JPH02291666A - Molten carbonate type fuel cell - Google Patents

Molten carbonate type fuel cell

Info

Publication number
JPH02291666A
JPH02291666A JP1112213A JP11221389A JPH02291666A JP H02291666 A JPH02291666 A JP H02291666A JP 1112213 A JP1112213 A JP 1112213A JP 11221389 A JP11221389 A JP 11221389A JP H02291666 A JPH02291666 A JP H02291666A
Authority
JP
Japan
Prior art keywords
base material
fuel cell
molten carbonate
porous
material particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1112213A
Other languages
Japanese (ja)
Other versions
JPH0551152B2 (en
Inventor
Satoshi Kuroe
黒江 聡
Hideo Okada
秀夫 岡田
Yoshio Iwase
岩瀬 嘉男
Kazuo Iwamoto
岩本 一男
Masahito Takeuchi
将人 竹内
Toshikatsu Mori
利克 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1112213A priority Critical patent/JPH02291666A/en
Publication of JPH02291666A publication Critical patent/JPH02291666A/en
Publication of JPH0551152B2 publication Critical patent/JPH0551152B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)

Abstract

PURPOSE:To enhance the maintenability of electrolyte within an electrode by letting a reforming material be carried by the particle surface of a base material, letting a cathode porous electrode be furnished with a specified specific surface area, letting each primary pore be a specified fine pore in size, letting each secondary pore size be furnished with a specified pore distribution, and thereby increasing the surface area of the electrode. CONSTITUTION:The second component excellent in resistance to molten carbonate is added so that the surface roughness of particles is increased to a great extent. It is so constituted that a cathode porous electrode is furnished with the specific surface area of 1 to 100m<2>/g, each primary pore shall be the fine pore of 0.01 to 2mum in size, and each secondary pore size shall be furnished with the pore size distribution of 2 to 20mum. Since electrolyte is mainly held by primary pores, electrolyte is well held within the electrode. In addition, the porosity of a porous cathode shall be 50 to 60%, and furthermore, the electrolyte included in the porous cathode shall be 20 to 40% of the whole of holes by volume.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は溶融炭酸塩型燃料電池に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to molten carbonate fuel cells.

(従来の技術〕 特開昭55−74065において、ニンケル、コバルト
またはその混合物から成るアノードに、酸化物またはア
ルカリ金属塩の形態で安定化剤を添加することで安定な
性能が得られるとしている。また、特開昭62−826
50においては、銀で被覆したニッケル粉末を原料とし
て形成したカソードで空孔率60〜80%、平均空孔径
2〜20μmに特定し、安定な電池特性が得られるとし
ている。
(Prior Art) JP-A-55-74065 states that stable performance can be obtained by adding a stabilizer in the form of an oxide or an alkali metal salt to an anode made of nickel, cobalt or a mixture thereof. Also, JP-A-62-826
No. 50 specifies that a cathode formed from nickel powder coated with silver as a raw material has a porosity of 60 to 80% and an average pore diameter of 2 to 20 μm, and that stable battery characteristics can be obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来カソードは約0.7rrf/g程度の比表面積を有
しているが、それでは電極反応が活性に進行するのに十
分な表面積を与えるに至っていない。そこで本発明の第
1の目的は、電極表面積を著しく増加させることにある
Conventional cathodes have a specific surface area of about 0.7 rrf/g, but this does not provide a sufficient surface area for active electrode reactions to proceed. Therefore, the first object of the present invention is to significantly increase the electrode surface area.

また、従来カソードは電極細孔中に保持している電解質
量が減少し易く、その減少に伴って電極特性が低下して
いく問題があった。公知例では、高性能を得るための構
造を規制した例(特開昭62−82650)があるが、
電解質保持状態を制御するという点について明確な配慮
がなされた例はみあたらない。そこで、第2の目的は電
解質保持性を向上させるために細孔構造を改良すること
にある。
Further, in the conventional cathode, the amount of electrolyte held in the electrode pores tends to decrease, and as the amount decreases, the electrode characteristics deteriorate. There is a known example (Japanese Unexamined Patent Publication No. 62-82650) in which the structure is regulated to obtain high performance.
There are no examples in which clear consideration has been given to controlling the state of electrolyte retention. Therefore, the second objective is to improve the pore structure in order to improve electrolyte retention.

マタ、一般に高比表面積化するためには微小な粒子等を
原料母材とすることが試みられてきたが、電極製造上で
還元焼結を行って成形するプロセスが用いられるため、
原料粒子同志がシンタリングをおこし、比表面積を著し
く低下させてしまう問題があった。そこで本発明の第3
の目的は還元焼結時の比表面積の低下を抑制することに
ある。
In general, attempts have been made to use minute particles as a raw material base material in order to achieve a high specific surface area, but since the process of forming electrodes through reduction sintering is used,
There was a problem in that the raw material particles caused sintering among themselves, resulting in a significant decrease in the specific surface area. Therefore, the third aspect of the present invention
The purpose of this is to suppress the decrease in specific surface area during reduction sintering.

