosion status.

前記腐食監視装置を備えた電子装置,電子計算機,電子
信号記録装置,屋外設置電気機器等においては、装置自
体の腐食状況を常に監視できるので、装置の信頼性管理
に有効である。また空調制御機器に組み込んで、室内の
腐食環境を制御することもできる。
In electronic devices, electronic computers, electronic signal recording devices, outdoor electrical equipment, etc. equipped with the corrosion monitoring device, the corrosion status of the device itself can be constantly monitored, which is effective in managing the reliability of the device. It can also be incorporated into air conditioning control equipment to control indoor corrosive environments.

〔作用〕[Effect]

本発明の腐食監視装置の測定精度が高い理由は、電極素
子の電極の対向部分の長さLを、電極間隙Pに対して1
03以上とし、その抵抗率を103Ω以下としたことに
ある。抵抗値がこれよりも高くなると、感度が悪くなる
ためである。
The reason why the corrosion monitoring device of the present invention has high measurement accuracy is that the length L of the facing portion of the electrodes of the electrode element is set to 1 with respect to the electrode gap P.
03 or more, and its resistivity is 103Ω or less. This is because when the resistance value becomes higher than this, the sensitivity deteriorates.

また、どのよな環境下においても腐食速度を精度よく測
定し得るのは,水膜抵抗Rwと腐食抵抗Rcを分離して
測定するようにしたことが主な要因である。
Furthermore, the main reason why the corrosion rate can be measured accurately under any environment is that the water film resistance Rw and the corrosion resistance Rc are measured separately.

〔実施例1〕 第1図は、本発明の腐食監視装置を具備した電子装置の
一例を示す構成図である。
[Embodiment 1] FIG. 1 is a configuration diagram showing an example of an electronic device equipped with a corrosion monitoring device of the present invention.

電子装置本体1は空気取入れ口3および空気排出口4を
有するケーシング2に収納されており、該ケーシング内
は、外気を供給して冷却できるようにファンが設けられ
ている。そして、ケーシング2内には、電子装置の構成
金属の腐食を検知する電極素子5が設置されている。
The electronic device main body 1 is housed in a casing 2 having an air intake port 3 and an air outlet 4, and a fan is provided inside the casing to supply outside air for cooling. An electrode element 5 is installed inside the casing 2 to detect corrosion of the constituent metals of the electronic device.

電極素子5の電極には、交流電圧印加装置6から高周波
数および低周波数の二つの交流電圧を印加し,各々の周
波数における電極間のインピーダンス値をインピーダン
ス測定装置7により81リ定し、電極素子に形成されろ
水膜の抵抗と、電極素子上の供試金属の腐食速度とを直
接連続測定できるようになっている。
Two alternating current voltages, high frequency and low frequency, are applied to the electrodes of the electrode element 5 from an alternating current voltage applying device 6, and the impedance value between the electrodes at each frequency is determined by the impedance measuring device 7. It is now possible to directly and continuously measure the resistance of the drainage film formed on the electrode element and the corrosion rate of the test metal on the electrode element.

第2図は,第1図で使用した電極素子5の平面図を示す
FIG. 2 shows a plan view of the electrode element 5 used in FIG. 1.

一対の供試金属膜の電極8,8′が基板の絶縁層1o上
に櫛歯状に形成されており、それぞれの電極は外部の交
流電圧印加装置6と接続するためのリード線取出しパッ
ド9、9′が設けられている. 第3図は、第2図の電
極素子の部分断面模式図である. 平坦仕上げしたシリコン基板11上にSi02等の絶a
WI10を介して電極間隙10μm以下のAfl配線1
2をパターニング形成する。
A pair of electrodes 8 and 8' of the metal film under test are formed in a comb-like shape on the insulating layer 1o of the substrate, and each electrode has a lead wire extraction pad 9 for connection to an external AC voltage applying device 6. , 9' are provided. FIG. 3 is a schematic partial cross-sectional view of the electrode element shown in FIG. 2. On the silicon substrate 11 which has been flattened, a layer of Si02 etc.
Afl wiring 1 with an electrode gap of 10 μm or less via WI10
2 is formed by patterning.

