JPH02290681A - Focusing method for laser beam machine - Google Patents

Focusing method for laser beam machine

Info

Publication number
JPH02290681A
JPH02290681A JP1107501A JP10750189A JPH02290681A JP H02290681 A JPH02290681 A JP H02290681A JP 1107501 A JP1107501 A JP 1107501A JP 10750189 A JP10750189 A JP 10750189A JP H02290681 A JPH02290681 A JP H02290681A
Authority
JP
Japan
Prior art keywords
laser beam
metal plate
slit
intensity
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1107501A
Other languages
Japanese (ja)
Inventor
Katsuhiro Horiguchi
勝弘 堀口
Hiroshi Sako
宏 迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amada Co Ltd
Original Assignee
Amada Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amada Co Ltd filed Critical Amada Co Ltd
Priority to JP1107501A priority Critical patent/JPH02290681A/en
Publication of JPH02290681A publication Critical patent/JPH02290681A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To relatively accurately execute focusing of laser beam by changing distance between a condenser lens and a high reflection metal plate while scanning along a slit having the same width as width of laser beam waist arranged to the high reflection metal plate and deciding the position where the intensity of reflecting returned beam is minimum to the focus. CONSTITUTION:The laser beam is made to scan onto the high reflection metal plate 11 in the arrow mark direction shown as the figure (a) to measure 3 the reflecting beam. Then, the laser beam comes to the above slit position and at the time when the intensity of the reflecting returned beam is rapidly reduced shown as the figure (b), the scanning direction is changed 90 deg. angle and the beam is made to scan along the slit shown as the figure (c). Together with this, the distance L between the condenser lens 7 and the metal plate 11 is continuously changed, and at the time of becoming L = focus length L of the lens 7, i.e., the position where the intensity of the reflecting returned beam is minimum is decided to the focus. Therefore, the focusing having much more accuracy than that of the ordinary method without any consumption of material for testing can be executed.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明はレーザ加工機の焦点出し方法に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a focusing method for a laser processing machine.

(従来の技術) レーず光によって材料を切断する場合、レーザ光の焦点
位買によって、入射面と出射面の切断満幅が大きく変化
する。一般に、レーザの集光レンズと材料の表面との距
離が集光レンズの焦点距離と一致した場合に、最も平行
度のより切断溝が得られる。
(Prior Art) When cutting a material with laser light, the full width of the cut between the incident surface and the exit surface varies greatly depending on the focal position of the laser light. Generally, when the distance between the laser condensing lens and the surface of the material matches the focal length of the condensing lens, the most parallel cutting groove can be obtained.

従来、レーザ光の焦点位置を定めるために、例えば、ベ
ニヤ板にレーザ光を焦点を変えながら照射してスリット
を切り、スリット幅が最も小さくなる位置を焦点位置と
していた。また第3図のように、アクリル樹脂の板に、
レーザ光を照射して穴を明け、穴の断面形状が例えば、
同図(a )の場合には焦点位置が表面から下方Fにあ
り、同図(b)の場合には表面から上方Fにあり、同図
(C )の場合には、丁度表面上Fにあると判断してい
た。
Conventionally, in order to determine the focal position of a laser beam, for example, a slit was cut by irradiating a plywood board with a laser beam while changing the focus, and the position where the slit width was the smallest was determined as the focal position. Also, as shown in Figure 3, on an acrylic resin plate,
A hole is made by irradiating a laser beam, and the cross-sectional shape of the hole is, for example,
In the case of figure (a), the focal point is below the surface F, in the case of figure (b) it is above the surface, and in the case of figure (C) it is just above the surface F. I had determined that there was.

(発明が解決しようとする課題) +ilff記のように、レーザ光の焦点位置を決めるた
めに、ベニヤ板にスリットを切る方法は、何回もスリッ
トを切る必要があり、その都度ベニヤ板をボ1費する外
、焦点位置がベニヤ板の厚さの上下どちらの側にあるか
、判明しないという問題があった。また、アクリル樹脂
の板に穴を開ける方法は、焦点位置を決めるまでには、
一般に多くの穴を明ける必要があり、アクリル板の消耗
と、手間がかかるという問題があった。
(Problem to be Solved by the Invention) As described in +ilff, the method of cutting slits in a plywood board to determine the focal position of the laser beam requires cutting slits many times, and each time the slits are cut, the cost of cutting the plywood board is increased. Another problem was that it was not clear which side of the thickness of the plywood the focal point was located on. In addition, the method of making holes in the acrylic resin plate requires
Generally, it is necessary to make many holes, which causes wear and tear on the acrylic plate and is time-consuming.