以上を箇条書にまとめると本発明の目的は、■電極表面
積を著しく増加させること ■電極中の電解質保持性を向上させること■還元焼結時
の比表面積の低下を抑制することにある。
To summarize the above points, the objects of the present invention are: (1) to significantly increase the electrode surface area; (2) to improve electrolyte retention in the electrode; and (2) to suppress a decrease in the specific surface area during reduction sintering.

(課題を解決するための手段〕 前述の■の目的は、母材粒子に表面積を向上させる、耐
溶融炭酸塩性に優れた第2成分を添加(担持)して粒子
の表面粗滑度を著しく増加させることにより解決される
。表面改質剤を担持すれば、従来の母材粒子比表面積約
0 . 7 rrr / gから約100倍位まで比表
面積を高《することができる。
(Means for solving the problem) The purpose of the above item (2) is to add (carry) a second component that improves the surface area and has excellent molten carbonate resistance to the base material particles to improve the surface roughness and smoothness of the particles. By supporting a surface modifier, the specific surface area can be increased from about 0.7 rrr/g to about 100 times the conventional base material particle specific surface area.

■の目的に対しても、上記と同様に母材粒子表面に改質
材を担持し表面粗滑度を大きくすることにより解決され
る。担持効果によって粒子表面に0.01〜2μmの微
小な細孔を形成する。細孔径が小さいほど電解質を保持
する力が大きいから、微細な細孔部分に電解質を固定す
ることができ、電解質量の変動が少なくなる。
The objective (2) can also be solved by carrying a modifying material on the surface of the base material particles to increase the surface roughness and smoothness in the same manner as above. Due to the supporting effect, fine pores of 0.01 to 2 μm are formed on the particle surface. The smaller the pore diameter, the greater the ability to hold the electrolyte, so the electrolyte can be fixed in the fine pores, reducing fluctuations in the amount of electrolyte.

■の目的も、上記の表面改質剤を母材粒子のシンタリン
グ及び又はクリープが生じ易い部分を強化するよう担持
又は、粒内へ拡散させる処理を行うことにより、粒子変
形、比表面積の低下を抑制させることができる。
The purpose of (2) is to carry the above-mentioned surface modifier to strengthen the parts of the base material particles that are prone to sintering and/or creep, or to diffuse them into the grains to reduce particle deformation and specific surface area. can be suppressed.

したがって、第1番目の観点からみた本発明の溶融炭酸
塩型燃料電池の特徴は、1対の酸化ニッケル及び/又は
酸化コバルトを母材とする多孔質カソード,ニッケルを
母材とする多孔質アノード及びこれら電極内側に挟まれ
た電解質を含んだマトリックス板から構成される溶融炭
酸塩型燃料電池において、そのカソード多孔質電極が1
〜100rrr/gの比表面積を有し、かつ1次細孔径
が0.01〜2μmの微細孔及び2次細孔径が2〜20
μmである細孔分布をもつことにある。
Therefore, the characteristics of the molten carbonate fuel cell of the present invention from the first viewpoint are: a pair of porous cathodes made of nickel oxide and/or cobalt oxide as a base material; and a porous anode made of nickel as a base material. In a molten carbonate fuel cell composed of a matrix plate containing an electrolyte sandwiched inside these electrodes, the cathode porous electrode is
Micropores with a specific surface area of ~100 rrr/g and a primary pore diameter of 0.01 to 2 μm and a secondary pore diameter of 2 to 20 μm
It has a pore distribution of μm.

なお、カソード多孔質電極の比表面積を1〜100rd
/gに限定したのは、従来の母材粒子比表面積約0.7
 mz/gより大きいlrrf/gでもすでに多少とも
所期の効果を奏するものであり、100rrf/gを越
える値としても、それ以上の性能アップは望めないから
である。
In addition, the specific surface area of the cathode porous electrode is 1 to 100rd.
/g is limited to the conventional base material particle specific surface area of approximately 0.7
This is because even lrrf/g larger than mz/g already has some desired effect, and even if the value exceeds 100 rrf/g, no further improvement in performance can be expected.

そして、上記の本発明の好ましい態様としては、電解質
が主として、一次細孔中に保持されるこにより、電解質
が電極中に良好に保持され、また、多孔質カソード中の
空孔割合が50〜60%であり、また、多孔質カソード
の空孔部分に含まれる電解質量が空孔体積の20〜40
(体積%)であることにより、分極値が最小となり性能
的に好ましい結果となる。
In a preferred embodiment of the present invention, the electrolyte is mainly retained in the primary pores, so that the electrolyte is well retained in the electrode, and the porosity ratio in the porous cathode is 50 to 50. 60%, and the amount of electrolyte contained in the pores of the porous cathode is 20 to 40% of the pore volume.
(% by volume), the polarization value is minimized, resulting in favorable performance.