次いでAQ配線12をカソードとし、電子装置の腐食監
視部の構成金属と同じ可溶性塩を含むめっき浴中で電解
めっきを行ない、供試金属膜8を形成した電極素子を作
成する。
Next, using the AQ wiring 12 as a cathode, electrolytic plating is performed in a plating bath containing the same soluble salt as the constituent metal of the corrosion monitoring section of the electronic device to create an electrode element on which the test metal film 8 is formed.

可溶性塩の金凡種を選択することにより、任意の金属種
の金属を電極素子上に形成させることができる。
By selecting the type of soluble salt, any type of metal can be formed on the electrode element.

第4図は、供試金屈膜としてCuを電解めっきにより形
成した電極素子5を、40℃,95%RI−Iの雰囲気
中に放置した場合の腐食速度を、実施例1と同じ腐食監
視装置により測定した結果を示すグラフである。
FIG. 4 shows the corrosion rate when the electrode element 5 formed by electrolytic plating of Cu as a test gold film is left in an atmosphere of 95% RI-I at 40° C., and the same corrosion monitoring as in Example 1 is shown. It is a graph showing the results measured by the device.

第4図の腐食速度の値と、同じ雰囲気中のCu板上に生
成した酸化膜の厚さをカソード還元法により求めた腐食
速度の値と比較したところ、両者の値には±10%以内
の差しかなく、本発明の腐食監視装置による81!J定
値が、高精度,高感度であることが確認された. 〔実施例2〕 第5図は、供試金属膜による電極8,8′を、渦巻上に
形成した腐食監視装置用の電極素子の平面模式図である
When comparing the corrosion rate value in Figure 4 with the corrosion rate value determined by the cathodic reduction method of the thickness of the oxide film formed on the Cu plate in the same atmosphere, both values were within ±10%. There is only a difference of 81! by the corrosion monitoring device of the present invention! It was confirmed that the J constant value is highly accurate and sensitive. [Example 2] FIG. 5 is a schematic plan view of an electrode element for a corrosion monitoring device in which electrodes 8, 8' made of a test metal film are formed in a spiral shape.

なお、電極素子の電極の形状は、電極間隙と、対向する
電極の長さが前記の比率を有していれば、特に限定され
ない。
Note that the shape of the electrodes of the electrode element is not particularly limited as long as the electrode gap and the length of the opposing electrodes have the above ratio.

〔実施例3〕 第6図は,絶R層10上に供試金属膜8と参照電極膜1
3を形成させた電極素子の断面図である.該電極素子と
電位測定装置および電位一腐食速度の関係から腐食速度
を演算できる演算装置と組合せることにより、腐食監視
装置を構成することかで貴る. 〔実施例4〕 第7図は、絶縁層10上に参照電極膜13とイオン感応
JJ!J14を形成させた電極素子の断面図である。
[Example 3] FIG. 6 shows a sample metal film 8 and a reference electrode film 1 on the absolute R layer 10.
FIG. 3 is a sectional view of an electrode element formed with No. 3. It is possible to configure a corrosion monitoring device by combining the electrode element, a potential measuring device, and an arithmetic device that can calculate the corrosion rate from the relationship between potential and corrosion rate. [Example 4] FIG. 7 shows a reference electrode film 13 on an insulating layer 10 and an ion-sensitive JJ! FIG. 3 is a cross-sectional view of an electrode element on which J14 is formed.

該電極素子,参照電極膜とイオン感応膜の電位測定装置
および該電位差から腐食速度が演算できる演算装置を組
合せることにより、腐食監視装置を構成することができ
る。
A corrosion monitoring device can be constructed by combining the electrode element, a potential measuring device for the reference electrode membrane and the ion-sensitive membrane, and an arithmetic device capable of calculating the corrosion rate from the potential difference.

〔発明の効果〕〔Effect of the invention〕

本発明の腐食監視装置は、金属材料の微小な腐食速度を
、高精度、かつ連続的に測定できると云う優れた効果が
ある。
The corrosion monitoring device of the present invention has the excellent effect of being able to continuously measure minute corrosion rates of metal materials with high accuracy.