この発明は、このような問題に鑑んがみて創案されたも
ので、比較的正確に且つ、テスト材料の消耗のない、レ
ーザ光の焦点出し方法を提供することを目的とするもの
である。
The present invention was devised in view of these problems, and an object of the present invention is to provide a method for focusing laser light that is relatively accurate and does not consume test material.

[発明の構成] (課題を解決するための手段》 前記の目的を達成するために、この発明のレーザ加工機
の焦点出し方法は、レーザ光のビームウェストの直径を
計算式から算出し、高反射金属板に前記の直径と同一の
幅のスリットを設け、この高反射金属板をレーザ加工機
に取f=Jけ、レーゾ光をスリットに直角の方向から走
査し、反射光を計測し、その強度が急に低下するスリッ
ト位置から、走査方向をスリットに沿った方向へ変更し
、反射光を計測すると共に、集光レンズと高反射金属板
の距離を変えて反射光の強度が最小になる位置を求め、
この位置を焦点位置とするものである。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above-mentioned object, the focusing method of the laser processing machine of the present invention calculates the diameter of the beam waist of the laser beam from a calculation formula, and A slit with the same width as the above-mentioned diameter is provided in the reflective metal plate, this highly reflective metal plate is placed in a laser processing machine, laser light is scanned from a direction perpendicular to the slit, and the reflected light is measured. From the slit position where the intensity suddenly decreases, the scanning direction is changed to the direction along the slit and the reflected light is measured, and the distance between the condenser lens and the highly reflective metal plate is changed to minimize the intensity of the reflected light. seek a position,
This position is taken as the focal position.

ここで、レーザ光のビームウェストの直径の計算式はT
EMooモードの場合には、次の通りである。但し集光
レンズの球面収差を無視してある。
Here, the formula for calculating the diameter of the beam waist of laser light is T
In the case of EMoo mode, it is as follows. However, the spherical aberration of the condenser lens is ignored.

d・−4λf/(πD) この式で、λはレーザビームの波長、[は集光レンズの
焦点距離、Dはレーヂビームの直径(中心強度の6−2
のビーム直径)である。
d・-4λf/(πD) In this formula, λ is the wavelength of the laser beam, [ is the focal length of the condensing lens, and D is the diameter of the laser beam (6-2
beam diameter).

(作用) レーザビームの径は集光レンズで集光した場合、その焦
点位置で最も細いビーム、即ちビームウェストになり、
焦点位置の前後ではビームウェストより人ぎくなる。高
反射金属板に設けたスリットの幅は、ビームウェストの
直径と同一にしてあるので、レーザビームをこのスリッ
トに沿って走査しながら集光レンズと高反射金屈板の距
11iLを変更し、その反射戻り光を計測すると、Lが
集光レンズの焦点距離「と一致したとき、レーザビーム
は殆んどスリットの中へ入り、反射戻り光の強度は最小
になる。即ち、この位置を求めれば、集光レンズの焦点
位置を定めることができる。
(Function) When the laser beam is focused by a condensing lens, the diameter of the laser beam becomes the narrowest beam at the focal point, that is, the beam waist.
The area before and after the focal point is more crowded than the beam waist. The width of the slit provided in the highly reflective metal plate is the same as the diameter of the beam waist, so while scanning the laser beam along this slit, the distance 11iL between the condenser lens and the highly reflective metal plate is changed. When the reflected return light is measured, when L matches the focal length of the condenser lens, most of the laser beam enters the slit, and the intensity of the reflected return light becomes minimum.In other words, this position can be found. For example, the focal position of the condenser lens can be determined.

(実施例) 次に、この発明を実施した炭酸ガスレーザ加工機の焦点
だしの場合について説明する。この炭酸がスレーザ加工
機は第2図のように、炭酸ガスレーザ発振器1、反射戻
り光検出器3、ペンドミラー5、集光レンズ7及び加工
デーブル9等から構成されている。加工テーブル9上に
載置された高反射金属板11はアルミニウム又は銅の薄
板からなり、第1図(a)のように溝幅dのスリットが
切ってある。この溝幅dは前記の式にJ3いて、f=2
.5インチ、λ−10.6μs ,D=10amとする
と、d =0.086+no+になる。
(Example) Next, a case of focusing a carbon dioxide laser processing machine embodying the present invention will be described. As shown in FIG. 2, this carbon dioxide laser processing machine is comprised of a carbon dioxide laser oscillator 1, a reflected return light detector 3, a pendor mirror 5, a condenser lens 7, a processing table 9, and the like. The highly reflective metal plate 11 placed on the processing table 9 is made of a thin aluminum or copper plate, and has a slit with a groove width d as shown in FIG. 1(a). This groove width d is J3 in the above formula, and f=2
.. If it is 5 inches, λ-10.6 μs, and D=10 am, then d=0.086+no+.