また、第2番目、或いは、第3番目の観点からみた本発
明の溶融炭酸塩型燃料電池の特徴は、1対の酸化ニッケ
ル及び/又は酸化コバルトを母材とする多孔質カソード
,ニッケルを母材とする多孔質アノード及びこれら電極
内側に挟まれた電解質を含んだマトリックス板から構成
される溶融炭酸塩型燃料電池において、前記多孔質電極
が、表面改質剤を母材粒子表面に担持して比表面積を向
上させた原料粒子で成形されていることにあり、或いは
、前記多孔質電極が、表面改質剤を母材粒子表面に担持
して、1次細孔径0.01〜2μmの微細孔及び2次細
孔径が2〜20μmの細孔分布中、前者の1次細孔径を
増大させた原料粒子を用いて成形されたものであること
にある。
Further, the characteristics of the molten carbonate fuel cell of the present invention from the second or third point of view are a pair of porous cathodes whose base material is nickel oxide and/or cobalt oxide, and a porous cathode whose base material is nickel oxide and/or cobalt oxide. In a molten carbonate fuel cell composed of a porous anode as a material and a matrix plate containing an electrolyte sandwiched inside these electrodes, the porous electrode has a surface modifier supported on the surface of the base material particles. Alternatively, the porous electrode may have a surface modifier supported on the surface of the base material particles to form particles with a primary pore diameter of 0.01 to 2 μm. The material is molded using raw material particles in which the primary pore diameter of the micropores and secondary pores is increased in the pore distribution of 2 to 20 μm.

なお、上記のように1次細孔径0.01〜2μmの微細
孔及び2次細孔径が2〜20μmの細孔分布中、?者の
1次細孔径を増大させた原料粒子を用いる構成としたの
は、■の目的に対応する理由による。
In addition, as mentioned above, in the pore distribution of micropores with a primary pore diameter of 0.01 to 2 μm and secondary pore diameters of 2 to 20 μm, ? The reason for using the raw material particles having an increased primary pore diameter is in correspondence with the objective (2).

そして、前記原料粒子としては、母材粒子表面に、クロ
ーム、アルミニウム、ジルコニウムから成る群より選択
された酸化物及び/又はアルカリ金属塩の形態またはそ
の混合物の形で表面改質剤を含んだ粒子、より、具体的
には、母材粒子表面に、表面改質剤がCrzOi+ Z
rO■, A1203及び/又はLiAlO■の形で存
在する粒子を挙げることができる。
The raw material particles include particles containing a surface modifier on the surface of the base material particle in the form of an oxide and/or alkali metal salt selected from the group consisting of chromium, aluminum, and zirconium, or in the form of a mixture thereof. More specifically, the surface modifier is CrzOi+Z on the surface of the base material particle.
Mention may be made of particles present in the form rO*, A1203 and/or LiAlO*.

前記表面改質剤が母材粒子に対し0. 5〜20(原子
%)量存在することが好ましい。
The amount of the surface modifier applied to the base material particles is 0. Preferably, it is present in an amount of 5 to 20 (atomic %).

次に、本発明の溶融炭酸塩型燃料電池形成用の原料粒子
の製造法は、母材粒子に対する表面改質剤の担持を、電
極状に成形した多孔質体の空孔中に硝酸塩溶液及び/又
はシュウ酸塩溶液の形で含浸した後に乾燥及び焼成する
ことにより行い、母材粒子の比表面積を著しく向上させ
た原料粒子を製造することを特徴とするものである。
Next, in the method for producing raw material particles for forming a molten carbonate fuel cell of the present invention, the surface modifier is supported on the base material particles by applying a nitrate solution into the pores of a porous body formed into an electrode shape. It is characterized by producing raw material particles in which the specific surface area of the base material particles is significantly improved by impregnating the particles in the form of an oxalate solution, followed by drying and firing.

ただし、本発明の溶融炭酸塩型燃料電池の製造法は、こ
れに限定されるものでないことは言うまでもない。
However, it goes without saying that the method for manufacturing a molten carbonate fuel cell of the present invention is not limited to this.

〔作 用〕[For production]

母材粒子に表面改質剤を添加することで、粒子の比表面
積が母材のみの場合の約0.7rrf/gから、1〜1
00trf/gまで著しく増加する。そのため単位電極
面積あたりの電極反応場、すなわち反応活性点の割合も
増加し初期活性の高いカソードが得られる。
By adding a surface modifier to the base material particles, the specific surface area of the particles can be increased from about 0.7rrf/g in the case of only the base material to 1~1rrf/g.
00trf/g. Therefore, the ratio of electrode reaction fields, that is, reaction active sites per unit electrode area increases, and a cathode with high initial activity can be obtained.

また、表面改質剤は0.01〜2μmの微細な細孔を形
成する。これらの径の細孔は電解質保持力が高いので、
電極中の電解質量の変動が抑制され電極寿命が向上する
Further, the surface modifier forms fine pores of 0.01 to 2 μm. Pores of these diameters have high electrolyte retention, so
Fluctuations in the amount of electrolyte in the electrode are suppressed and the life of the electrode is improved.

さらに、製造過程で必要な還元焼結時及び/又は高温で
の酸化雰囲気下での焼成において粒子の生長変形を防止
するのに大きな効果があるので、粒子の表面積を低下さ
せることがない。
Furthermore, it is highly effective in preventing growth and deformation of particles during reduction sintering and/or firing in an oxidizing atmosphere at high temperatures necessary in the manufacturing process, so that the surface area of the particles does not decrease.

以上の作用により、電極特性が向上しかつ電極寿命も向
上する。
Due to the above-described effects, the electrode characteristics are improved and the electrode life is also improved.