また、該腐食監視装置を電子装置等に備えることによっ
て、該電子装置の金属の腐食による事故を未然に防止す
ることができる。
Further, by providing the corrosion monitoring device in an electronic device or the like, it is possible to prevent accidents caused by corrosion of the metal of the electronic device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の腐食監視装置を儒えた電子
装置の構成概略図、第2図および第5図は腐食監視装置
の電極素子の平面図、第3図は第2図の電極素子の部分
断面模式図、第4図はCuの45℃,95%RH中の腐
食速度を示すグラフ、第6図は腐食電位測定用電極を備
えた電極素子の部分断面模式図、第7図は腐食性イオン
濃度測定用電極を備えた電極素子の部分断面模式図であ
る。 1・・・電子装置本体、2・・・ケーシング,3・・・
空気取入れ口、5・・・電極素子、6・・・交流電圧印
加装置、7・・・インピーダンス劃定装置、8,8′・
・・電極、9,9′・・・リード線取出しパッド、10
・・・基板、11・・・絶縁層、12・・・AQ配線、
13・・・参照電極膜、14・・・イオン感応膜。 第1図 第5図 第 4 図 第6図 第7ス 9′ 1・・・電子装置本体 2・・・ケー7/グ 5・・電極素子 6・・・交流電圧印加装置 7・・・インピーダンス測定装置 8,8′・・・電極 10・・・基 板 11・・・絶縁層 12・・・A7配線 9,9′・・・リード線取出しパッド 10  基板 13・・・参照電極膜 14・・・イオ/感応膜
FIG. 1 is a schematic diagram of the configuration of an electronic device incorporating a corrosion monitoring device according to an embodiment of the present invention, FIGS. 2 and 5 are plan views of electrode elements of the corrosion monitoring device, and FIG. 3 is a diagram similar to that of FIG. FIG. 4 is a graph showing the corrosion rate of Cu at 45° C. and 95% RH. FIG. 6 is a partial cross-sectional schematic diagram of an electrode element equipped with an electrode for measuring corrosion potential. The figure is a schematic partial cross-sectional view of an electrode element equipped with an electrode for measuring corrosive ion concentration. 1... Electronic device body, 2... Casing, 3...
Air intake port, 5... Electrode element, 6... AC voltage application device, 7... Impedance selection device, 8, 8'.
...Electrode, 9,9'...Lead wire extraction pad, 10
... Substrate, 11... Insulating layer, 12... AQ wiring,
13... Reference electrode membrane, 14... Ion sensitive membrane. Figure 1 Figure 5 Figure 4 Figure 6 Figure 7 S9' 1... Electronic device body 2... Case 7/G 5... Electrode element 6... AC voltage application device 7... Impedance Measuring device 8, 8'... Electrode 10... Substrate 11... Insulating layer 12... A7 wiring 9, 9'... Lead wire extraction pad 10 Substrate 13... Reference electrode film 14...・・Io/sensitive membrane

Claims (1)

