JP2016145744A - Electrode sensor for trace component detection and manufacturing method thereof - Google Patents

Electrode sensor for trace component detection and manufacturing method thereof Download PDF

Info

Publication number
JP2016145744A
JP2016145744A JP2015022611A JP2015022611A JP2016145744A JP 2016145744 A JP2016145744 A JP 2016145744A JP 2015022611 A JP2015022611 A JP 2015022611A JP 2015022611 A JP2015022611 A JP 2015022611A JP 2016145744 A JP2016145744 A JP 2016145744A
Authority
JP
Japan
Prior art keywords
sensor
thin film
metal thin
electrode
electrode portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015022611A
Other languages
Japanese (ja)
Other versions
JP6354951B2 (en
Inventor
美智代 中津
Michiyo Nakatsu
美智代 中津
正明 真保
Masaaki Maho
正明 真保
松田 進
Susumu Matsuda
進 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C & M Co Ltd
Fukui Prefecture
Ueda Industries Co Ltd
Original Assignee
C & M Co Ltd
Fukui Prefecture
Ueda Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C & M Co Ltd, Fukui Prefecture, Ueda Industries Co Ltd filed Critical C & M Co Ltd
Priority to JP2015022611A priority Critical patent/JP6354951B2/en
Publication of JP2016145744A publication Critical patent/JP2016145744A/en
Application granted granted Critical
Publication of JP6354951B2 publication Critical patent/JP6354951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode sensor for trace component detection improving reaction efficiency of electrochemical reaction occurring between electrode parts thereby to enable high-output detection current to be stably obtained, and capable of detecting a trace component with high accuracy and a manufacturing method thereof.SOLUTION: An electrode sensor for trace component detection is configured such that an insulation part 2 and a cathode electrode part 3 are laminated on a substrate as an anode electrode part 1, and measures detection current flowing between the electrode parts thereby to detect a trace component. In a case of manufacturing the electrode sensor for trace component detection, after the cathode electrode part 3 is formed by a printing method using conductive paste, surface treatment is performed, which forms a metal thin film so as to cover the exposure surfaces of the anode electrode part 1 and/or cathode electrode part 3.SELECTED DRAWING: Figure 1

Description

発明は、アノード電極とカソード電極との間に流れるガルバニック電流を計測して微量成分を検知する微量成分検知用電極センサ及びその製造方法に関する。   The present invention relates to a trace component detection electrode sensor for measuring a trace component by measuring a galvanic current flowing between an anode electrode and a cathode electrode, and a method for manufacturing the same.

アノード電極及びカソード電極のガルバニック対から成る電極部を有し、この電極部で起こる電気化学反応により発生するガルバニック電流を計測して微量成分を検知する電極センサは、櫛形状に形成したり、小型化されることで、高速液体クロマトグラフィー用検出器、バイオセンサー等の電気化学計測用電極として広く使用されている。電気化学反応を利用したセンシングは、高価な分析設備や専門技術が不必要であり、簡便で迅速な計測が可能である。さらに超微量成分の検出、生体系などの夾雑物中の目的成分の検出が可能であるため、今後、化学、環境、医療等の幅広い分野において重要な計測技術となることが期待されている。   An electrode sensor that has an electrode part composed of a galvanic pair of an anode electrode and a cathode electrode, and detects a trace component by measuring a galvanic current generated by an electrochemical reaction occurring in the electrode part, can be formed in a comb shape or a small size Therefore, it is widely used as an electrode for electrochemical measurement such as a detector for high performance liquid chromatography and a biosensor. Sensing using an electrochemical reaction does not require expensive analytical equipment and specialized techniques, and enables simple and rapid measurement. Furthermore, since ultra-trace components can be detected and target components in contaminants such as biological systems can be detected, it is expected to become an important measurement technique in a wide range of fields such as chemistry, environment, and medicine.

ガルバニック対を応用した電極センサの一種に、ACM型腐食センサ(以下、ACMセンサとする)が開発され、大気環境中の金属腐食性因子の計測・モニタリングなど、金属の大気腐食解析に活用される。ACMセンサは、金属腐食性因子である濡れ時間、海塩相当付着量を計測でき、センサの日平均電気量が金属材料の腐食速度と高い相関が得られることが報告されている(非特許文献1)。海塩相当付着量は、所定量の海塩を付着させたACMセンサの電流出力と海塩付着量から作成される較正曲線を基に求められ、ドライガーゼ法(JIS Z2381 屋外暴露試験方法通則 参考3)やウエットキャンドル法(ISO 9225)の一定期間の飛来海塩量の累積値とは異なり、実際に金属表面に付着した実時間の海塩量を計測できる。ACMセンサは、このように大気下の金属腐食因子のモニタリング、金属材料の腐食寿命解析、そして、防食対策に及ぶ広範囲の分野での活用が期待される。   ACM-type corrosion sensor (hereinafter referred to as ACM sensor) is developed as a kind of electrode sensor using galvanic pairs, and is used for atmospheric corrosion analysis of metals such as measurement and monitoring of metal corrosive factors in the atmospheric environment. . It has been reported that the ACM sensor can measure the wet time and the amount of sea salt equivalent that are metal corrosive factors, and that the daily average electric quantity of the sensor has a high correlation with the corrosion rate of the metal material (non-patent document). 1). The amount of sea salt equivalent is determined based on the calibration curve created from the current output of the ACM sensor with a predetermined amount of sea salt attached and the amount of sea salt attached. The dry gauze method (JIS Z2381 General rules for outdoor exposure test methods) Reference 3) and the wet candle method (ISO 9225), different from the cumulative value of the amount of sea salt in a certain period, it is possible to measure the amount of sea salt actually attached to the metal surface. As described above, the ACM sensor is expected to be used in a wide range of fields ranging from monitoring of metal corrosion factors in the atmosphere, analysis of corrosion life of metal materials, and anti-corrosion measures.

特開2013−134111号公報JP2013-134111A 特開2014−185968号公報JP 2014-185968 A

押川 渡 外3名、「雨がかりのない条件下に暴露された炭素鋼の腐食速度とACMセンサとの関係」、Zairyo-to-Kankyo、2002年、Vol.51、p.398-403Wataru Oshikawa, 3 members, “Relationship between corrosion rate of carbon steel exposed under rain-free conditions and ACM sensor”, Zairyo-to-Kankyo, 2002, Vol.51, p.398-403

現在、市販されるACMセンサは、飛来海塩量の高い海洋性気候地域では、海塩相当付着量を容易に計測することができる。しかし、飛来海塩量の低い山間地域や住居、倉庫などの屋内空間では、電流が検出限界値未満となるために計測不可、または、一定量の海塩がセンサ電極部に付着蓄積するまでの待機期間が必要である。近年では、ACMセンサは、上述した海塩相当付着量の計測以外に、酸性雨、窒素酸化物(NOX)、イオウ酸化物(SOX)等の大気汚染物質を計測するセンサとしての応用が図られている。しかし、NOX、SOX等の大気汚染物質は、飛来海塩量の1/10から1/1000の低濃度であるために、こうした微量濃度の成分を高精度で検出するためには、センサの検知電流であるガルバニック電流を高出力で安定して得ることが必要である。   Currently, commercially available ACM sensors can easily measure the amount of sea salt equivalent in marine climate areas where the amount of incoming sea salt is high. However, in indoor areas such as mountainous areas, houses, and warehouses where the amount of incoming sea salt is low, the current is below the detection limit value, so measurement is not possible, or until a certain amount of sea salt adheres to and accumulates on the sensor electrode. A waiting period is required. In recent years, the ACM sensor has been applied as a sensor for measuring air pollutants such as acid rain, nitrogen oxide (NOX), and sulfur oxide (SOX) in addition to the above-described measurement of the amount of sea salt equivalent. ing. However, since air pollutants such as NOX and SOX have a low concentration of 1/10 to 1/1000 of the amount of incoming sea salt, sensor detection is necessary to detect such trace concentration components with high accuracy. It is necessary to stably obtain a galvanic current as a current at a high output.

電極間に流れるガルバニック電流を高感度で計測するために、計測に用いる電流計にアンプ等の増幅器を取り付けて電流を増幅する方法がある。しかし、電流計が高価となる上に、設置環境やケーブル周辺のノイズの影響を受けやすく、結果的に使用環境が限定される。また、シールド材を使用するといったノイズ対策が必要となってコスト高の要因となる。   In order to measure the galvanic current flowing between the electrodes with high sensitivity, there is a method of amplifying the current by attaching an amplifier such as an amplifier to an ammeter used for measurement. However, the ammeter is expensive and is easily affected by noise in the installation environment and the cable, resulting in a limited use environment. In addition, it is necessary to take measures against noise such as using a shielding material, which causes a high cost.

特許文献1では、被検査対象物に貼付して使用できるフレキシブル形状の腐食センサが記載されている。こうした腐食センサは、大気中に設置される実構造物そのものの腐食を直接的に計測でき、曲面部への貼付が可能になる利点を持つ腐食センサである。しかし、大型の実構造物において、被検査対象物から伝搬する電流ノイズの影響を受けてセンサの電流値が乱れる等の課題がある。また、特許文献2では、ACMセンサの基板表面の酸化皮膜を酸により除去し、酸化皮膜による抵抗を低下させてセンサ感度を向上させる方法が記載されている。こうした腐食センサは、温和な環境であっても、微量な腐食電流を高精度に測定でき、ACMセンサの電流出力の個体差を無くすことができる優れた方法であるが、計測されるセンサ電流値の安定性について課題がある。   Patent Document 1 describes a flexible corrosion sensor that can be used by being attached to an object to be inspected. Such a corrosion sensor is a corrosion sensor that has an advantage that it can directly measure the corrosion of an actual structure itself installed in the atmosphere and can be attached to a curved surface portion. However, there is a problem that the current value of the sensor is disturbed in a large actual structure under the influence of current noise propagating from the object to be inspected. Patent Document 2 describes a method of improving the sensor sensitivity by removing the oxide film on the substrate surface of the ACM sensor with an acid and reducing the resistance caused by the oxide film. Such a corrosion sensor is an excellent method that can measure a minute amount of corrosion current with high accuracy even in a mild environment and eliminate individual differences in the current output of the ACM sensor. There are issues regarding the stability of

そこで、本発明は、電極部間で生じる電気化学反応の反応効率を向上させて高出力の検知電流を安定して得ることができ、微量成分を高精度で検知することが可能となる微量成分検知用電極センサ及びその製造方法を提供することにある。   Therefore, the present invention improves the reaction efficiency of the electrochemical reaction that occurs between the electrode parts, can stably obtain a high-output detection current, and can detect a trace component with high accuracy. An electrode sensor for detection and a manufacturing method thereof are provided.