〔実験例〕[Experiment example]

実験例1 ?径2μm、比表面積約0.75rW/gのニッケルの
母材粒子に、Li−AIを含む化合物を沈着させた後焼
成してLiAlO■を主体とする表面改質剤を添加した
母材粒子を得る。詳細な製造方法は第1図に示すごとく
である。母材粒子1 kgと1 mol/ l LiN
O30.3l及び、1 mol#2 AI(NO+)+
 0. 3 42の混合水溶液1を混合したスラリー中
にlmol/ l  (NHi) 2CO3水溶液2を
0.61!.滴下してLi及びAIの水酸化物として母
材粒子上に沈着させる。次に乾固させ350゜Cで焼成
することにより表面にLiA10■が形成されかつ第1
表に示すごとく比表面積が120倍程高い粒子が得られ
る。添加量は母材ニッケルの20原子%である。
Experimental example 1? A compound containing Li-AI is deposited on nickel base particles with a diameter of 2 μm and a specific surface area of about 0.75 rW/g, and then a surface modifier mainly composed of LiAlO■ is added to the base particles by firing. obtain. The detailed manufacturing method is as shown in FIG. 1 kg of base material particles and 1 mol/l LiN
O30.3l and 1 mol#2 AI(NO+)+
0. 0.61 lmol/l (NHi) 2CO3 aqueous solution 2 is added to the slurry of mixed aqueous solution 1 of 3 42! .. The hydroxides of Li and AI are deposited on the base material particles by dropping them. Next, by drying and firing at 350°C, LiA10 is formed on the surface and the first
As shown in the table, particles with a specific surface area about 120 times higher can be obtained. The amount added is 20 atomic % of the base material nickel.

(本頁以下余白) 第1表 この粒子をH2雰囲気中700゜Cで2時間還元を行う
ことにより還元前より比表面積は減少するが、同じ第1
表に示すごとく母材原料の約20倍の比表面積は保つこ
とができる。この粒子はさらに還元時間を長《しても比
表面積はほとんど変化がないことを確認している。これ
は表面改質剤であるLiA]Ozの効果である。次に、
700゜Cで2時間酸化処理を行っても比表面積は母材
原料の約18倍を保持していた。
(Margins below this page) Table 1: By reducing these particles at 700°C in an H2 atmosphere for 2 hours, the specific surface area decreases compared to before reduction, but the same
As shown in the table, a specific surface area approximately 20 times that of the base material can be maintained. It has been confirmed that the specific surface area of these particles hardly changes even if the reduction time is further increased. This is an effect of the surface modifier LiA]Oz. next,
Even after oxidation treatment at 700°C for 2 hours, the specific surface area remained approximately 18 times that of the base material.

実験例2 LiNO3. AI(N(h)zの混合水溶液1は、母
材の0.5〜20(原子)%量だけ添加するが、この量
を変化させることで生成物の表面積を変化させることが
できる。その関係を第2表に示す。
Experimental example 2 LiNO3. The mixed aqueous solution 1 of AI(N(h)z is added in an amount of 0.5 to 20 (atomic)% of the base material, but by changing this amount, the surface area of the product can be changed. The relationship is shown in Table 2.

第2表 実験例3 溶液1に代って、La, Cr, Zr,アルカリ金属
塩のいずれか、又はそれらの混合物の塩を用いても、第
3表に示すごとくの比表面積の向上効果が認められる。
Table 2 Experimental Example 3 Even if a salt of La, Cr, Zr, an alkali metal salt, or a mixture thereof is used in place of Solution 1, the effect of improving the specific surface area as shown in Table 3 can be obtained. Is recognized.

第3表 〔添加量はすべて2(原子)%] 〔実施例〕 実施例1 実験例1に基づいて調製した母材粒子を用い電極化した
カソードの細孔特性は、水恨圧入法で測定すると第2図
の3のごとくであった。図には従来カソードについても
示してある(第2図の4)。
Table 3 [Amounts added are all 2 (atomic)%] [Example] Example 1 The pore characteristics of the cathode made into an electrode using the base material particles prepared based on Experimental Example 1 were measured by water pressure injection method. Then, it looked like 3 in Figure 2. The figure also shows a conventional cathode (4 in Figure 2).

0.01〜2μmに微小な1次細孔、さらに約2〜10
μmに大径の細孔の存在が確認できる。この電極に細孔
容積の40%量の電解質を含浸して2000時間電池運
転を行った後の細孔特性、及びその電極に含まれる電解
質を氷酢酸で洗浄した後の細孔特性を第3図の5及び6
に示す。5及び6の細孔容積の分布の差から電解質はほ
ぼ0.3μm以下の細孔に保持されていたことが確認で
き、改質剤により形成した1次細孔により電解質保持力
が大きくなっていると考えられる。
Fine primary pores of 0.01 to 2 μm, and approximately 2 to 10
The presence of pores with a diameter of μm can be confirmed. The pore characteristics after the electrode was impregnated with 40% of the pore volume of electrolyte and the battery was operated for 2000 hours, and the pore characteristics after the electrolyte contained in the electrode was washed with glacial acetic acid were measured in the third experiment. 5 and 6 in the diagram
Shown below. From the difference in the pore volume distribution of samples 5 and 6, it was confirmed that the electrolyte was retained in pores of approximately 0.3 μm or less, and the electrolyte retention capacity was increased due to the primary pores formed by the modifier. It is thought that there are.