この高反射金属板11に、第1図(a)のように矢印の
方向ヘレーザビームを走査し、反射光を反射戻り光検出
器3によって計測する。レーザビームがスリットの位百
にくると、同図<b)のように反射戻り光は急に減少す
るので、レーザヘッドがスリットの真上に来たことが分
る。炭酸ガスレーザのレーザ光は遠赤外線で、目に見え
ないが、このような方法によってレーザヘッドがスリッ
トの上方に位置したことを確認することができる。
This highly reflective metal plate 11 is scanned with a laser beam in the direction of the arrow as shown in FIG. 1(a), and the reflected light is measured by the reflected return light detector 3. When the laser beam reaches the slit, the reflected return light suddenly decreases as shown in the figure <b), indicating that the laser head has come directly above the slit. Although the laser light of the carbon dioxide laser is far infrared rays and cannot be seen with the naked eye, it is possible to confirm that the laser head is positioned above the slit using this method.

レーザヘッドがスリットの上方にくると、走査方向を9
0度変え、第1図(C )のようにスリットに沿って(
図で矢印の方向へ)走査すると共に、集光レンズ7と八
反射金属板11の距離Lを連続的に変更する。第1図(
d )のように、若し、L〈fの場合には、集光レンズ
7を高反射金属板11へ近づけると反射戻り光の強度は
増加し、遠ざけると次第に減少し、L=rのとき最小に
なる。
When the laser head is above the slit, the scanning direction is
0 degrees and move it along the slit as shown in Figure 1 (C).
In the direction of the arrow in the figure), the distance L between the condenser lens 7 and the eight reflective metal plates 11 is continuously changed. Figure 1 (
d), if L<f, the intensity of the reflected return light increases when the condensing lens 7 is brought closer to the highly reflective metal plate 11, and gradually decreases when it is moved away from it, and when L=r becomes the minimum.

また、L>fの場合には、集光レンズ7を遠ざけると、
反射戻り光の強度は増加し、近ずけると次第に減少しL
=fのとき最小になる。したがって、いずれの場合でも
反射戻り光の強度が減少する方向へ集光レンズ7を移動
して、反射戻り光の強度が最小になる位置を求めれば、
集光レンズ7の焦点は、高反射金属板11の表面上にあ
ることになる。このとき、レーザヘッドの先端と高反射
金属板表面の距離を計測すれば、レーヂヘッドの先端位
置を基準にした焦点位置が求められる。
Moreover, in the case of L>f, if the condensing lens 7 is moved away,
The intensity of the reflected return light increases and gradually decreases as you approach L.
It becomes minimum when = f. Therefore, in any case, if the condenser lens 7 is moved in the direction where the intensity of the reflected return light decreases and the position where the intensity of the reflected return light is the minimum is found, then
The focus of the condensing lens 7 will be on the surface of the highly reflective metal plate 11. At this time, by measuring the distance between the tip of the laser head and the surface of the highly reflective metal plate, the focal position can be determined based on the tip position of the laser head.

反射戻り光検出器3は、細いワイヤをビームに直角な断
面で回転させ、その反射光を赤外線センサで受け、その
強度を計測するようにしたものであるが、高速でレーザ
の反射光の強度を計測できるものであれば何でもよい。
The reflected return light detector 3 rotates a thin wire with a cross section perpendicular to the beam, receives the reflected light with an infrared sensor, and measures its intensity. Anything that can be used to measure is fine.

[発明の効果1 以上の説明から理解されるように、この発用は特許請求
の範囲に記載の構成を備えているので、従来より遥かに
正確で、且つテストのための材料の消紅等がないレーザ
光の焦点出し方法を提供することができる。
[Effect of the invention 1] As understood from the above explanation, this application has the structure described in the claims, so it is much more accurate than the conventional method, and it can be used to decolorize materials for testing, etc. It is possible to provide a method for focusing a laser beam without using a laser beam.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a )はスリットを設Gブた高反射金属板の平
面図、同図(b)は高反射金属板をスリットに直角な方
向からレーヂビームで走査したときの走査距離と反射戻
り光の強度の関係図、同図(C)は高反射金属板のスリ
ットに沿ったレーザビームの走査方向く矢印)の説明図
、同図(d )は(C)図のように走査した場合の集光
レンズと高反射金属板の距離と、反射戻り光の強度の関
係図である。第2図はこの発明を実施した炭酸ガスレー
ザ加工機の説明図である。第3図はアクリル樹脂板によ
る従来の焦点出し方法の説明図である。 図面の主要な部分を表わす符号の説明 1・・・炭酸ガスレーザ発振器 3・・・反射戻り光検出器    7・・・集光レンズ
11・・・高反射金属板 代理人 弁理士  三 好 秀 和
Figure 1 (a) is a plan view of a highly reflective metal plate with slits, and Figure 1 (b) shows the scanning distance and reflected return light when the highly reflective metal plate is scanned with a laser beam from a direction perpendicular to the slits. (C) is an explanatory diagram of the scanning direction of the laser beam along the slit of the highly reflective metal plate (arrow), and (d) is an explanatory diagram of the direction of scanning of the laser beam as shown in (C). FIG. 3 is a diagram showing the relationship between the distance between the condenser lens and the highly reflective metal plate and the intensity of reflected return light. FIG. 2 is an explanatory diagram of a carbon dioxide laser processing machine embodying the present invention. FIG. 3 is an explanatory diagram of a conventional focusing method using an acrylic resin plate. Explanation of the symbols representing the main parts of the drawing 1... Carbon dioxide laser oscillator 3... Reflected return light detector 7... Condensing lens 11... Highly reflective metal plate agent Patent attorney Hidekazu Miyoshi