【特許請求の範囲】 1、絶縁層上に被腐食監視金属と同一組成の金属で構成
された一対の電極を有する電極素子が腐食監視環境中に
設置できるように構成されており、 前記電極の対向長さLと、電極間隙Pとの比L/Pが1
0^3以上であり、 該電極間のインピーダンス値を検出する手段を有するこ
とを特徴とする金属の腐食監視装置。 2、絶縁層上に被腐食監視金属と同一組成の金属で構成
された一対の電極を有する電極素子が腐食監視環境中に
設置できるように構成されており、 前記電極の対向長さLと、電極間隙Pとの比L/Pが1
0^3以上であり、 前記電極間に周波数1kHz以上の交流および同1Hz
以下の交流の微小電圧を印加する手段を有し、 各周波数における電極間のインピーダンス値を検出する
手段を有することを特徴とする金属の腐食監視装置。 3、絶縁層上に被腐食監視金属と同一組成の金属で構成
された供試金属電極と、腐食環境中で可逆電位を示す参
照電極とが対向して設けられた電極素子が腐食監視環境
中に設置できるように構成されており、 前記電極の対向長さLと、電極間隙Pとの比L/Pが1
0^3以上であり、 前記参照電極に対する供試金属電極の腐食電位を検出す
る手段を有することを特徴とする金属の腐食監視装置。 4、絶縁層上に被腐食監視金属と同一組成の金属で構成
された供試金属電極と、腐食環境中で可逆電位を示す参
照電極とが対向して設けられた電極素子が腐食監視環境
中に設置できるように構成されており、 前記電極の対向長さLと、電極間隙Pとの比L/Pが1
0^3以上であり、 前記参照電極に対する供試金属電極の腐食電位を検出す
る手段を有し、腐食電位−腐食速度の関係と前記腐食電
位とから供試金属の腐食速度を算出する手段を有してい
ること特徴とする金属の腐食監視装置。 5、絶縁層上に腐食性イオンに感応する固体膜電極と腐
食環境中で可逆電位を示す参照電極とが対向して設けら
れた電極素子が腐食監視環境中に設置できるように構成
されており、 前記電極の対向長さLと、電極間隙Pとの比L/Pが1
0^3以上であり、 前記固体膜電極と参照電極の電位差を検出する手段を有
し、該腐食性イオン濃度−腐食速度の関係と前記電位差
とから供試金属の腐食速度を算出する手段を有している
ことを特徴とする金属の腐食監視装置。 6、絶縁層上に腐食性イオンに感応する固体膜電極と腐
食環境中で可逆電位を示す参照電極とが対向して設けら
れた電極素子が腐食監視環境中に設置できるように構成
されており、 前記電極の対向長さLと、電極間隙Pとの比L/Pが1
0^3以上であり、 前記固体膜電極と参照電極の電位差から腐食性イオン濃
度を検出する手段を有し、該腐食性イオン濃度−腐食速
度の関係と前記腐食性イオン濃度とから腐食速度を算出
する手段を有していること特徴とする金属の腐食監視装
置。 7、絶縁層上に被腐食監視金属と同一組成の金属で構成
された一対の電極の対向長さLと、電極間隙Pとの比L
/Pが10^3以上を有する電極素子と、 該電極間に周波数1kHz以上の交流および同1Hz以
下の交流の微小電圧を印加する手段を有し、 各周波数における電極間のインピーダンス値から供試金
属の腐食速度を算出する手段を有する金属の腐食監視装
置を備えたことを特徴とする電子装置。 8、絶縁層上に被腐食監視金属と同一組成の金属で構成
された一対の電極の対向長さLと、電極間隙Pとの比L
/Pが10^3以上を有する電極素子と、 該電極間に周波数1kHz以上の交流電圧および同1H
z以下の交流電圧の微小電圧を印加する手段を有し、 各周波数における電極間のインピーダンス値から供試金
属の腐食速度を算出する手段を有する金属の腐食監視装
置を備えたことを特徴とする空調装置。 9、絶縁層上に少なくとも一方の電極が被腐食監視金属
と同一組成の金属から成る一対の電極を有し、該電極の
対向長さLと、電極間隙Pとの比L/Pが10^3以上
であることを特徴とする金属の腐食監視装置用電極素子
。 10、シリコンチップの絶縁層上に、少なくとも一方の
電極が被腐食監視金属と同一組成の金属から成る一対の
電極の対向長さLと、電極間隙Pとの比L/Pが10^
3以上である電極を備えたことを特徴とする半導体装置
[Scope of Claims] 1. An electrode element having a pair of electrodes made of a metal having the same composition as a metal to be monitored for corrosion on an insulating layer is configured to be installed in a corrosion monitoring environment, The ratio L/P of the opposing length L and the electrode gap P is 1
0^3 or more, and comprising means for detecting an impedance value between the electrodes. 2. An electrode element having a pair of electrodes made of a metal having the same composition as the metal to be monitored for corrosion on an insulating layer is configured so that it can be installed in a corrosion monitoring environment, and the opposing length L of the electrodes; The ratio L/P to the electrode gap P is 1
0^3 or more, and an alternating current with a frequency of 1 kHz or more and a frequency of 1 Hz are applied between the electrodes.
What is claimed is: 1. A metal corrosion monitoring device comprising: means for applying the following minute alternating voltage; and means for detecting impedance values between electrodes at each frequency. 3. An electrode element in which a test metal electrode made of a metal with the same composition as the metal to be monitored and a reference electrode that exhibits a reversible potential in a corrosive environment are provided facing each other on an insulating layer is placed in a corrosion monitoring environment. It is configured so that it can be installed in the electrode, and the ratio L/P of the opposing length L of the electrodes to the electrode gap P is 1.
0^3 or more, and comprising means for detecting the corrosion potential of the test metal electrode with respect to the reference electrode. 4. An electrode element in which a test metal electrode made of a metal with the same composition as the metal to be monitored and a reference electrode that exhibits a reversible potential in a corrosive environment are provided facing each other on an insulating layer is placed in a corrosion monitoring environment. It is configured so that it can be installed in the electrode, and the ratio L/P of the opposing length L of the electrodes to the electrode gap P is 1.