比較のために従来カソード(第2図の4)についても同
条件下で電池運転を行った後に測定した細孔特性を第4
図に示す。試験後末処理の電極8、及び洗浄後の電極で
は分布にほとんど差がなく電解質がほとんど保持されて
いなかった。以上の結果から、改質剤による電解質保持
力の向上効果には著しいものがあることがわかる。
For comparison, the pore characteristics measured after battery operation under the same conditions for the conventional cathode (4 in Figure 2) are shown in Figure 4.
As shown in the figure. There was almost no difference in distribution between electrode 8 after the final treatment after the test and the electrode after cleaning, and almost no electrolyte was retained. From the above results, it can be seen that the modifier has a remarkable effect of improving electrolyte retention.

実施例2 第5図に従来カソード2種4′,4″及び実験例1で作
製した改質カソード3′の単極特性測定結果を示す。横
軸に電極表面積、樅軸に単位分極値下でとり出すことの
できる電流値(反応速度に比例する)で示してある。改
質カソード3′は従来カソード4’,4’よりも比表面
積が大きく、そのため単位分極下でとり出すことのでき
る電流値も大きく高活性であることがわかる。
Example 2 Figure 5 shows the unipolar characteristic measurement results of two conventional cathodes 4', 4'' and the modified cathode 3' produced in Experimental Example 1. The horizontal axis represents the electrode surface area, and the axis represents the unit polarization value. The modified cathode 3' has a larger specific surface area than the conventional cathodes 4' and 4', and therefore can be extracted under unit polarization. It can be seen that the current value is large and highly active.

実施例3 第6図に1次細孔径の異なるカソードでの電解質移動速
度を重量変化法で測定した結果を示す。
Example 3 FIG. 6 shows the results of measuring electrolyte transfer rates in cathodes with different primary pore diameters using a weight change method.

横軸に細孔直径のη乗、縦軸に移動速度で示す。The horizontal axis represents the pore diameter to the η power, and the vertical axis represents the moving speed.

1次細孔直径が小さい程移動速度が小さくなる。The smaller the primary pore diameter, the lower the migration speed.

したがって細孔直径が小さいほど電解質を保持する力が
大きいことがわかる。実験例1の方法で作った母材で作
製したカソード3′を用いれば1次細孔径が約0.3μ
m以下であるから電解質保持力は、従来力ソート4′(
平均細孔径約10μm)より電解質移動速度が遅い。つ
まり改良カソード3′は従来カソードよりも電解質保持
力が高い。
Therefore, it can be seen that the smaller the pore diameter, the greater the ability to hold the electrolyte. If the cathode 3' made of the base material made by the method of Experimental Example 1 is used, the primary pore diameter will be approximately 0.3μ.
Since the electrolyte retention force is less than
(average pore diameter of approximately 10 μm), the electrolyte movement rate is slower than that of the average pore diameter of approximately 10 μm. In other words, the improved cathode 3' has a higher electrolyte retention ability than the conventional cathode.

実施例4 実験例1で作製したカソードの単極特性を従来カソード
と比較して第7図の10及びl1に示す。測定条件は、
650゜C、70%空気+30%炭酸ガス、酸素利用率
40%での値である。図からわかるように、本発明のカ
ソードは分極が従来カソードよりも低減している。つま
り電極活性が向上している。
Example 4 The unipolar characteristics of the cathode produced in Experimental Example 1 are shown in 10 and 11 of FIG. 7 in comparison with a conventional cathode. The measurement conditions are:
The values are at 650°C, 70% air + 30% carbon dioxide, and oxygen utilization rate of 40%. As can be seen from the figure, the cathode of the present invention has reduced polarization compared to the conventional cathode. In other words, electrode activity is improved.

実施例5 実験例1において、添加する改質剤量を変化させると空
孔率も変化させることができる。第4表に添加量と空孔
率の関係を示す。
Example 5 In Experimental Example 1, by changing the amount of modifier added, the porosity can also be changed. Table 4 shows the relationship between the amount added and the porosity.