Claims (1)

【特許請求の範囲】[Claims]  レーザ光のビームウェストの直径をあらかじめ算出し
、高反射金属板に前記の直径と同一の幅のスリットを設
け、この高反射金属板をレーザ加工機に取付け、レーザ
光をスリットに直角の方向から走査し、反射光を計測し
、その強度が急に低下するスリット位置から、走査方向
をスリットに沿つた方向へ変更し、反射光を計測すると
共に、集光レンズと高反射金属板の距離を変えて反射光
の強度が最小になる位置を求め、この位置を焦点位置と
するレーザ加工機の焦点出し方法。
Calculate the diameter of the beam waist of the laser beam in advance, make a slit with the same width as the diameter in a highly reflective metal plate, attach this highly reflective metal plate to a laser processing machine, and insert the laser beam from a direction perpendicular to the slit. From the slit position where the intensity suddenly decreases, change the scanning direction to the direction along the slit, measure the reflected light, and adjust the distance between the condenser lens and the highly reflective metal plate. A method of focusing a laser processing machine by changing the position to find the position where the intensity of the reflected light is minimum and using this position as the focal position.
JP1107501A 1989-04-28 1989-04-28 Focusing method for laser beam machine Pending JPH02290681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1107501A JPH02290681A (en) 1989-04-28 1989-04-28 Focusing method for laser beam machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1107501A JPH02290681A (en) 1989-04-28 1989-04-28 Focusing method for laser beam machine

Publications (1)

Publication Number Publication Date
JPH02290681A true JPH02290681A (en) 1990-11-30

Family

ID=14460809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1107501A Pending JPH02290681A (en) 1989-04-28 1989-04-28 Focusing method for laser beam machine

Country Status (1)

Country Link
JP (1) JPH02290681A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016002580A (en) * 2014-06-18 2016-01-12 スズキ株式会社 Method for detecting focal point shift of laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016002580A (en) * 2014-06-18 2016-01-12 スズキ株式会社 Method for detecting focal point shift of laser

Similar Documents

Publication Publication Date Title
US4355904A (en) Optical inspection device for measuring depthwise variations from a focal plane
EP1577639B1 (en) Optical axial displacement sensor
DK237089A (en) MEASUREMENT OF CURRENCY OF A TRANSPARENT OR TRANSPARENT MATERIAL
US4204772A (en) Optical measuring system
WO1997044632A1 (en) Optical caliper with compensation for specimen deflection and method
JPH063125A (en) Optical type displacement meter
JP2002039724A (en) Internal hole surface inspecting device
JPH02290681A (en) Focusing method for laser beam machine
JPS5979104A (en) Optical device
JP2006301178A (en) Bend sensor and its manufacturing method
JPS57149912A (en) Optical position detector
JPS5979122A (en) Laser power measuring device
JPS6432105A (en) Angle deviation measuring instrument for flat plate member
JPS62115315A (en) Laser displacement gauge
CN107576822B (en) A kind of scanning probe detection device
JPH06281418A (en) Optical thickness measuring method of plate-shaped transparent body having ruggedness
EP0162973A1 (en) Distance measuring device
RU1834772C (en) Method for laser treatment of materials
JPS60211304A (en) Measuring instrument for parallelism
JPS62127614A (en) Surface displacement measuring method by laser light
JP2859359B2 (en) Micro Dimension Measurement Method
RU2142126C1 (en) Device designed to reveal defects of moving flexible material surface
JPH05196461A (en) Method of measuring distance with laser
JP2001249010A (en) Method and device for measuring surface shape and thickness of plate shape work
JPS61120912A (en) Distance measuring device