本発明に係る微量成分検知用電極センサの製造方法は、アノード電極部及びカソード電極部を備えているとともに両電極部の間に流れる検知電流を測定することで微量成分を検知する微量成分検知用電極センサの製造方法であって、少なくとも一方の電極部を導電性ペーストを用いた印刷法により形成し、片方又は両方の電極部の露出表面を被覆するように金属薄膜を形成する表面処理を行う。さらに、導電性ペーストを用いた印刷法により形成した前記電極部の露出表面に湿式めっき処理により前記金属薄膜を形成する表面処理を行う。さらに、前記金属薄膜は、金、白金、銀、銅、スズ、ニッケル、クロム、亜鉛、炭素、鉄の単一組成、又は、少なくともそれら1種類を含む組成である。   A manufacturing method of an electrode sensor for detecting a minor component according to the present invention includes an anode electrode portion and a cathode electrode portion, and detects a minor component by measuring a sensing current flowing between both electrode portions. A method for manufacturing an electrode sensor, wherein at least one electrode portion is formed by a printing method using a conductive paste, and a surface treatment is performed to form a metal thin film so as to cover an exposed surface of one or both electrode portions. . Further, a surface treatment is performed to form the metal thin film on the exposed surface of the electrode portion formed by a printing method using a conductive paste by a wet plating process. Furthermore, the metal thin film has a single composition of gold, platinum, silver, copper, tin, nickel, chromium, zinc, carbon, iron, or a composition including at least one of them.

本発明は、少なくとも一方の電極部を導電性ペーストを用いた印刷方法により形成し、片方又は両方の電極部の露出表面を被覆するように金属薄膜を形成する表面処理を行うことで、電極部間で生じる電気化学反応の反応効率を向上させて高出力の検知電流を安定して得ることができ、微量成分を高精度で検知することが可能となる。   In the present invention, at least one electrode part is formed by a printing method using a conductive paste, and a surface treatment is performed to form a metal thin film so as to cover the exposed surface of one or both electrode parts. It is possible to improve the reaction efficiency of the electrochemical reaction occurring between them and stably obtain a high-output detection current, and to detect a trace component with high accuracy.

ACMセンサに関する平面図である。It is a top view regarding an ACM sensor. カソード電極部の表面に金属薄膜が形成されている場合の図1に示すACMセンサに関するA−A断面図である。It is AA sectional drawing regarding the ACM sensor shown in FIG. 1 in case the metal thin film is formed in the surface of a cathode electrode part. アノード電極部の表面に金属薄膜が形成されている場合の図1に示すACMセンサに関するA−A断面図である。It is AA sectional drawing regarding the ACM sensor shown in FIG. 1 in case the metal thin film is formed in the surface of an anode electrode part.

本発明に係る微量成分検知用電極センサに関する実施形態について以下に詳述する。図1は、微量成分検知用電極センサに関する実施形態であるACMセンサを例示する平面図である。ACMセンサは、矩形状のアノード電極部1の上面に絶縁部2が層状に積層されており、絶縁部2の上面に層状にカソード電極部3が積層されている。絶縁部2及びカソード電極部3の中央部分には、細幅の切欠きが櫛状に並行に形成されてアノード電極部1の表面が露出している。そして、切欠きに露出したアノード電極部1とカソード電極部3との間に流れる検知電流であるガルバニック電流を測定することで、微量成分の濃度を検知することができる。なお、この例では、アノード電極部及びカソード電極部を絶縁部を介して積層配置しているが、電極センサの用途に応じて基板上に電極部を並列配置することもできる。   Embodiments relating to the trace component detection electrode sensor according to the present invention will be described in detail below. FIG. 1 is a plan view illustrating an ACM sensor which is an embodiment relating to a trace component detection electrode sensor. In the ACM sensor, an insulating portion 2 is laminated in a layered manner on the upper surface of a rectangular anode electrode portion 1, and a cathode electrode portion 3 is laminated in a layered manner on the upper surface of the insulating portion 2. A narrow notch is formed in parallel in a comb shape at the central portion of the insulating portion 2 and the cathode electrode portion 3, and the surface of the anode electrode portion 1 is exposed. The concentration of the trace component can be detected by measuring a galvanic current that is a detection current flowing between the anode electrode portion 1 and the cathode electrode portion 3 exposed in the notch. In this example, the anode electrode portion and the cathode electrode portion are laminated and disposed via an insulating portion, but the electrode portions can be arranged in parallel on the substrate according to the use of the electrode sensor.

アノード電極部1は、電極表面において酸化反応が生じて電子発生となる部位であり、カソード電極部3は、電極表面において還元反応が生じて電子消失となる部位である。両電極部の間にガルバニック電流が流れるようにするためには、カソード電極部3の表面は、電気化学反応が発生する環境条件において、アノード電極部1の表面よりも貴な電位となる組み合わせであることが必要となる。絶縁部2は、アノード電極部1とカソード電極部3との間を絶縁するものである。絶縁部2には、非導電性の絶縁性材料が用いられ、例えば、樹脂材料、セラミックス材料といったものが挙げられるが、こうした材料に限定されるものではない。   The anode electrode part 1 is a part where an oxidation reaction occurs on the electrode surface and generates electrons, and the cathode electrode part 3 is a part where a reduction reaction occurs on the electrode surface and electrons disappear. In order to allow a galvanic current to flow between the two electrode portions, the surface of the cathode electrode portion 3 has a combination with a potential nobler than the surface of the anode electrode portion 1 in an environmental condition where an electrochemical reaction occurs. It is necessary to be. The insulating part 2 insulates between the anode electrode part 1 and the cathode electrode part 3. For the insulating portion 2, a non-conductive insulating material is used, and examples thereof include a resin material and a ceramic material. However, the insulating portion 2 is not limited to such a material.

両電極部は、金属材料等の導電材料を含み導電性を備えている。そして、少なくとも一方の電極部は、導電性ペーストを用いた印刷法により形成されている。図1に示すように、基板となるアノード電極部1として金属材料からなる板状体を用いた場合に、カソード電極部3は、導電性ペーストを用いた印刷法により形成する。こうした印刷法により電極部を形成することで、電極部の層厚を0.005mm〜0.1mmに厚く形成することができ、電気抵抗値が低下するようになり、検知電流を精度よく安定して得ることが可能となる。また、図1に示す例以外にも、両方の電極部を絶縁性を有する基板上に導電性ペーストにより形成して構成することもできる。導電性ペーストを用いた印刷法としては、凸版式印刷法、平版式印刷法、凹版印刷法、孔版印刷法、静電印刷法、インクジェット印刷法、レーザ印刷法が挙げられる。図1に示すようなACMセンサでは、孔版印刷法であるスクリーン印刷により作製することができるが、他の印刷法でもよく特に限定されない。   Both electrode portions include a conductive material such as a metal material and have conductivity. At least one of the electrode portions is formed by a printing method using a conductive paste. As shown in FIG. 1, when a plate-like body made of a metal material is used as the anode electrode portion 1 serving as a substrate, the cathode electrode portion 3 is formed by a printing method using a conductive paste. By forming the electrode part by such a printing method, the layer thickness of the electrode part can be increased to 0.005 mm to 0.1 mm, the electric resistance value is lowered, and the detection current is accurately stabilized. Can be obtained. In addition to the example shown in FIG. 1, both electrode portions can be formed by forming a conductive paste on an insulating substrate. Examples of the printing method using the conductive paste include a relief printing method, a planographic printing method, an intaglio printing method, a stencil printing method, an electrostatic printing method, an ink jet printing method, and a laser printing method. The ACM sensor as shown in FIG. 1 can be manufactured by screen printing, which is a stencil printing method, but other printing methods may be used and are not particularly limited.

そして、片方又は両方の電極部の表面には、金属薄膜の形成による表面処理が施されている。金属薄膜を形成することで、後述するように、検知電流の高出力化、高精度化及び安定化といった表面処理による作用効果を得ることができる。図2及び図3は、ACMセンサに関するA−A断面図を一部拡大して示している。図2では、カソード電極部3の表面に金属薄膜4が形成されており、図3では、アノード電極部1の表面に金属薄膜4が形成されている。金属薄膜は、電極部の表面が露出することがないように表面を完全に被覆する状態で形成することが好ましい。   And the surface treatment by formation of a metal thin film is given to the surface of one or both electrode parts. By forming the metal thin film, as will be described later, it is possible to obtain the effects of surface treatment such as high output, high accuracy and stabilization of the detection current. 2 and 3 are partially enlarged views of the AA cross-sectional view regarding the ACM sensor. In FIG. 2, the metal thin film 4 is formed on the surface of the cathode electrode portion 3, and in FIG. 3, the metal thin film 4 is formed on the surface of the anode electrode portion 1. The metal thin film is preferably formed in a state in which the surface is completely covered so that the surface of the electrode portion is not exposed.