0^3 or more, and includes means for detecting the corrosion potential of the test metal electrode with respect to the reference electrode, and means for calculating the corrosion rate of the test metal from the corrosion potential-corrosion rate relationship and the corrosion potential. A metal corrosion monitoring device characterized by: 5. An electrode element in which a solid membrane electrode that is sensitive to corrosive ions and a reference electrode that exhibits a reversible potential in a corrosive environment are provided facing each other on an insulating layer is configured so that it can be installed in a corrosion monitoring environment. , the ratio L/P of the opposing length L of the electrodes to the electrode gap P is 1
0^3 or more, and includes means for detecting the potential difference between the solid membrane electrode and the reference electrode, and means for calculating the corrosion rate of the test metal from the relationship between the corrosive ion concentration and the corrosion rate and the potential difference. A metal corrosion monitoring device comprising: 6. An electrode element in which a solid membrane electrode sensitive to corrosive ions and a reference electrode exhibiting a reversible potential in a corrosive environment are provided facing each other on an insulating layer is configured so that it can be installed in a corrosion monitoring environment. , the ratio L/P of the opposing length L of the electrodes to the electrode gap P is 1
0^3 or more, and has means for detecting the corrosive ion concentration from the potential difference between the solid membrane electrode and the reference electrode, and detects the corrosion rate from the relationship between the corrosive ion concentration and the corrosion rate and the corrosive ion concentration. A metal corrosion monitoring device characterized by having a calculation means. 7. Ratio L between the opposing length L of a pair of electrodes made of a metal with the same composition as the corrosion monitoring metal on the insulating layer and the electrode gap P
An electrode element having /P of 10^3 or more, and a means for applying a minute voltage of alternating current with a frequency of 1 kHz or more and alternating current of 1 Hz or less between the electrodes, and a test sample is obtained from the impedance value between the electrodes at each frequency. An electronic device comprising a metal corrosion monitoring device having means for calculating a metal corrosion rate. 8. Ratio L between the opposing length L of a pair of electrodes made of a metal with the same composition as the corrosion monitoring metal on the insulating layer and the electrode gap P
An electrode element having /P of 10^3 or more, and an AC voltage with a frequency of 1kHz or more and an AC voltage of 1H between the electrodes.
The present invention is characterized by comprising a metal corrosion monitoring device having means for applying a microvoltage of alternating current voltage of z or less, and having means for calculating the corrosion rate of the test metal from the impedance value between the electrodes at each frequency. Air conditioner. 9. A pair of electrodes, at least one of which is made of a metal having the same composition as the corrosion monitoring metal, are provided on the insulating layer, and the ratio L/P of the opposing length L of the electrodes to the electrode gap P is 10^ An electrode element for a metal corrosion monitoring device, characterized in that the electrode element has a corrosion resistance of 3 or more. 10. The ratio L/P of the opposing length L of a pair of electrodes on the insulating layer of the silicon chip, at least one of which is made of a metal with the same composition as the metal to be monitored for corrosion, and the electrode gap P is 10^
A semiconductor device comprising three or more electrodes.
JP1112870A 1989-05-02 1989-05-02 Metal corrosion monitoring equipment Expired - Lifetime JPH0786496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1112870A JPH0786496B2 (en) 1989-05-02 1989-05-02 Metal corrosion monitoring equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1112870A JPH0786496B2 (en) 1989-05-02 1989-05-02 Metal corrosion monitoring equipment