(本頁以下余白) 第4表 実施例6 第8図に示すように、実施例1で作製したカソード11
及び従来カソード10において電極細孔中の電解質占有
率(電極空孔中を電解質が占める体積の割合)を0〜8
0%まで変化させるとどちらのカソードも占有率20〜
40%で分極値が最小を示すことがわかる。また、この
場合も、どの占有率においても、実験例1のカソード1
1は分極が小さい。
(Margins below this page) Table 4 Example 6 As shown in Figure 8, the cathode 11 produced in Example 1
And in the conventional cathode 10, the electrolyte occupancy rate in the electrode pores (the ratio of the volume occupied by the electrolyte in the electrode pores) is 0 to 8.
When changing to 0%, the occupancy rate of both cathodes is 20 ~
It can be seen that the polarization value shows the minimum at 40%. Also, in this case, at any occupancy rate, cathode 1 of Experimental Example 1
1 has small polarization.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、700゜C前後の温度領域での酸化雰
囲気下及び製造プロセス上不可欠な還元雰囲気下におい
ても原料ニッケル粒子の焼結を抑えることができるので
、粒子の表面積を高く保持することができる。したがっ
て電極化した場合に初期電極活性の高いカソードとなる
効果がある。また、表面改質剤により母材粒子上に微細
な細孔を形成するので、電解質保持力の高いカソードが
得られ、電極寿命が向上する効果がある。
According to the present invention, sintering of the raw nickel particles can be suppressed even under an oxidizing atmosphere at a temperature of around 700°C and a reducing atmosphere essential for the manufacturing process, so the surface area of the particles can be maintained high. I can do it. Therefore, when it is made into an electrode, it has the effect of becoming a cathode with high initial electrode activity. Furthermore, since fine pores are formed on the base material particles by the surface modifier, a cathode with high electrolyte holding power can be obtained, which has the effect of improving the electrode life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図 高比表面積のカソードの製造フローを示してあ
る。 第1表 母材粒子(Ni粉)、その粒子に安定化材を沈
着し焼成した後及び還元焼成後の比表面積の推移を示し
てある。 第2表 安定化剤(LiNO3,八1(NO3)3)混
合溶液添加量と還元後の比表面積の関係を示してある。 ?3表 種々の成分の安定化剤を用いた場合の比表面積
を示してある。 第2図 従来カソード及び実施例1によるNiOLiA
10■添加カソードの細孔特性の比較。 第3図 NiO−LiA10■カソードを用いて200
0時間の電池運転をした後における、電解質保持量を示
した図である。 第4図(第3図との比較)従来カソードを用いて200
0時間の電池運転をした後における、電解質保持量を示
した図である。 第5図 電極表面積と反応速度との関係。 第6図 細孔直径と電解質移動速度の関係。 第7図 従来カソードと実施例1により高比表面積化し
たカソードの電極特性を比較した図である。 第8図 従来カソードと実施例1における電解質占有率
と分極値との関係を比較した図である。 〔符号の説明〕 1  :  1 mol/f LiNO+水溶液0.3
1とlmol/42AI(NOz)3水溶液0.3fの
混合水溶液2  :  1 mol/ l  (NH3
) zcO+水溶液0.6f3  :  NiO−Li
A10zカソードの細孔分布曲線3′:       
    の分極特性4 ; 従来NiOカソードの細孔
分布曲線4’+4’:    //     の分極特
性5  :  NiO−LiAtOzカソードの電池運
転後の細孔分布曲線(電解質含む) 6 : 5と同様のカソードで電解質を取り除いた後の
細孔分布曲線 7 : カソード5に保持されていた電解’Efffi
8 : 従来カソードの電池運転後の細孔分布曲線(電
解質を含む) 9 : 8で電解質を取り除いたものの細孔分布曲線 10:  従来カソードの単極特性
Figure 1 shows the manufacturing flow of a cathode with a high specific surface area. Table 1 shows changes in the specific surface area of base material particles (Ni powder), after a stabilizing material was deposited on the particles and fired, and after reduction firing. Table 2 shows the relationship between the amount of stabilizer (LiNO3, 81(NO3)3) mixed solution added and the specific surface area after reduction. ? Table 3 shows the specific surface area when using various stabilizer components. FIG. 2 Conventional cathode and NiOLiA according to Example 1
10 ■ Comparison of pore characteristics of added cathodes. Figure 3: 200 using NiO-LiA10■ cathode
FIG. 3 is a diagram showing the amount of electrolyte retained after 0 hours of battery operation. Figure 4 (comparison with Figure 3) Using a conventional cathode
FIG. 3 is a diagram showing the amount of electrolyte retained after 0 hours of battery operation. Figure 5 Relationship between electrode surface area and reaction rate. Figure 6 Relationship between pore diameter and electrolyte transfer rate. FIG. 7 is a diagram comparing the electrode characteristics of a conventional cathode and a cathode with a high specific surface area according to Example 1. FIG. 8 is a diagram comparing the relationship between electrolyte occupancy and polarization value in a conventional cathode and in Example 1. [Explanation of symbols] 1: 1 mol/f LiNO+aqueous solution 0.3
Mixed aqueous solution 2: 1 mol/l (NH3
) zcO + aqueous solution 0.6f3: NiO-Li
Pore distribution curve 3' of A10z cathode:
Polarization characteristic 4: Pore distribution curve of conventional NiO cathode 4'+4': // Polarization characteristic 5: Pore distribution curve of NiO-LiAtOz cathode after battery operation (including electrolyte) 6: With the same cathode as in 5 Pore distribution curve 7 after removing electrolyte: Electrolytic 'Efffi' retained in cathode 5
8: Pore distribution curve of conventional cathode after battery operation (including electrolyte) 9: Pore distribution curve after electrolyte is removed in step 8 10: Unipolar characteristics of conventional cathode

Claims (1)