金属薄膜は、金、白金、銀、銅、スズ、ニッケル、クロム、亜鉛、炭素、鉄の単一組成、又は、少なくともそれら1種類を含む組成であることが好ましい。また、金属薄膜を形成する場合、形成する電極部の導電材料と同一組成であることが好ましいが、異なる金属材料を用いることも可能で、カソード電極部及びアノード電極部の表面を電気化学反応が生じる最適な金属の組み合せとすることもできる。   The metal thin film is preferably a single composition of gold, platinum, silver, copper, tin, nickel, chromium, zinc, carbon, iron, or a composition including at least one of them. Further, when forming a metal thin film, it is preferable that the composition is the same as that of the conductive material of the electrode part to be formed, but a different metal material can be used, and the surface of the cathode electrode part and the anode electrode part undergoes an electrochemical reaction. It is also possible to obtain the optimum metal combination that results.

金属薄膜の膜厚は、表面処理による作用効果を奏するために、0.05μm〜10μmに設定することが好ましく、より好ましくは0.1μm〜5μmである。金属薄膜の膜厚を厚くすることで、検知電流の出力を高めるとともに耐久性が向上してセンサの長寿命化を図ることができる。   The film thickness of the metal thin film is preferably set to 0.05 μm to 10 μm, more preferably 0.1 μm to 5 μm, in order to achieve the effect of surface treatment. By increasing the thickness of the metal thin film, it is possible to increase the output of the detection current and improve the durability, thereby extending the life of the sensor.

金属薄膜は、湿式めっき処理又は乾式めっき処理により形成することができる。湿式めっき処理としては、電気めっき、無電解めっき及び複合めっきが挙げられる。電気めっきは、めっきとして付与する金属成分を含むめっき浴中に電極センサを入れ、被電極部に外部電源より通電し、電気化学的に金属を析出させて金属薄膜を形成する表面処理方法である。無電解めっきは、めっきとして付与する金属成分を含むめっき浴中に電極部を浸漬し、電極部の表面で反応させ、目的とする金属成分を化学的に還元析出させて金属薄膜を形成する表面処理方法である。複合めっきは、めっきとして付与する金属成分を含むめっき浴中に、樹脂などの微粒子を懸濁させ、微粒子を含む金属薄膜を成膜する表面処理方法である。   The metal thin film can be formed by a wet plating process or a dry plating process. Examples of the wet plating process include electroplating, electroless plating, and composite plating. Electroplating is a surface treatment method in which an electrode sensor is placed in a plating bath containing a metal component to be applied as plating, and an electrode is energized from an external power source to deposit metal electrochemically to form a metal thin film. . Electroless plating is a surface on which a metal thin film is formed by immersing an electrode part in a plating bath containing a metal component to be applied as plating, reacting on the surface of the electrode part, and chemically reducing and depositing the target metal component. It is a processing method. Composite plating is a surface treatment method in which fine particles such as resin are suspended in a plating bath containing a metal component to be applied as plating to form a metal thin film containing the fine particles.

また、乾式めっき処理としては、蒸着及びスパッタリングが挙げられ、真空中で目的物の表面に金属薄膜を形成する表面処理方法である。蒸着は、金属や酸化物などを蒸発させ、目的物の表面に付着させて金属薄膜を形成する表面処理方法で、物理的反応を利用した物理蒸着又は化学的反応を利用した化学蒸着がある。付与する金属薄膜の組成、密着性を考慮して、物理蒸着または化学蒸着を適宜選択すればよい。スパッタリングは、物理蒸着の一種であり、真空中にアルゴンなどの不活性ガスを導入し、ターゲットと目的物との間に高電圧を印加し、アルゴンイオンがターゲットに衝突して金属原子が放出されて目的物の表面に蒸着が行われ、金属薄膜を形成する表面処理方法である。   Further, examples of the dry plating treatment include vapor deposition and sputtering, which are surface treatment methods for forming a metal thin film on the surface of a target object in a vacuum. Vapor deposition is a surface treatment method in which a metal thin film is formed by evaporating a metal or an oxide and adhering it to the surface of a target object, and includes physical vapor deposition using a physical reaction or chemical vapor deposition using a chemical reaction. Physical vapor deposition or chemical vapor deposition may be appropriately selected in consideration of the composition and adhesion of the metal thin film to be applied. Sputtering is a type of physical vapor deposition, in which an inert gas such as argon is introduced into a vacuum, a high voltage is applied between the target and the target, and argon ions collide with the target to release metal atoms. This is a surface treatment method in which vapor deposition is performed on the surface of a target object to form a metal thin film.

図2及び図3に示すように、金属薄膜を電極部の露出表面に形成する場合には、めっき処理の前に金属薄膜を形成しない部位の表面に樹脂膜等のめっき防止膜を形成するマスキングを行い、めっき処理した後にめっき防止膜を除去すれば、電極部の露出表面だけに金属薄膜を形成する表面処理を行うことができる。   As shown in FIGS. 2 and 3, when a metal thin film is formed on the exposed surface of the electrode portion, masking for forming a plating prevention film such as a resin film on the surface of the portion where the metal thin film is not formed before the plating process. If the plating preventive film is removed after performing the plating process, a surface treatment for forming a metal thin film only on the exposed surface of the electrode portion can be performed.

上述したように、電極部を導電性ペーストを用いた印刷法により形成した場合、導電性ペーストは、一般的に、樹脂中に2〜10μmのフレーク状の金属粉末(以下、金属フレークと記す)が約70重量%分散したもので、こうした導電性ペーストが硬化した状態では、電極部の表面における電気化学反応部位となる面積比率は、樹脂部分が絶縁性となるため、金属フレーク部分のみの面積に対応する70%程度と考えられる。そのため、電極部の表面に金属薄膜を形成することは、電気化学反応部位の表面積を増加させ、また、金属薄膜により電極部の金属純度が向上するようになるため、電気化学反応の効率が向上する。そのため、高出力の検知電流が安定して得られるようになり、微量成分を高精度で検知することが可能となる。また、導電性ペーストの硬化した凹凸表面に金属薄膜を形成することで、金属薄膜のアンカー効果が生じるようになり、耐久性の向上を図ることができる。   As described above, when the electrode portion is formed by a printing method using a conductive paste, the conductive paste is generally 2 to 10 μm flaky metal powder in the resin (hereinafter referred to as metal flake). In such a state that the conductive paste is cured, the area ratio of the electrochemical reaction site on the surface of the electrode part is the insulating part of the resin part, so that the area of only the metal flake part is It is considered to be about 70% corresponding to. Therefore, forming a metal thin film on the surface of the electrode part increases the surface area of the electrochemical reaction site, and the metal thin film improves the metal purity of the electrode part, thus improving the efficiency of the electrochemical reaction. To do. Therefore, a high-output detection current can be stably obtained, and a trace component can be detected with high accuracy. In addition, by forming a metal thin film on the uneven surface of the conductive paste that has been cured, an anchor effect of the metal thin film is produced, and durability can be improved.

電極部が導電性ペーストで形成されていない場合でも、印刷方法を実施する際に、導電性ペーストを硬化させる熱処理工程、マスキング除去工程、基板研磨工程等において、溶剤、洗浄剤、水溶液に電極部の露出表面が接触するようになり、電気抵抗の高い酸化皮膜が表面に生成される。こうした酸化皮膜は、電極表面で行われる電気化学反応を抑制するように作用するため、検知電流の出力低下及び不安定化を招くようになる。そのため、印刷方法により電極部を形成した後に金属薄膜を形成する表面処理を行うことで、電極部の露出表面に形成された酸化皮膜が金属薄膜で完全に被覆されるようになる。電極部表面に高純度の金属薄膜を表面処理により形成することで、酸化皮膜の影響を受けることなく電極部の電気化学反応効率を向上させ、高出力の検知電流を安定して得られるようになり、微量成分を高精度で検知することが可能となる。   Even when the electrode part is not formed of a conductive paste, when performing the printing method, in the heat treatment process for curing the conductive paste, the masking removal process, the substrate polishing process, etc., the electrode part is applied to a solvent, a cleaning agent, and an aqueous solution. The exposed surface of the film comes into contact with each other, and an oxide film having a high electric resistance is generated on the surface. Since such an oxide film acts to suppress the electrochemical reaction performed on the electrode surface, the output of the detection current is reduced and destabilized. Therefore, by performing the surface treatment for forming the metal thin film after forming the electrode portion by the printing method, the oxide film formed on the exposed surface of the electrode portion is completely covered with the metal thin film. By forming a high-purity metal thin film on the surface of the electrode part by surface treatment, the electrochemical reaction efficiency of the electrode part is improved without being affected by the oxide film, and a high output detection current can be obtained stably. Thus, it is possible to detect a trace component with high accuracy.