Publications (2)

Publication Number Publication Date
JPH02291952A true JPH02291952A (en) 1990-12-03
JPH0786496B2 JPH0786496B2 (en) 1995-09-20

Family

ID=14597588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1112870A Expired - Lifetime JPH0786496B2 (en) 1989-05-02 1989-05-02 Metal corrosion monitoring equipment

Country Status (1)

Country Link
JP (1) JPH0786496B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994001757A1 (en) * 1992-07-02 1994-01-20 Purafil, Inc. Corrosion profiling and diagnostic system
WO2003029801A1 (en) * 2001-09-28 2003-04-10 Shinko Electric Industries Co., Ltd. Sulfur component sensor and sulfur component detector
JP2007163324A (en) * 2005-12-14 2007-06-28 Taiheiyo Cement Corp Corrosion detecting member and corrosion sensor
WO2013065207A1 (en) 2011-11-02 2013-05-10 三菱電機株式会社 Corrosion prevention performance degradation detection sensor, hot-water supply heating system, and equipment
JP2016145744A (en) * 2015-02-06 2016-08-12 福井県 Electrode sensor for trace component detection and manufacturing method thereof
JP2018179959A (en) * 2017-04-20 2018-11-15 新日鐵住金株式会社 Probe of impedance measuring device, and impedance measuring device
JP2019196957A (en) * 2018-05-09 2019-11-14 日新電機株式会社 Corrosive environment measuring device
JP2020003417A (en) * 2018-06-29 2020-01-09 太平洋セメント株式会社 Corrosion sensor and method for detecting corrosion

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994001757A1 (en) * 1992-07-02 1994-01-20 Purafil, Inc. Corrosion profiling and diagnostic system
WO2003029801A1 (en) * 2001-09-28 2003-04-10 Shinko Electric Industries Co., Ltd. Sulfur component sensor and sulfur component detector
JP2007163324A (en) * 2005-12-14 2007-06-28 Taiheiyo Cement Corp Corrosion detecting member and corrosion sensor
WO2013065207A1 (en) 2011-11-02 2013-05-10 三菱電機株式会社 Corrosion prevention performance degradation detection sensor, hot-water supply heating system, and equipment
US9677992B2 (en) 2011-11-02 2017-06-13 Mitsubishi Electric Corporation Corrosion protection performance degradation detection sensor, hot-water supply heating system, and facility apparatus
JP2016145744A (en) * 2015-02-06 2016-08-12 福井県 Electrode sensor for trace component detection and manufacturing method thereof
JP2018179959A (en) * 2017-04-20 2018-11-15 新日鐵住金株式会社 Probe of impedance measuring device, and impedance measuring device
JP2019196957A (en) * 2018-05-09 2019-11-14 日新電機株式会社 Corrosive environment measuring device
JP2020003417A (en) * 2018-06-29 2020-01-09 太平洋セメント株式会社 Corrosion sensor and method for detecting corrosion

Also Published As

Publication number Publication date
JPH0786496B2 (en) 1995-09-20

Similar Documents

Publication Publication Date Title
KR0157220B1 (en) Metal oxide electrodes
JP4141841B2 (en) Sensor array and method for electrochemical corrosion monitoring
US9423366B2 (en) Corrosion sensors
JP6506849B2 (en) Corrosion environment monitoring apparatus and method
JPS5938647A (en) Ion selective electrode apparatus and flowing type ion analytical apparatus
US8623185B2 (en) Planar multi-electrode array sensor for localized electrochemical corrosion detection
JP6448007B2 (en) High-speed response / high sensitivity wet / dry sensor
JPH0543268B2 (en)
JPH0436339B2 (en)
US4488939A (en) Vapor corrosion rate monitoring method and apparatus
JPH02291952A (en) Corrosion monitoring device for metal and electric apparatus provided with said device
US8132457B2 (en) Nano-porous alumina sensor
JP7205126B2 (en) Corrosion sensors and corrosion evaluation systems
Wall et al. Characterizing corrosion behavior under atmospheric conditions using electrochemical techniques
JPH05340907A (en) Diagnosing method of corrosion of reinforcing rod or the like in concrete
US20030160623A1 (en) Migration measuring method and measuring apparatus
Vaivars et al. Sol-gel produced humidity sensor
Katayama et al. Corrosion monitoring of Zn and Zn–Al coated steels under wet-dry cyclic conditions using AC impedance method
JPS5888645A (en) Measuring sensor for content of oxygen in gas
Preočanin et al. The effects on the response of metal oxide and fluorite single crystal electrodes and the equilibration process in the interfacial region
US4662975A (en) Apparatus for determining the etch rate of nonconductive materials
JPH0619339B2 (en) Highly sensitive polarization measuring method and apparatus for coated metal
JPH0335151A (en) Method for measuring corrosion of metallic material
JPH05126776A (en) Corrosion sensor for high electric insulating refrigerant
CN212894991U (en) Steel member potential measurement system