【特許請求の範囲】 1、1対の酸化ニッケル及び/又は酸化コバルトを母材
とする多孔質カソード、ニッケルを母材とする多孔質ア
ノード及びこれら電極内側に挟まれた電解質を含んだマ
トリックス板から構成される溶融炭酸塩型燃料電池にお
いて、そのカソード多孔質電極が1〜100m^2/g
の比表面積を有し、かつ1次細孔径が0.01〜2μm
の微細孔及び2次細孔径が2〜20μmである細孔分布
をもつことを特徴とする溶融炭酸塩型燃料電池。 2、電解質が主として、一次細孔中に保持されており電
極反応に関与する界面が広いことを特徴とする請求項1
記載の溶融炭酸塩型燃料電池。 3、多孔質カソード中の空孔割合が50〜60%である
をことを特徴とする請求項1または請求項2記載の溶融
炭酸塩型燃料電池。 4、多孔質カソードの空孔部分に含まれる電解質量が空
孔体積の20〜40(体積%)であることを特徴とする
請求項1乃至請求項3のいずれかの項記載の溶融炭酸塩
型燃料電池。 5、1対の酸化ニッケル及び/又は酸化コバルトを母材
とする多孔質カソード、ニッケルを母材とする多孔質ア
ノード及びこれら電極内側に挟まれた電解質を含んだマ
トリックス板から構成される溶融炭酸塩型燃料電池にお
いて、前記多孔質電極が、表面改質剤を担持し比表面積
を向上させた原料粒子で成形されていることを特徴とす
る溶融炭酸塩型燃料電池。 6、1対の酸化ニッケル及び/又は酸化コバルトを母材
とする多孔質カソード、ニッケルを母材とする多孔質ア
ノード及びこれら電極内側に挟まれた電解質を含んだマ
トリックス板から構成される溶融炭酸塩型燃料電池にお
いて、前記多孔質電極が、表面改質剤を母材粒子表面に
担持して、1次細孔径0.01〜2μmの微細孔及び2
次細孔径が2〜20μmの細孔分布中、前者の1次細孔
径を増大させた原料粒子を用いて成形されたものである
ことを特徴とする溶融炭酸塩型燃料電池。 7、原料粒子が、母材粒子表面に、クローム、アルミニ
ウム、ジルコニウムから成る群より選択された酸化物及
び/又はアルカリ金属塩の形態またはその混合物の形で
表面改質剤を含んだ粒子であることを特徴とする請求項
6記載の溶融炭酸塩型燃料電池。 8、原料粒子が、母材粒子表面に、表面改質剤がCr_
2O_3、ZrO_2、Al_2O_3及び/又はLi
AlO_2の形で存在する粒子であることを特徴とする
請求項6記載の溶融炭酸塩型燃料電池。 9、表面改質剤が母材粒子に対し0.5〜20(原子%
)量存在することを特徴とする請求項5乃至請求項8記
載の溶融炭酸塩型燃料電池。 10、溶融炭酸塩型燃料電池形成用の原料粒子の製造法
において、母材粒子に対する表面改質剤の担持を、電極
状に成形した多孔質体の空孔中に硝酸塩溶液及び/又は
シュウ酸塩溶液の形で含浸した後に乾燥及び焼成するこ
とにより行い、母材粒子の比表面積を著しく向上させた
原料粒子を製造することを特徴とする溶融炭酸塩型燃料
電池形成用の原料粒子の製造法。
[Claims] 1. A pair of porous cathodes made of nickel oxide and/or cobalt oxide as a base material, a porous anode made of nickel as a base material, and a matrix plate containing an electrolyte sandwiched between these electrodes. In a molten carbonate fuel cell composed of
It has a specific surface area of , and a primary pore diameter of 0.01 to 2 μm.
A molten carbonate fuel cell characterized by having a pore distribution in which the micropores and secondary pore diameters are 2 to 20 μm. 2. Claim 1, characterized in that the electrolyte is mainly held in the primary pores and the interface involved in the electrode reaction is wide.
The molten carbonate fuel cell described. 3. The molten carbonate fuel cell according to claim 1 or 2, characterized in that the proportion of pores in the porous cathode is 50 to 60%. 4. The molten carbonate according to any one of claims 1 to 3, wherein the amount of electrolyte contained in the pores of the porous cathode is 20 to 40 (vol%) of the pore volume. type fuel cell. 5. Molten carbonic acid consisting of a pair of porous cathodes made of nickel oxide and/or cobalt oxide as a base material, a porous anode made of nickel as a base material, and a matrix plate containing an electrolyte sandwiched between these electrodes. A molten carbonate fuel cell, wherein the porous electrode is formed of raw material particles that support a surface modifier and have an increased specific surface area. 6. Molten carbonic acid consisting of a pair of porous cathodes made of nickel oxide and/or cobalt oxide as a base material, a porous anode made of nickel as a base material, and a matrix plate containing an electrolyte sandwiched between these electrodes. In the salt-type fuel cell, the porous electrode supports a surface modifier on the surface of the base material particles, and has micropores with a primary pore diameter of 0.01 to 2 μm and 2 μm.
A molten carbonate fuel cell characterized in that it is molded using raw material particles having an increased primary pore size in a pore distribution with a secondary pore size of 2 to 20 μm. 7. The raw material particles are particles containing a surface modifier on the surface of the base material particle in the form of an oxide and/or alkali metal salt selected from the group consisting of chromium, aluminum, and zirconium, or in the form of a mixture thereof. The molten carbonate fuel cell according to claim 6, characterized in that: 8. The raw material particles have a surface modifier of Cr_ on the surface of the base material particles.
2O_3, ZrO_2, Al_2O_3 and/or Li
Molten carbonate fuel cell according to claim 6, characterized in that the particles are present in the form of AlO_2. 9. The surface modifier is 0.5 to 20 (atomic %) to the base material particles.
9. The molten carbonate fuel cell according to claim 5, wherein the molten carbonate fuel cell is present in an amount of .). 10. In the method for producing raw material particles for forming a molten carbonate fuel cell, a surface modifier is supported on the base material particles by adding a nitrate solution and/or oxalic acid into the pores of a porous body formed into an electrode shape. Production of raw material particles for forming molten carbonate fuel cells characterized by producing raw material particles with significantly improved specific surface area of base material particles by impregnating them in the form of a salt solution, followed by drying and firing. Law.
JP1112213A 1989-05-02 1989-05-02 Molten carbonate type fuel cell Granted JPH02291666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1112213A JPH02291666A (en) 1989-05-02 1989-05-02 Molten carbonate type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1112213A JPH02291666A (en) 1989-05-02 1989-05-02 Molten carbonate type fuel cell