図1に示すACMセンサは、大気中の湿度により電極部に形成される0.01μm〜1μmの薄い水膜中で起こる腐食反応、つまり、電気化学反応のガルバニック電流を計測するようになっている。導電性ペーストを用いた印刷法により形成されたカソード電極部3の露出表面は、金属フレークと樹脂が混在し、金属フレークの表面と樹脂表面とは水に対するぬれ性が異なっているとともに金属フレーク自体が数μmの立体的凹凸構造となっている。そのため、低湿度環境条件のように水膜が薄くなってくると、電極部に形成される水膜は、膜厚が不均一で、かつ、不連続となりやすくなる。水膜の形成条件がこのように悪化すると、電気化学反応の反応種や反応生成物の塩化物イオン、金属イオン等の水膜中の溶解拡散速度、酸素の供給速度に影響を与え、局所的に電気化学反応が進行するなど、電極部の間に流れるガルバニック電流が不安定になるとともに出力が低下すると考えられる。こうした課題に対して、電極部の水膜が形成される露出表面に金属薄膜を形成する表面処理を行うことで、金属薄膜により露出表面が平滑化されて、ほぼ均一の膜厚で連続した水膜が形成されるようになる。そのため、電極部の電気化学反応の反応効率の向上が図れ、高出力の検知電流を安定して得ることが可能となる。   The ACM sensor shown in FIG. 1 measures a corrosion reaction that occurs in a thin water film having a thickness of 0.01 μm to 1 μm formed on an electrode portion due to atmospheric humidity, that is, a galvanic current of an electrochemical reaction. . The exposed surface of the cathode electrode portion 3 formed by a printing method using a conductive paste is a mixture of metal flakes and resin, and the metal flake surface and the resin surface have different wettability to water and the metal flake itself. Has a three-dimensional uneven structure of several μm. For this reason, when the water film becomes thinner as in the low humidity environment condition, the water film formed on the electrode portion is non-uniform in film thickness and tends to be discontinuous. When the water film formation conditions deteriorate in this way, the reaction species of the electrochemical reaction, the reaction product's chloride ions, metal ions, etc. dissolve and diffuse in the water film, and the oxygen supply rate is affected. It is considered that the output decreases as the galvanic current flowing between the electrode portions becomes unstable, such as when an electrochemical reaction proceeds. To deal with these problems, surface treatment is performed by forming a metal thin film on the exposed surface on which the water film of the electrode part is formed, so that the exposed surface is smoothed by the metal thin film, and the A film is formed. Therefore, the reaction efficiency of the electrochemical reaction at the electrode part can be improved, and a high-output detection current can be stably obtained.

本発明に係る実施例について、以下に具体的に説明する。   Examples according to the present invention will be specifically described below.

[実施例1]
図1に示す構造を有する鉄―銀系ACMセンサ(市販の(公社)腐食防食学会腐食センター検定合格品)を用いた。このACMセンサは、アノード電極部は炭素鋼からなり、カソード電極部は、銀ペーストを用いたスクリーン印刷により形成されている。カソード電極部(層厚15μm)の露出表面に銀の金属薄膜を湿式めっき処理により形成する表面処理を行った。湿式めっき処理では、前処理として、ACMセンサをアルカリ水溶液に1分間浸漬し、次いで、脱イオン水で洗浄、アセトンで脱脂した後室内乾燥を施した。次に、ACMセンサをシアン化銀及びシアン化カリウムを含むめっき液に浸漬し、20℃にて、カソード電極部3に120C通電した。後処理として、めっき処理したACMセンサ(以下、めっきセンサと略称する)をイオン交換水で数回洗浄後室内乾燥した。カソード電極部の表面に形成された金属薄膜の膜厚は、マイクロメータ(株式会社ミツトヨ製)で測定したところ、5μmであった。
[Example 1]
An iron-silver-based ACM sensor having a structure shown in FIG. 1 (commercially available (Corporation) Corrosion and Corrosion Society Corrosion Center certification product) was used. In this ACM sensor, the anode electrode portion is made of carbon steel, and the cathode electrode portion is formed by screen printing using a silver paste. A surface treatment was performed to form a silver metal thin film on the exposed surface of the cathode electrode portion (layer thickness: 15 μm) by wet plating. In the wet plating treatment, as a pretreatment, the ACM sensor was immersed in an alkaline aqueous solution for 1 minute, then washed with deionized water, degreased with acetone, and then dried indoors. Next, the ACM sensor was immersed in a plating solution containing silver cyanide and potassium cyanide, and the cathode electrode portion 3 was energized with 120 C at 20 ° C. As a post-treatment, the plated ACM sensor (hereinafter abbreviated as a plating sensor) was washed several times with ion-exchanged water and then dried indoors. The film thickness of the metal thin film formed on the surface of the cathode electrode part was 5 μm as measured with a micrometer (manufactured by Mitutoyo Corporation).

[実施例2]
実施例1と同様のACMセンサを用い、図2に示すように、カソード電極部の表面に金の金属薄膜を湿式めっき処理により形成する表面処理を行った。湿式めっき処理では、実施例1と同様の前処理を行った後、ACMセンサをシアン化金カリウム、リン酸二水素カリウム、クエン酸、EDTAコバルトカリウム、リン酸水素二カリウムを含むめっき液に浸漬し、50℃にて、カソード電極部に300C通電した。その後、実施例1と同様の後処理を行った。表面処理されためっきセンサを樹脂に埋め込み、カッタで切断して露出した電極部の断面を湿式研磨後、電子顕微鏡(日本電子株式会社製)を用いて断面観察を行った。電極部の露出表面は金属薄膜で被覆されており、形成された金属薄膜の膜厚を測定したところ、約0.5μmであった。
[Example 2]
Using the same ACM sensor as in Example 1, as shown in FIG. 2, a surface treatment was performed to form a gold metal thin film on the surface of the cathode electrode portion by wet plating. In the wet plating process, after the same pretreatment as in Example 1, the ACM sensor is immersed in a plating solution containing potassium gold cyanide, potassium dihydrogen phosphate, citric acid, EDTA cobalt potassium, and dipotassium hydrogen phosphate. Then, 300C was applied to the cathode electrode portion at 50 ° C. Then, the post-process similar to Example 1 was performed. The surface-treated plating sensor was embedded in a resin, and the section of the electrode part exposed by cutting with a cutter was wet-polished, and then the section was observed using an electron microscope (manufactured by JEOL Ltd.). The exposed surface of the electrode part was covered with a metal thin film, and the thickness of the formed metal thin film was measured and found to be about 0.5 μm.

[実施例3]
実施例1と同様のACMセンサを用い、図2に示すように、カソード電極部の表面に白金の金属薄膜を湿式めっき処理により形成する表面処理を行った。湿式めっき処理では、実施例1と同様の前処理を行った後、ACMセンサを塩化白金酸、アミン亜硝酸、硫酸、スルファミン酸を含むめっき液に浸漬し、60℃にて、カソード電極部に300C通電した。その後、実施例1と同様の後処理を行った。形成された金属薄膜の膜厚を実施例2と同様に測定したところ、約0.5μmであった。
[Example 3]
Using the same ACM sensor as in Example 1, as shown in FIG. 2, a surface treatment was performed to form a platinum metal thin film on the surface of the cathode electrode portion by wet plating. In the wet plating process, after the same pretreatment as in Example 1, the ACM sensor was immersed in a plating solution containing chloroplatinic acid, amine nitrous acid, sulfuric acid, and sulfamic acid, and applied to the cathode electrode portion at 60 ° C. 300C was energized. Then, the post-process similar to Example 1 was performed. When the film thickness of the formed metal thin film was measured in the same manner as in Example 2, it was about 0.5 μm.

[実施例4]
実施例1と同様のACMセンサを用い、図2に示すように、カソード電極部の表面に銅の金属薄膜を湿式めっき処理により形成する表面処理を行った。湿式めっき処理では、実施例1と同様の前処理を行った後、ACMセンサをシアン化銅及びシアン化ナトリウムを含むめっき液に浸漬し、50℃にて、カソード電極部に120C通電した。その後、実施例1と同様の後処理を行った。形成された金属薄膜の膜厚を実施例1と同様に測定したところ、5μmであった。
[Example 4]
Using the same ACM sensor as in Example 1, as shown in FIG. 2, a surface treatment was performed to form a copper metal thin film on the surface of the cathode electrode portion by a wet plating process. In the wet plating process, the same pretreatment as in Example 1 was performed, and then the ACM sensor was immersed in a plating solution containing copper cyanide and sodium cyanide, and 120 C was energized to the cathode electrode portion at 50 ° C. Then, the post-process similar to Example 1 was performed. When the thickness of the formed metal thin film was measured in the same manner as in Example 1, it was 5 μm.

[実施例5]
実施例1と同様のACMセンサを用い、図2に示すように、カソード電極部の表面にニッケルの金属薄膜を湿式めっき処理により形成する表面処理を行った。湿式めっき処理では、実施例1と同様の前処理を行った後、ACMセンサを硫酸ニッケル、塩化ニッケル、ホウ酸を含むめっき液に浸漬し、50℃にて、カソード電極部に120C通電した。その後、実施例1と同様の後処理を行った。形成された金属薄膜の膜厚を実施例1と同様に測定したところ、5μmであった。
[Example 5]
Using the same ACM sensor as in Example 1, as shown in FIG. 2, a surface treatment was performed to form a nickel metal thin film on the surface of the cathode electrode portion by wet plating. In the wet plating process, the same pretreatment as in Example 1 was performed, and then the ACM sensor was immersed in a plating solution containing nickel sulfate, nickel chloride, and boric acid, and the cathode electrode portion was energized with 120C at 50 ° C. Then, the post-process similar to Example 1 was performed. When the thickness of the formed metal thin film was measured in the same manner as in Example 1, it was 5 μm.

[実施例6]
実施例1と同様のACMセンサを用い、図2に示すように、カソード電極部の表面にクロムの金属薄膜を湿式めっき処理により形成する表面処理を行った。湿式めっき処理では、実施例1と同様の前処理を行った後、ACMセンサを無水クロム酸及び硫酸を含むめっき液に浸漬し、50℃にて、カソード電極部に300C通電した。その後、実施例1と同様の後処理を行った。形成された金属薄膜の膜厚を実施例1と同様に測定したところ、5μmであった。
[Example 6]
Using the same ACM sensor as in Example 1, as shown in FIG. 2, a surface treatment was performed to form a chromium metal thin film on the surface of the cathode electrode portion by a wet plating process. In the wet plating process, the same pretreatment as in Example 1 was performed, and then the ACM sensor was immersed in a plating solution containing chromic anhydride and sulfuric acid, and 300 C was applied to the cathode electrode portion at 50 ° C. Then, the post-process similar to Example 1 was performed. When the thickness of the formed metal thin film was measured in the same manner as in Example 1, it was 5 μm.

[実施例7]
実施例1と同様のACMセンサを用い、図2に示すように、カソード電極部の表面に炭素の金属薄膜を湿式複合めっき処理により形成する表面処理を行った。湿式複合めっき処理では、実施例1と同様の前処理を行った後、界面活性剤中に分散させたカーボンナノ粒子懸濁液を約10%添加したニッケルめっき液中にACMセンサを浸漬し、80℃にて、カソード電極部に300C通電した。その後、実施例1と同様の後処理を行った。形成された金属薄膜の膜厚を実施例1と同様に測定したところ、5μmであった。
[Example 7]
Using the same ACM sensor as in Example 1, as shown in FIG. 2, a surface treatment was performed to form a carbon metal thin film on the surface of the cathode electrode portion by wet composite plating. In the wet composite plating treatment, after performing the same pretreatment as in Example 1, the ACM sensor was immersed in a nickel plating solution to which about 10% of the carbon nanoparticle suspension dispersed in the surfactant was added, At 80 ° C., 300 C was passed through the cathode electrode portion. Then, the post-process similar to Example 1 was performed. When the thickness of the formed metal thin film was measured in the same manner as in Example 1, it was 5 μm.

[実施例8]
実施例1で用いたACMセンサのアノード電極部として使用されている炭素鋼基板(厚さ0.8mm)を準備した。この炭素鋼基板の表面に、スクリーン印刷法にてエポキシ系樹脂(ヘンケルジャパン株式会社製)を櫛形に印刷し、窒素ガス雰囲気中、150℃、1時間の熱処理にて硬化させ、絶縁部(膜厚20μm)を形成した。次に、スクリーン印刷法にて銅ペーストをカソード電極部として絶縁部に積層印刷後、熱処理硬化し、図1に示すように、鉄―銅系ACMセンサを作成した。このセンサにおいて、カソード電極部の銅ペースト表面に銅の金属薄膜を湿式めっきにより形成する表面処理を行った。湿式めっき処理では、実施例1と同様の前処理を行った後、ACMセンサをシアン化銅及びシアン化ナトリウムを含むめっき液に浸漬し、50℃にて、カソード電極部に120C通電した。その後、実施例1と同様の後処理を行った。形成された金属薄膜の膜厚を実施例1と同様に測定したところ、5μmであった。
[Example 8]
A carbon steel substrate (thickness 0.8 mm) used as an anode electrode part of the ACM sensor used in Example 1 was prepared. On the surface of this carbon steel substrate, an epoxy resin (manufactured by Henkel Japan Co., Ltd.) is printed in a comb shape by screen printing, and cured by heat treatment at 150 ° C. for 1 hour in a nitrogen gas atmosphere, and an insulating portion (film) A thickness of 20 μm) was formed. Next, the copper paste was laminated and printed on the insulating portion as a cathode electrode portion by screen printing, and then heat-treated and cured to produce an iron-copper ACM sensor as shown in FIG. In this sensor, a surface treatment was performed by forming a copper metal thin film on the surface of the copper paste of the cathode electrode portion by wet plating. In the wet plating process, the same pretreatment as in Example 1 was performed, and then the ACM sensor was immersed in a plating solution containing copper cyanide and sodium cyanide, and 120 C was energized to the cathode electrode portion at 50 ° C. Then, the post-process similar to Example 1 was performed. When the thickness of the formed metal thin film was measured in the same manner as in Example 1, it was 5 μm.

[実施例9]
実施例1と同様のACMセンサを用い、図3に示すように、アノード電極部の炭素鋼表面に亜鉛の金属薄膜を湿式めっき処理により形成する表面処理を行った。湿式めっき処理では、実施例1と同様の前処理を行った後、ACMセンサを酸化亜鉛、シアン化ナトリウム及び水酸化ナトリウムを含むめっき液に浸漬し、25℃にて、アノード電極部に300C通電した。その後、実施例1と同様の後処理を行った。形成された金属薄膜の膜厚を実施例1と同様に測定したところ、5μmであった。
[Example 9]
Using the same ACM sensor as in Example 1, as shown in FIG. 3, a surface treatment was performed to form a zinc metal thin film on the carbon steel surface of the anode electrode portion by wet plating. In the wet plating process, after performing the same pretreatment as in Example 1, the ACM sensor was immersed in a plating solution containing zinc oxide, sodium cyanide and sodium hydroxide, and the anode electrode part was energized with 300C at 25 ° C. did. Then, the post-process similar to Example 1 was performed. When the thickness of the formed metal thin film was measured in the same manner as in Example 1, it was 5 μm.

[実施例10]
実施例1と同様のACMセンサを用い、図3に示すように、アノード電極部の炭素鋼表面に鉄の金属薄膜を湿式めっき処理により形成する表面処理を行った。湿式めっき処理では、実施例1と同様の前処理を行った後、ACMセンサをスルファミン酸鉄(II)、フッ化水素アンモニウム及びサッカリンを含むめっき液に浸漬し、50℃にて、アノード電極部に600C通電した。その後、実施例1と同様の後処理を行った。形成された金属薄膜の膜厚を実施例1と同様に測定したところ、5μmであった。
[Example 10]
Using the same ACM sensor as in Example 1, as shown in FIG. 3, a surface treatment was performed to form an iron metal thin film on the carbon steel surface of the anode electrode portion by wet plating. In the wet plating process, the same pretreatment as in Example 1 was performed, and then the ACM sensor was immersed in a plating solution containing iron (II) sulfamate, ammonium hydrogen fluoride, and saccharin, and the anode electrode portion was formed at 50 ° C. 600C was energized. Then, the post-process similar to Example 1 was performed. When the thickness of the formed metal thin film was measured in the same manner as in Example 1, it was 5 μm.

[実施例11]
実施例1と同様のACMセンサを用い、図3に示すように、アノード電極部の炭素鋼表面にニッケルの金属薄膜を湿式めっき処理により形成する表面処理を行った。湿式めっき処理では、実施例1と同様の前処理を行った後、ACMセンサを硫酸ニッケル、塩化ニッケル、ホウ酸を含むめっき液に浸漬し、50℃にて、アノード電極部に120C通電した。その後、実施例1と同様の後処理を行った。形成された金属薄膜の膜厚を実施例1と同様に測定したところ、5μmであった。
[Example 11]
Using the same ACM sensor as in Example 1, as shown in FIG. 3, a surface treatment was performed to form a nickel metal thin film on the carbon steel surface of the anode electrode portion by wet plating. In the wet plating process, the same pretreatment as in Example 1 was performed, and then the ACM sensor was immersed in a plating solution containing nickel sulfate, nickel chloride, and boric acid, and the anode electrode portion was energized with 120C at 50 ° C. Then, the post-process similar to Example 1 was performed. When the thickness of the formed metal thin film was measured in the same manner as in Example 1, it was 5 μm.

[実施例12]
実施例1と同様のACMセンサを用い、図3に示すように、アノード電極部の炭素鋼表面にスズの金属薄膜を湿式めっき処理により形成する表面処理を行った。湿式めっき処理では、実施例1と同様の前処理を行った後、ACMセンサを酸化第一スズ及び有機酸を含むめっき液に浸漬し、35℃にて、アノード電極部に120C通電した。その後、実施例1と同様の後処理を行った。形成された金属薄膜の膜厚を実施例1と同様に測定したところ、5μmであった。
[Example 12]
Using the same ACM sensor as in Example 1, as shown in FIG. 3, a surface treatment was performed to form a metal thin film of tin on the carbon steel surface of the anode electrode portion by wet plating. In the wet plating process, the same pretreatment as in Example 1 was performed, and then the ACM sensor was immersed in a plating solution containing stannous oxide and an organic acid, and 120C was applied to the anode electrode part at 35 ° C. Then, the post-process similar to Example 1 was performed. When the thickness of the formed metal thin film was measured in the same manner as in Example 1, it was 5 μm.

[実施例13]
実施例1と同様のACMセンサを用い、図3に示すように、アノード電極部の炭素鋼表面に銅の金属薄膜を湿式めっき処理により形成する表面処理を行った。湿式めっき処理では、実施例1と同様の前処理を行った後、ACMセンサをシアン化銅及びシアン化ナトリウムを含むめっき液に浸漬し、50℃にて、アノード電極部に120C通電した。その後、実施例1と同様の後処理を行った。形成された金属薄膜の膜厚を実施例1と同様に測定したところ、5μmであった。
[Example 13]
Using the same ACM sensor as in Example 1, as shown in FIG. 3, a surface treatment was performed to form a copper metal thin film on the carbon steel surface of the anode electrode portion by a wet plating process. In the wet plating process, the same pretreatment as in Example 1 was performed, and then the ACM sensor was immersed in a plating solution containing copper cyanide and sodium cyanide, and the anode electrode portion was energized with 120C at 50 ° C. Then, the post-process similar to Example 1 was performed. When the thickness of the formed metal thin film was measured in the same manner as in Example 1, it was 5 μm.

[実施例14]
実施例1と同様のACMセンサを用い、カソード電極部の表面に、白金ターゲットを備えたイオンコーター(日本電子株式会社製)を使用し、白金の金属薄膜をスパッタコーティングにより形成する表面処理を行った。スパッタコーティングでは、ACMセンサのカソード電極部の露出表面以外の部位をマスキング樹脂にてマスクした後、ACMセンサをイオンコーターの真空チャンバー内に設置した。チャンバー内の圧力を5Pa以下まで排気し、次いで、アルゴンガスを導入し、スパッタリング電流40mAで180秒間スパッタリングを行った。次に、樹脂マスキングを溶剤で取り除いた後、イオン交換水で数回洗浄後、室内乾燥した。形成された金属薄膜の膜厚を実施例2と同様に測定したところ、約0.1μmであった。
[Example 14]
Using the same ACM sensor as in Example 1, using an ion coater (manufactured by JEOL Ltd.) equipped with a platinum target on the surface of the cathode electrode part, surface treatment is performed to form a platinum metal thin film by sputter coating. It was. In the sputter coating, a part other than the exposed surface of the cathode electrode portion of the ACM sensor was masked with a masking resin, and then the ACM sensor was placed in the vacuum chamber of the ion coater. The pressure in the chamber was evacuated to 5 Pa or less, then argon gas was introduced, and sputtering was performed at a sputtering current of 40 mA for 180 seconds. Next, the resin masking was removed with a solvent, washed several times with ion-exchanged water, and then dried indoors. When the film thickness of the formed metal thin film was measured in the same manner as in Example 2, it was about 0.1 μm.

[実施例15]
実施例1と同様のACMセンサを用い、カソード電極部の表面に、金ターゲットを備えたイオンコーター(日本電子株式会社製)を使用し、金の金属薄膜をスパッタコーティングにより形成する表面処理を行った。スパッタコーティングでは、ACMセンサのカソード電極の露出表面以外の部位をマスキング樹脂にてマスクした後、ACMセンサをイオンコーターの真空チャンバー内に設置した。チャンバー内の圧力を5Pa以下まで排気し、次いで、アルゴンガスを導入し、スパッタリング電流40mAで120秒間スパッタリングを行った。次に、樹脂マスキングを溶剤で取り除いた後、イオン交換水で数回洗浄後、室内乾燥した。形成された金属薄膜の膜厚を実施例2と同様に測定したところ、約0.1μmであった。
[Example 15]
Using the same ACM sensor as in Example 1, using an ion coater (manufactured by JEOL Ltd.) equipped with a gold target on the surface of the cathode electrode part, surface treatment is performed to form a gold metal thin film by sputter coating. It was. In the sputter coating, portions other than the exposed surface of the cathode electrode of the ACM sensor were masked with a masking resin, and then the ACM sensor was placed in the vacuum chamber of the ion coater. The pressure in the chamber was evacuated to 5 Pa or less, then argon gas was introduced, and sputtering was performed at a sputtering current of 40 mA for 120 seconds. Next, the resin masking was removed with a solvent, washed several times with ion-exchanged water, and then dried indoors. When the film thickness of the formed metal thin film was measured in the same manner as in Example 2, it was about 0.1 μm.

[実施例16]
実施例1と同様のACMセンサを用い、カソード電極部の表面に、蒸着装置(サンユー電子株式会社製)を使用し、炭素の金属薄膜を蒸着処理により形成する表面処理を行った。蒸着処理では、ACMセンサのカソード電極部の露出表面以外の部位をマスキング樹脂にてマスクした後、ACMセンサを蒸着装置の真空チャンバー内に設置した。チャンバー内を低真空に排気後、蒸着処理を数回繰り返し行った。次に、樹脂マスキングを溶剤で取り除いた後、イオン交換水で数回洗浄後、室内乾燥した。形成された金属薄膜の膜厚を実施例1と同様に測定したところ、約0.1μmであった。
[Example 16]
Using the same ACM sensor as in Example 1, a vapor deposition apparatus (manufactured by Sanyu Electronics Co., Ltd.) was used on the surface of the cathode electrode portion, and surface treatment was performed to form a carbon metal thin film by vapor deposition. In the vapor deposition process, a portion other than the exposed surface of the cathode electrode portion of the ACM sensor was masked with a masking resin, and then the ACM sensor was placed in a vacuum chamber of the vapor deposition apparatus. After the chamber was evacuated to a low vacuum, the vapor deposition process was repeated several times. Next, the resin masking was removed with a solvent, washed several times with ion-exchanged water, and then dried indoors. When the film thickness of the formed metal thin film was measured in the same manner as in Example 1, it was about 0.1 μm.

[比較例1]
実施例1と同様のACMセンサをイオン交換水で数回洗浄後室内乾燥した。
[Comparative Example 1]
The same ACM sensor as in Example 1 was washed several times with ion-exchanged water and then dried indoors.

[比較例2]
実施例1で用いたACMセンサのアノード電極部として使用されている炭素鋼基板(厚さ0.8mm)を準備し、炭素鋼基板の表面に、スクリーン印刷法にてエポキシ系樹脂(ヘンケルジャパン株式会社製)を櫛形に印刷して、窒素ガス雰囲気中、150℃、1時間の熱処理にて硬化させ、絶縁部(膜厚20μm)を形成した。次に、櫛形状の絶縁部の間に露出したアノード電極部となる炭素鋼の表面に樹脂マスキングを施した後、無電解めっき法にて、櫛形部分全体に膜厚10μmの銀の薄膜を積層した。無電解めっき法では、アンモニア性硝酸銀を含むめっき液中に、炭素鋼基板を60℃で5分間浸漬して銀薄膜を成膜後、乾燥した。次に、樹脂マスキングを溶剤で取り除いた後、イオン交換水で数回洗浄後室内乾燥した。炭素鋼基板をアノード電極部1とし、櫛形状に形成された絶縁部上に形成された銀薄膜をカソード電極部2とする電極センサを作製した。
[Comparative Example 2]
A carbon steel substrate (thickness 0.8 mm) used as the anode electrode part of the ACM sensor used in Example 1 was prepared, and an epoxy resin (Henkel Japan Co., Ltd.) was prepared on the surface of the carbon steel substrate by screen printing. Was printed in a comb shape and cured by heat treatment at 150 ° C. for 1 hour in a nitrogen gas atmosphere to form an insulating portion (film thickness 20 μm). Next, resin masking is applied to the surface of the carbon steel to be the anode electrode part exposed between the comb-shaped insulating parts, and then a silver thin film having a thickness of 10 μm is laminated on the entire comb-shaped part by electroless plating. did. In the electroless plating method, a carbon steel substrate was immersed in a plating solution containing ammoniacal silver nitrate at 60 ° C. for 5 minutes to form a silver thin film, and then dried. Next, after removing the resin masking with a solvent, it was washed several times with ion-exchanged water and then dried indoors. An electrode sensor was produced in which a carbon steel substrate was used as the anode electrode portion 1 and a silver thin film formed on the comb-shaped insulating portion was used as the cathode electrode portion 2.

[比較例3]
比較例1で得られたACMセンサを25%塩酸水溶液に30秒浸漬後、イオン交換水の流水で20分間洗浄後、純水の超音波浴中で5分間、3回洗浄後室内乾燥した。
[Comparative Example 3]
The ACM sensor obtained in Comparative Example 1 was immersed in a 25% aqueous hydrochloric acid solution for 30 seconds, washed with running ion-exchanged water for 20 minutes, then washed with pure water in an ultrasonic bath for 3 minutes, and then dried indoors.

<検知電流の測定試験>
比較例1で得られたACMセンサ及び実施例1〜16で得られためっきセンサをホットプレート(アズワン株式会社製)上で50℃に保温しながら、センサの電極部分に、NaClの付着量が10mg/m2となるように希釈した人工海水(和光純薬工業株式会社製)を水滴状に付着させ、乾燥させた。次に、センサを恒温恒湿槽(東京理化器械株式会社製)に設置し、25℃及び相対湿度70%の環境条件並びに25℃及び相対湿度90%の環境条件の2通りの条件下において、アノード電極部とカソード電極部との間に流れる検知電流(ガルバニック電流)を測定した。検知電流の測定は、無抵抗電流計(シュリンクス株式会社製)を用い、2分間隔で測定した。そして、検知電流の値は、測定開始から2時間後に測定値が安定した状態となった場合の値を検知電流値とした。検知電流値の測定結果を表1及び表2に示す。
<Measurement test of detected current>
While the ACM sensor obtained in Comparative Example 1 and the plating sensor obtained in Examples 1 to 16 were kept at 50 ° C. on a hot plate (manufactured by ASONE Co., Ltd.), the amount of NaCl adhered to the electrode portion of the sensor. Artificial seawater (manufactured by Wako Pure Chemical Industries, Ltd.) diluted to 10 mg / m 2 was attached in the form of water droplets and dried. Next, the sensor is installed in a thermo-hygrostat (manufactured by Tokyo Rika Kikai Co., Ltd.), and under two conditions of 25 ° C. and 70% relative humidity and 25 ° C. and 90% relative humidity. A detection current (galvanic current) flowing between the anode electrode portion and the cathode electrode portion was measured. The detection current was measured at 2 minute intervals using a non-resistance ammeter (manufactured by Shrinks Corporation). The value of the detected current was defined as the detected current value when the measured value became stable after 2 hours from the start of measurement. Tables 1 and 2 show the measurement results of the detected current value.

Figure 2016145744
Figure 2016145744

湿度70%及び湿度90%のそれぞれの環境条件下における実施例1〜13の検知電流値は、比較例1の電流値よりも2倍〜18倍となっており、電極部表面に金属薄膜を湿式めっき処理により形成する表面処理を行うことで、高出力の検知電流が得られたことがわかる。   The detected current values of Examples 1 to 13 under the environmental conditions of 70% humidity and 90% humidity are 2 to 18 times the current value of Comparative Example 1, and a metal thin film is applied to the surface of the electrode part. It can be seen that a high output detection current was obtained by performing the surface treatment formed by wet plating.

Figure 2016145744
Figure 2016145744

湿度70%及び湿度90%のそれぞれの環境条件下における実施例14〜16の検知電流値は、比較例1の電流値よりも1.5倍〜13倍となっており、電極部表面に金属薄膜を乾式めっき処理により形成する表面処理を行うことで、高出力の検知電流が得られたことがわかる。   The detected current values of Examples 14 to 16 under the respective environmental conditions of 70% humidity and 90% humidity are 1.5 times to 13 times the current value of Comparative Example 1, and a metal is formed on the electrode portion surface. It can be seen that a high output detection current was obtained by performing a surface treatment for forming a thin film by dry plating.

以上の通り、実施例では検知出力が格段に向上するため、微量成分のような低濃度の場合でも検知電流が得られるようになり、微量成分を高精度で検知することが可能となる。   As described above, since the detection output is remarkably improved in the embodiment, the detection current can be obtained even at a low concentration such as a trace component, and the trace component can be detected with high accuracy.

<検知電流の安定性評価試験>
実施例1で得られためっきセンサ及び比較例1〜3で得られた電極センサを、上述した測定試験と同様に、ホットプレート上で50℃に保温しながら、各センサの電極部分に、NaClの付着量が10mg/m2となるように希釈した人工海水(和光純薬工業株式会社製)を水滴状に付着させ、乾燥させた。次に、測定試験と同様の恒温恒湿槽内に各センサを設置し、25℃、相対湿度50%の環境条件(50%RH)及び25℃、相対湿度85%の環境条件(85%RH)の2通りの条件を2時間保持した。環境条件が保持されている間、アノード電極部とカソード電極部との間に流れる検知電流(ガルバニック電流)を無抵抗電流計を用い、2分間隔で測定し、60個の測定値を得た。
<Stability evaluation test of detected current>
In the same manner as in the measurement test described above, the plating sensor obtained in Example 1 and the electrode sensor obtained in Comparative Examples 1 to 3 were kept at 50 ° C. on the hot plate, while NaCl was applied to the electrode portion of each sensor. Artificial seawater (manufactured by Wako Pure Chemical Industries, Ltd.) diluted so that the amount of adhering to 10 mg / m 2 was attached in the form of water drops and dried. Next, each sensor was installed in the same temperature and humidity chamber as in the measurement test, and the environmental condition of 25 ° C. and relative humidity of 50% (50% RH) and that of 25 ° C. and relative humidity of 85% (85% RH). ) Was maintained for 2 hours. While the environmental conditions were maintained, the detection current (galvanic current) flowing between the anode electrode portion and the cathode electrode portion was measured at a 2-minute interval using a non-resistance ammeter, and 60 measurement values were obtained. .

これらの測定結果に基づき、85%RHにおいて、測定開始から2時間後において測定値が安定した状態での電流値、及び、湿度が保持された2時間の間に測定された60個の値を母集団とする測定値の相対標準偏差(RSD)を求めた。得られた電流値及びRSDを表3に示す。   Based on these measurement results, at 85% RH, the current value in a state where the measurement value is stable after 2 hours from the start of measurement and 60 values measured during 2 hours when the humidity is maintained are obtained. The relative standard deviation (RSD) of the measured values as the population was determined. The obtained current values and RSD are shown in Table 3.

Figure 2016145744
Figure 2016145744

実施例1及び比較例1〜3で得られたセンサは、腐食センサとして用いた場合、その電流値は環境条件における湿度変化に追随するようになる。上述した評価試験では、恒温恒湿槽内で設定される環境条件は、50%RH及び85%RHともに、RSD0.5%以下で制御されていることから、これらの環境条件下で測定される検知電流の変動は、センサの検知電流の安定性を示すものと考えられる。   When the sensor obtained in Example 1 and Comparative Examples 1 to 3 is used as a corrosion sensor, the current value follows the humidity change in the environmental conditions. In the above-described evaluation test, the environmental conditions set in the constant temperature and humidity chamber are controlled at RSD 0.5% or less for both 50% RH and 85% RH, and therefore are measured under these environmental conditions. The fluctuation of the detection current is considered to indicate the stability of the detection current of the sensor.

比較例1は、鉄―銀系ACMセンサで、銀ペーストを用いてスクリーン印刷により形成されたカソード電極部とし、炭素鋼をアノード電極部としている。比較例2は、特許文献1に記載されるように、電極部の絶縁層の表面に、貴金属の銀を直接めっきした電極センサである。比較例3は、特許文献2に記載されるように、酸洗浄したACMセンサである。比較例2及び3の85%RHの電流出力は、比較例1に比べて電流値が増加している。電流値のRSDは、50%RH及び85%RHでは、比較例3が比較例1よりも低くなっており、検知電流が安定して検知精度の向上がみられたが、比較例2は比較例1よりも高くなっており、検知精度の低下がみられた。   Comparative Example 1 is an iron-silver ACM sensor, which uses a silver paste as a cathode electrode portion formed by screen printing, and uses carbon steel as an anode electrode portion. Comparative Example 2 is an electrode sensor in which noble metal silver is directly plated on the surface of the insulating layer of the electrode portion as described in Patent Document 1. Comparative Example 3 is an acid-washed ACM sensor as described in Patent Document 2. The current value of the 85% RH current output of Comparative Examples 2 and 3 is higher than that of Comparative Example 1. The RSD of the current value was 50% RH and 85% RH, Comparative Example 3 was lower than Comparative Example 1, and the detection current was stable and the detection accuracy was improved, but Comparative Example 2 was compared. It was higher than Example 1, and a decrease in detection accuracy was observed.

これに対して、実施例1では、電流値のRSDは、50%RHで2.6%、85%RHで4.3%となり、比較例1〜3に比べて著しく低下している。つまり、実施例1では、比較例1〜3よりも検知電流の安定性が確認され、検知精度が格段に向上しているものと考えられる。なお、比較例2では、85%RHの測定において、電流値が急上昇するスパイク状のノイズが確認されており、実施例1のように、電極部を導電性ペーストにより形成して表面に金属薄膜を形成する表面処理を行うことで、外部から電極部に伝搬し重畳する電流ノイズを抑制する効果があることが推測された。   On the other hand, in Example 1, the RSD of the current value is 2.6% at 50% RH and 4.3% at 85% RH, which is significantly lower than those of Comparative Examples 1 to 3. That is, in Example 1, the stability of the detection current is confirmed as compared with Comparative Examples 1 to 3, and it is considered that the detection accuracy is remarkably improved. In Comparative Example 2, spike-like noise in which the current value suddenly increases was confirmed in the measurement at 85% RH. As in Example 1, the electrode part was formed of a conductive paste and a metal thin film was formed on the surface. By performing the surface treatment for forming the film, it is presumed that there is an effect of suppressing current noise that is propagated and superimposed on the electrode portion from the outside.

<微量成分の検知試験>
実施例1および比較例1の電極センサをホットプレート上で50℃に保温しながら、電極部分に、NaClの付着量が、0.001mg/m2〜1mg/m2の所定量となるように希釈した人工海水(和光純薬工業株式会社製)を水滴状に付着させ、乾燥させた。次に、測定試験と同様の恒温恒湿槽内に各センサを設置し、25℃及び相対湿度90%の環境条件を2時間保持した。環境条件が保持されている間、アノード電極部とカソード電極部との間に流れる検知電流(ガルバニック電流)を無抵抗電流計を用いて2分間隔で測定し、60個の測定値を得た。安定性評価試験と同様の2時間後の安定した電流値及び測定値のRSDを求め、得られたデータを表4に示す。
<Trace detection test>
While kept the electrode sensor of Example 1 and Comparative Example 1 to 50 ° C. on a hot plate, an electrode portion, so that the amount of adhesion of NaCl is, a predetermined amount of 0.001mg / m 2 ~1mg / m 2 Diluted artificial seawater (manufactured by Wako Pure Chemical Industries, Ltd.) was attached in the form of water droplets and dried. Next, each sensor was installed in a constant temperature and humidity chamber similar to the measurement test, and environmental conditions of 25 ° C. and a relative humidity of 90% were maintained for 2 hours. While the environmental conditions were maintained, the detection current (galvanic current) flowing between the anode electrode portion and the cathode electrode portion was measured at intervals of 2 minutes using a non-resistance ammeter, and 60 measurement values were obtained. . The stable current value and the RSD of the measured value after 2 hours as in the stability evaluation test were determined, and the obtained data is shown in Table 4.

Figure 2016145744
Figure 2016145744

比較例1のセンサは、NaClの付着量が0.01mg/m2以下にて、無抵抗電流計の検出限界の0.1nA未満となるために、計測不可能である。また、NaClの付着量0.1mg/m2及び1.0mg/m2において、それぞれ0.0002μA及び0.0033μAの検知電流値が測定されているが、電流値のRSDが20%以上とバラツキが大きくなっている。これに対して、実施例1のセンサは、NaClの付着量が0.001mg/m2まで低下しても、0.0001μA以上の検知電流値が測定され、電流値のRSDもNaClの付着量0.01mg/m2以上で5%以下と低くなっている。また、NaClの付着量の増加に対応して検知電流値が増加しており、高い検知精度を示している。したがって、実施例1のセンサは、従来の比較例1のセンサに比べてNaClの付着量の検知限界をさらに二桁下げることができ、検知可能な微量成分の範囲が拡がるとともに高精度で検知することが可能であることが確認された。 The sensor of Comparative Example 1 cannot be measured because the amount of NaCl deposited is 0.01 mg / m 2 or less and the detection limit of the non-resistance ammeter is less than 0.1 nA. In addition, the detection current values of 0.0002 μA and 0.0033 μA were measured at the NaCl adhesion amounts of 0.1 mg / m 2 and 1.0 mg / m 2 , respectively, but the RSD of the current value varied as 20% or more. Is getting bigger. In contrast, in the sensor of Example 1, even when the NaCl adhesion amount decreased to 0.001 mg / m 2 , a detected current value of 0.0001 μA or more was measured, and the current value RSD was also the NaCl adhesion amount. It is as low as 5% or less at 0.01 mg / m 2 or more. In addition, the detection current value increases corresponding to the increase in the amount of NaCl attached, indicating high detection accuracy. Therefore, the sensor of Example 1 can further lower the detection limit of the amount of adhered NaCl by two orders of magnitude compared to the conventional sensor of Comparative Example 1, and the range of detectable trace components is widened and detected with high accuracy. It was confirmed that it was possible.

本発明に係る微量成分検知用電極センサを用いることで、高出力の検知電流が安定して得られるようになり、微量成分を高精度で検知することができる。そのため、検出可能な有害物質が増え、電極センサの適用分野が農業、食品、医療などの分野に広く拡大することとなる。ACMセンサなどの腐食センサは、大気環境の腐食原因物質の検知精度が向上し、屋外のみならず屋内や梱包材中の腐食原因物質の計測・モニタリングが可能となり、電子部品、美術品等の防食対策の構築、ライフサイクルコストの極小化に大きく貢献するものである。   By using the trace component detection electrode sensor according to the present invention, a high-output detection current can be stably obtained, and the trace component can be detected with high accuracy. Therefore, the number of harmful substances that can be detected increases, and the application field of the electrode sensor is widely expanded to fields such as agriculture, food, and medicine. Corrosion sensors such as ACM sensors improve the accuracy of detection of corrosive substances in the atmospheric environment, and enable measurement and monitoring of corrosion-causing substances not only outdoors but also indoors and in packaging materials. This greatly contributes to the establishment of measures and minimization of life cycle costs.

1・・アノード電極部、2・・・絶縁部、3・・・カソード電極部、4・・・金属薄膜 1 .... Anode electrode part, 2 ... Insulating part, 3 ... Cathode electrode part, 4 ... Metal thin film

Claims (4)

アノード電極部及びカソード電極部を備えているとともに両電極部の間に流れる検知電流を測定することで微量成分を検知する微量成分検知用電極センサの製造方法であって、少なくとも一方の電極部を導電性ペーストを用いた印刷法により形成し、片方又は両方の電極部の露出表面を被覆するように金属薄膜を形成する表面処理を行う微量成分検知用電極センサの製造方法。   A method of manufacturing an electrode sensor for detecting a minor component by detecting a minor component by measuring a detection current flowing between both electrode units, the anode electrode unit and a cathode electrode unit, wherein at least one electrode unit is A method of manufacturing a trace component detection electrode sensor, which is formed by a printing method using a conductive paste and performs a surface treatment to form a metal thin film so as to cover an exposed surface of one or both electrode portions. 導電性ペーストを用いた印刷法により形成した前記電極部の露出表面に湿式めっき処理により前記金属薄膜を形成する表面処理を行う請求項1に記載の微量成分検知用電極センサの製造方法。   The manufacturing method of the electrode sensor for trace component detection of Claim 1 which performs the surface treatment which forms the said metal thin film by the wet-plating process to the exposed surface of the said electrode part formed by the printing method using an electrically conductive paste. 前記金属薄膜は、金、白金、銀、銅、スズ、ニッケル、クロム、亜鉛、炭素、鉄の単一組成、又は、少なくともそれら1種類を含む組成である請求項1又は2に記載の微量成分検知用電極センサの製造方法。   The trace component according to claim 1 or 2, wherein the metal thin film is a single composition of gold, platinum, silver, copper, tin, nickel, chromium, zinc, carbon, iron, or a composition containing at least one of them. Manufacturing method of electrode sensor for detection. 請求項1から3のいずれかに記載の製造方法により製造された微量成分検知用電極センサ。   A trace component detection electrode sensor manufactured by the manufacturing method according to claim 1.
JP2015022611A 2015-02-06 2015-02-06 Electrode sensor for detecting trace components and method for manufacturing the same Active JP6354951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015022611A JP6354951B2 (en) 2015-02-06 2015-02-06 Electrode sensor for detecting trace components and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015022611A JP6354951B2 (en) 2015-02-06 2015-02-06 Electrode sensor for detecting trace components and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2016145744A true JP2016145744A (en) 2016-08-12
JP6354951B2 JP6354951B2 (en) 2018-07-11

Family

ID=56686284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015022611A Active JP6354951B2 (en) 2015-02-06 2015-02-06 Electrode sensor for detecting trace components and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP6354951B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6308703B1 (en) * 2017-01-31 2018-04-11 株式会社シュリンクス Method for estimating corrosion rate of structures using ACM sensor
JP6308709B1 (en) * 2017-08-28 2018-04-11 株式会社シュリンクス Environmental monitoring device
CN117322861A (en) * 2023-11-30 2024-01-02 微智医疗器械有限公司 Intracranial pressure probe manufacturing method and intracranial pressure probe
JP7455707B2 (en) 2020-09-08 2024-03-26 株式会社東芝 Harsh environment chloride measurement system and harsh environment chloride measurement method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291952A (en) * 1989-05-02 1990-12-03 Hitachi Ltd Corrosion monitoring device for metal and electric apparatus provided with said device
JP2001201451A (en) * 2000-01-20 2001-07-27 Inst Of Physical & Chemical Res Acm sensor and manufacturing method therefor
JP2007163324A (en) * 2005-12-14 2007-06-28 Taiheiyo Cement Corp Corrosion detecting member and corrosion sensor
WO2011016407A1 (en) * 2009-08-03 2011-02-10 日本電気株式会社 Biological information detector, biological information detection method, and mobile terminal
JP2011137759A (en) * 2009-12-28 2011-07-14 Mitsubishi Heavy Ind Ltd Outdoor structure
JP2014185968A (en) * 2013-03-25 2014-10-02 Central Research Institute Of Electric Power Industry Corrosion sensor, and corrosion rate measurement method and device using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291952A (en) * 1989-05-02 1990-12-03 Hitachi Ltd Corrosion monitoring device for metal and electric apparatus provided with said device
JP2001201451A (en) * 2000-01-20 2001-07-27 Inst Of Physical & Chemical Res Acm sensor and manufacturing method therefor
JP2007163324A (en) * 2005-12-14 2007-06-28 Taiheiyo Cement Corp Corrosion detecting member and corrosion sensor
WO2011016407A1 (en) * 2009-08-03 2011-02-10 日本電気株式会社 Biological information detector, biological information detection method, and mobile terminal
JP2011137759A (en) * 2009-12-28 2011-07-14 Mitsubishi Heavy Ind Ltd Outdoor structure
JP2014185968A (en) * 2013-03-25 2014-10-02 Central Research Institute Of Electric Power Industry Corrosion sensor, and corrosion rate measurement method and device using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6308703B1 (en) * 2017-01-31 2018-04-11 株式会社シュリンクス Method for estimating corrosion rate of structures using ACM sensor
JP2018124132A (en) * 2017-01-31 2018-08-09 株式会社シュリンクス Method for estimating corrosion rate of structure by acm sensor
JP6308709B1 (en) * 2017-08-28 2018-04-11 株式会社シュリンクス Environmental monitoring device
JP2018124257A (en) * 2017-08-28 2018-08-09 株式会社シュリンクス Environment monitoring device
JP7455707B2 (en) 2020-09-08 2024-03-26 株式会社東芝 Harsh environment chloride measurement system and harsh environment chloride measurement method
CN117322861A (en) * 2023-11-30 2024-01-02 微智医疗器械有限公司 Intracranial pressure probe manufacturing method and intracranial pressure probe
CN117322861B (en) * 2023-11-30 2024-03-12 微智医疗器械有限公司 Intracranial pressure probe manufacturing method and intracranial pressure probe

Also Published As

Publication number Publication date
JP6354951B2 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
Battocchi et al. Comparison of testing solutions on the protection of Al-alloys using a Mg-rich primer
JP6354951B2 (en) Electrode sensor for detecting trace components and method for manufacturing the same
JP5700673B2 (en) Method for measuring amount of hydrogen penetrating into metal and method for monitoring amount of hydrogen penetrating into metal part of moving body
JP5777098B2 (en) Method for measuring amount of hydrogen penetrating into metal and method for monitoring amount of hydrogen penetrating into metal part of moving body
EP3483967B1 (en) Metal sheet for separators of polymer electrolyte fuel cells
Bajat et al. The influence of steel surface modification by electrodeposited Zn–Fe alloys on the protective behaviour of an epoxy coating
JP4494155B2 (en) Gold-plated structure and fuel cell separator comprising this gold-plated structure
Somphotch et al. Corrosion behavior of zinc under thin solution films of different thicknesses
Diler et al. Real‐time corrosion monitoring of aluminium alloys under chloride‐contaminated atmospheric conditions
KR20190051016A (en) Corrosion monitoring device
EP2818578B1 (en) Metal material surface treatment method, and metal material
JP5621186B2 (en) Method for producing stainless steel for polymer electrolyte fuel cell separator
Wang et al. All solid‐state pH electrode based on titanium nitride sensitive film
El Fazazi et al. Electrochemical deposition and spectroscopy investigation of Zn coatings on steel
EP3168332B2 (en) Use of a jig electrolytic stripper for removing palladium from an object and a method for removing palladium
JP4371111B2 (en) Corrosion-resistant aluminum conductive material and manufacturing method thereof
JP6865335B2 (en) Calculation method of sea salt equivalent adhesion amount using ACM type corrosion sensor
JP5888692B2 (en) Method for measuring amount of hydrogen penetrating into metal and method for monitoring amount of hydrogen penetrating into metal part of moving body
JP6804063B2 (en) Microorganism detection device and detection method
Pooi See et al. A disposable copper (II) ion biosensor based on self‐assembly of L‐Cysteine on gold nanoparticle‐modified screen‐printed carbon electrode
JP6751924B2 (en) Evaluation method of corrosion resistance and repair method of plated products
Chen et al. Influence of direct current electric field on electrode process of carbon steel under thin electrolyte layers
JP7132886B2 (en) Corrosion Penetration Hydrogen Measuring Device and Corrosion Penetration Hydrogen Evaluation Method
Escalante-Perez et al. Effect of the depth of the solution layer on the atmospheric corrosion of carbon steel
Court et al. Electrochemical measurements of electroless nickel coatings on zincated aluminium substrates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180529

R150 Certificate of patent or registration of utility model

Ref document number: 6354951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250