Publications (2)

Publication Number Publication Date
JPH02291666A true JPH02291666A (en) 1990-12-03
JPH0551152B2 JPH0551152B2 (en) 1993-07-30

Family

ID=14581086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1112213A Granted JPH02291666A (en) 1989-05-02 1989-05-02 Molten carbonate type fuel cell

Country Status (1)

Country Link
JP (1) JPH02291666A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11059743B2 (en) 2015-06-30 2021-07-13 Central Glass Company, Limited Substrate provided with coating film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010422A (en) * 1983-06-29 1985-01-19 Fujitsu Ltd Positioning method of optical disc
JPS60150558A (en) * 1984-01-17 1985-08-08 Agency Of Ind Science & Technol Production method of fuel electrode for melted carbonate type fuel cell
JPS62154465A (en) * 1985-12-23 1987-07-09 株式会社東芝 Anode of molten carbonate fuel battery and manufacture of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010422A (en) * 1983-06-29 1985-01-19 Fujitsu Ltd Positioning method of optical disc
JPS60150558A (en) * 1984-01-17 1985-08-08 Agency Of Ind Science & Technol Production method of fuel electrode for melted carbonate type fuel cell
JPS62154465A (en) * 1985-12-23 1987-07-09 株式会社東芝 Anode of molten carbonate fuel battery and manufacture of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11059743B2 (en) 2015-06-30 2021-07-13 Central Glass Company, Limited Substrate provided with coating film

Also Published As

Publication number Publication date
JPH0551152B2 (en) 1993-07-30

Similar Documents

Publication Publication Date Title
CN111180689B (en) Micron hollow porous composite spherical sodium ion battery positive electrode material and preparation method thereof
CN114314692B (en) Ternary positive electrode material precursor, preparation method, positive electrode material, positive electrode slurry, lithium ion battery, positive electrode and electric equipment
CN109560310A (en) A kind of fuel cell very low platinum carrying amount self-humidifying membrane electrode and preparation method thereof
CN110921723A (en) Preparation method of hollow lithium ion battery anode material precursor
US3653967A (en) Positive electrode for use in nickel cadmium cells and the method for producing same and products utilizing same
EP0448517B1 (en) Carbonate fuel cell anodes
CN113903901B (en) High-power positive electrode material with specific core-shell structure and preparation method thereof
CN113461069A (en) Lithium ion battery positive electrode material precursor, preparation method thereof and lithium ion battery positive electrode material
WO2024021403A1 (en) Nickel-based alloy composite electrode having gradient component structure, and preparation method therefor and use thereof
CN111769277A (en) Gradient single crystal high-nickel cathode material and preparation method thereof
CN111342069B (en) Surface gold-modified high-load carbon-supported platinum-cobalt catalyst and preparation method and application thereof
CN114447309B (en) Sodium ion doped lithium ion battery positive electrode material and preparation method thereof
JPS61140072A (en) Fuel battery
JP2003535448A5 (en)
WO2024027108A1 (en) Electrode having integrated composite structure of matrix and catalyst layer and preparation method therefor
JPH02291666A (en) Molten carbonate type fuel cell
CN115084558B (en) Preparation of lanthanum-based organic framework composite modified waste chromium scrap-derived porous carbon nano negative electrode material
CN116282219A (en) Method for preparing nickel-iron-manganese ternary precursor for sodium ions through process stabilization
CA1124322A (en) Fabrication of nickel electrodes for alkaline batteries
RU2723558C1 (en) Method of producing nanostructured cobalt oxide on carbon support
CN108336347A (en) Nano-crystalline aluminium materials and its preparation method and application and a kind of aluminium air fuel cell
JP3623320B2 (en) Nickel electrode active material and nickel electrode using the nickel electrode active material
JP3594322B2 (en) Non-sintered nickel positive electrode for alkaline storage battery and method for producing the same
JPS58129781A (en) Fused salt type fuel cell
CN109768288A (en) A kind of biomorph Ni-Li/C catalyst and its preparation method and application

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees