JP2016002580A - Method for detecting focal point shift of laser - Google Patents

Method for detecting focal point shift of laser Download PDF

Info

Publication number
JP2016002580A
JP2016002580A JP2014125478A JP2014125478A JP2016002580A JP 2016002580 A JP2016002580 A JP 2016002580A JP 2014125478 A JP2014125478 A JP 2014125478A JP 2014125478 A JP2014125478 A JP 2014125478A JP 2016002580 A JP2016002580 A JP 2016002580A
Authority
JP
Japan
Prior art keywords
laser
measurement
reference plane
measurement reference
shift amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014125478A
Other languages
Japanese (ja)
Other versions
JP6519106B2 (en
Inventor
宰 萩原
Sai Hagiwara
宰 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2014125478A priority Critical patent/JP6519106B2/en
Publication of JP2016002580A publication Critical patent/JP2016002580A/en
Application granted granted Critical
Publication of JP6519106B2 publication Critical patent/JP6519106B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for detecting focal point shift of a laser capable of detecting and correcting focal point shift due to thermal effect at a low cost.SOLUTION: A processing head (1) is positioned with respect to a reference measurement surface (11) having a small opening (10) so that a laser beam axis (5) passes through the small opening. A laser beam (4) is emitted focusing on the reference measurement surface or the front or rear of the surface. The level of radiant light (14) radiated from at least a part of the periphery of the small opening on the reference measurement surface is measured by a radiant light measurement sensor (12), and a focal point shift amount is obtained using the measured value to correct the focal point of the laser beam.

Description

本発明は、レーザの焦点ずれ検査方法に関し、さらに詳しくは、熱影響による焦点ずれを検出し、それに基づいて焦点位置を補正する方法に関する。   The present invention relates to a laser defocus inspection method, and more particularly to a method of detecting a defocus due to a thermal effect and correcting a focus position based on the defocus.

安定した品質のレーザ溶接やレーザ加工を行うためには、レーザの焦点距離や焦点径、スポット径が厳密に管理されなければならないが、種々の原因により焦点距離の変化すなわち焦点ずれが発生することが知られている。   In order to perform laser welding and laser processing with stable quality, the focal length, focal diameter, and spot diameter of the laser must be strictly controlled. However, the focal length changes, that is, defocusing occurs due to various causes. It has been known.

例えば、レーザ加工ヘッドには光学レンズが使用されており、レーザ光がレンズを通過する際に一部が吸収されることで屈折率が変化して温度分布が生じる「熱レンズ効果」により焦点距離が短くなる。また、レンズを保護する目的で焦点レンズと加工対象物の間に設けられる保護ガラスは、それ自体は熱の影響を受けないが、保護ガラスに付着したヒュームなどが加熱されることで前記同様の原理で焦点ずれが発生する。レンズの屈折率分布はレンズの材質などによって所定の時定数で定常値へ収束するため、熱レンズ効果は飽和していくが、保護ガラスの汚れは加工状態により変化するため、これを含めた熱レンズ効果は所定の数値に飽和することはない。焦点ずれが発生すると加工対象物上での加工スポット径が変化し、加工のバラツキや加工不良が発生する問題がある。   For example, an optical lens is used in the laser processing head, and when the laser beam passes through the lens, a part of the laser beam is absorbed, and the refractive index changes to produce a temperature distribution. Becomes shorter. Further, the protective glass provided between the focus lens and the object to be processed for the purpose of protecting the lens itself is not affected by heat, but the same as described above by heating the fumes attached to the protective glass. Defocus occurs in principle. Since the refractive index distribution of the lens converges to a steady value with a predetermined time constant depending on the lens material, etc., the thermal lens effect saturates, but the dirt on the protective glass changes depending on the processing state. The lens effect does not saturate to a predetermined value. When defocusing occurs, the machining spot diameter on the object to be processed changes, and there is a problem in that machining variations and machining defects occur.

加工不良は、目視や画像処理による検査で確認することが出来るが、レーザ加工中においても、加工ヘッドに組み込んだカメラで加工状態を観察することで、ある程度は検出可能である。しかし、加工不良は焦点ずれのみを要因として発生するのではなく、加工物の状態変化や加工治具上での位置決め状態など、様々な要因により発生する。したがって、上記検査方法では焦点ずれの有無や程度を判別することは不可能である。   Processing defects can be confirmed by visual inspection or inspection by image processing, but can be detected to some extent by observing the processing state with a camera incorporated in the processing head even during laser processing. However, processing defects do not occur only due to defocusing, but occur due to various factors such as changes in the state of the workpiece and the positioning state on the processing jig. Accordingly, it is impossible to determine the presence or absence and degree of defocus by the above inspection method.

特許文献1〜4は、加工ヘッド内の加工レンズと被加工物との間に設置した温度センサによりレーザ光やレンズの温度変化を測定し、測定結果に基づき加工レンズの位置を調整することを開示している。また、特許文献5では、加工ヘッドに組み込まれたカメラと撮像光学系を利用して撮像のズレを検出し、それに基づいてレーザ光学系を補正することを開示している。しかし、これらは何れも専用のレーザ加工ヘッドを必要とし、既存のシステムでは利用できないうえ、システムの構築が非常に高価であり、加工内容に応じて最適な加工ヘッドを選択することは困難であるという問題があった。   Patent documents 1 to 4 measure the temperature change of a laser beam or a lens by a temperature sensor installed between a processing lens in a processing head and a workpiece, and adjust the position of the processing lens based on the measurement result. Disclosure. Japanese Patent Application Laid-Open No. H10-228707 discloses that an imaging deviation is detected using a camera and an imaging optical system incorporated in a processing head, and the laser optical system is corrected based on the detection. However, all of these require a dedicated laser processing head, which cannot be used in existing systems, and the construction of the system is very expensive, making it difficult to select the optimal processing head according to the processing content. There was a problem.

特公平5−85276号公報Japanese Examined Patent Publication No. 5-85276 特許第2627205号公報Japanese Patent No. 2627205 特開2000−94173号公報JP 2000-94173 A 特開2013−173176号公報JP 2013-173176 A 特表2012−533434号公報Special table 2012-533434 gazette

本発明は、従来技術のこのような実状に鑑みてなされたものであって、その目的は、熱影響による焦点ずれを低コストで検出しかつ補正できるレーザの焦点ずれ検査方法を提供することにある。   The present invention has been made in view of such a situation of the prior art, and an object of the present invention is to provide a laser defocus inspection method capable of detecting and correcting defocus due to thermal effects at low cost. is there.

上記課題を解決するために、本発明に係るレーザの焦点ずれ検査方法は、小開口を有する測定基準面に対して、前記小開口をレーザ光軸が通過するように加工ヘッドを位置させ、前記測定基準面またはその前側もしくは後側に焦点を合わせてレーザを照射し、前記測定基準面の前記小開口の周囲の少なくとも一部から放射される放射光のレベルを測定し、その測定値から焦点シフト量を求め、前記レーザの焦点位置を補正することを特徴とする。   In order to solve the above-described problem, the laser defocus inspection method according to the present invention is configured such that a processing head is positioned so that a laser optical axis passes through the small opening with respect to a measurement reference plane having the small opening. A laser is focused on the measurement reference plane or its front side or rear side, and the level of radiation emitted from at least a part of the measurement reference plane around the small aperture is measured. The shift amount is obtained, and the focal position of the laser is corrected.

小開口をレーザ光軸が通過するようにレーザを照射すると、レーザに焦点ずれを生じている場合、ずれの大きさに応じてレーザ照射径が大きくなり、小開口の周囲から放射される放射光のレベルも大きくなるので、この放射光レベルを測定することにより、焦点ずれを検出可能である。   When the laser is irradiated so that the laser optical axis passes through the small aperture, if the laser is defocused, the laser irradiation diameter increases according to the magnitude of the deviation, and the radiation emitted from the periphery of the small aperture Therefore, the defocus can be detected by measuring the radiation light level.

したがって、上記方法によれば、小開口を有する測定基準面と放射光レベルの測定手段をレーザ加工設備に追加または併用するだけで熱レンズ効果や保護ガラスの汚れに起因する焦点ずれを正確に検出して補正できるので、常に同一の加工スポット径で加工でき、不良の発生を防止できる。しかも、専用の加工ヘッドを用いる必要がなく、既存のレーザ加工設備に対して低コストで導入できるとともに、加工内容に応じた加工ヘッドの選択にも対応できる。   Therefore, according to the above method, it is possible to accurately detect the defocus due to the thermal lens effect or the contamination of the protective glass simply by adding or using a measurement reference surface having a small aperture and a means for measuring the emitted light level in the laser processing equipment. Therefore, the machining can always be performed with the same machining spot diameter, and the occurrence of defects can be prevented. Moreover, it is not necessary to use a dedicated processing head, and it can be introduced into existing laser processing equipment at a low cost, and it is possible to cope with selection of a processing head according to the processing content.

本発明において、放射光レベルと焦点シフト量の相関データを予め取得しておき、前記相関データを参照して前記測定値に適合する焦点シフト量を指定し、前記レーザの焦点位置を補正することが好適である。これにより、加工工程の合間に1回の測定で補正量を取得でき、短時間で加工工程に復帰することができる。   In the present invention, correlation data between a synchrotron radiation level and a focus shift amount is acquired in advance, a focus shift amount that matches the measurement value is designated with reference to the correlation data, and the focal position of the laser is corrected. Is preferred. Thereby, a correction amount can be acquired by one measurement between processing steps, and the processing step can be returned in a short time.

本発明において、前記相関データは、焦点が前記測定基準面の前側もしくは後側に所定量ずれた測定位置にて取得されることが好適である。焦点付近(ビームウエスト)では本来レーザのスポット径変化が小さいうえ、スポット径自体も小さいのに対し、焦点から前後に離れた位置では、レーザは収束または拡散状態にあり、スポット径の変化が相対的に大きいので、焦点ずれを容易かつ高精度で検出できる。   In the present invention, it is preferable that the correlation data is acquired at a measurement position where a focal point is shifted by a predetermined amount toward the front side or the rear side of the measurement reference plane. In the vicinity of the focal point (beam waist), the laser spot diameter change is small and the spot diameter itself is small, but at a position far away from the focal point, the laser is in a convergent or diffuse state, and the spot diameter change is relative. Therefore, defocus can be detected easily and with high accuracy.

本発明において、放射光レベルと焦点シフト量の相関データを予め取得しておく代わりに、前記放射光レベルの測定を少なくとも2回行い、それより放射光レベルの強度勾配を得て焦点シフト量を算出し、前記レーザの焦点位置を補正することもできる。この場合、予めデータを取得する準備工程が不要になる利点がある。   In the present invention, instead of acquiring the correlation data between the synchrotron radiation level and the focus shift amount in advance, the synchrotron radiation level is measured at least twice, and the intensity gradient of the synchrotron radiation level is obtained thereby to determine the focus shift amount. It is also possible to calculate and correct the focal position of the laser. In this case, there is an advantage that a preparation step for acquiring data in advance is not necessary.

本発明において、前記小開口は、前記測定基準面を貫通する円孔またはスリット、または、前記測定基準面の一側から切欠されたU字状またはV字状の切欠からなることが好適である。円孔は全周囲から放射光が発せられるので、放射光レベル変化を高精度で検出でき、また、V字状の場合、対向する縁部の間隔が一様でないので、レーザ光軸の位置を変更することで、1つの測定基準面にて異なる複数のスポット径に対応できる利点がある。   In the present invention, it is preferable that the small opening is a circular hole or slit penetrating the measurement reference plane, or a U-shaped or V-shaped cutout cut out from one side of the measurement reference plane. . Since the circular hole emits radiated light from the entire periphery, the radiated light level change can be detected with high accuracy. In the case of V-shape, the distance between the opposing edges is not uniform, so the position of the laser optical axis can be determined. By changing, there is an advantage that it is possible to cope with a plurality of different spot diameters on one measurement reference plane.

以上述べたように、本発明に係るレーザの焦点ずれ検査方法によれば、熱レンズ効果や保護ガラスの汚れなどによる焦点ずれを低コストでかつ簡単な操作で精度よく検出し補正できる。   As described above, the laser defocus inspection method according to the present invention can detect and correct defocus due to the thermal lens effect, dirt on the protective glass, and the like with low cost and simple operation.

本発明に係るレーザの焦点ずれ検査方法の実施状況を示す斜視図である。It is a perspective view which shows the implementation condition of the defocus inspection method of the laser which concerns on this invention. レーザ溶接を示す模式的な斜視図である。It is a typical perspective view which shows laser welding. (a)は焦点シフト量とスポット径の関係を示すグラフであり、(b)はビームウエスト下部が測定基準面付近にある場合、(c)はビームウエスト上部が測定基準面付近にある場合を示す概略斜視図である。(A) is a graph showing the relationship between the focal shift amount and the spot diameter, (b) when the lower part of the beam waist is near the measurement reference plane, and (c) when the upper part of the beam waist is near the measurement reference plane. It is a schematic perspective view shown. 焦点が測定基準面の上方(手前側)にある場合および下方(後側)にある場合を示す概略側面図である。It is a schematic side view which shows the case where a focus exists in the upper direction (near side) and the downward direction (rear side) of a measurement reference plane. 本発明第1実施形態に係るレーザの焦点ずれ検査方法を示すフローチャートである。It is a flowchart which shows the defocusing inspection method of the laser which concerns on 1st Embodiment of this invention. (a)は本発明第2実施形態に係るレーザの焦点ずれ検査方法を示すフローチャート、(b)は放射光レベルと焦点シフト量の関係を示すグラフである。(A) is a flowchart which shows the defocusing inspection method of the laser which concerns on 2nd Embodiment of this invention, (b) is a graph which shows the relationship between a radiated light level and a focus shift amount.

以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。
本発明に係るレーザの焦点ずれ検査方法の実施に際しては、図1に示すように、検査位置100に、小開口10を有する測定基準面11、および、測定基準面11のレーザ照射側となる上方に小開口10に対向して配置された放射光測定センサ12を準備する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
When carrying out the laser defocusing inspection method according to the present invention, as shown in FIG. 1, a measurement reference surface 11 having a small opening 10 at an inspection position 100 and an upper side of the measurement reference surface 11 on the laser irradiation side. A synchrotron radiation measuring sensor 12 arranged to face the small opening 10 is prepared.

測定基準面11は、例えば金属やセラミックなどからなる測定用板の上面であり、図示例では小開口10として円孔が設けられ、図示しない治具などでレーザ溶接設備などのレーザ加工設備に固定配置されている。小開口10は、後述の理由により、レーザ光が最も絞られた焦点径より僅かに広い大きさの円孔であり、小開口10が他形状の場合にもこのような円孔を含む大きさに形成される。   The measurement reference surface 11 is an upper surface of a measurement plate made of, for example, metal or ceramic. In the illustrated example, a circular hole is provided as the small opening 10 and is fixed to a laser processing facility such as a laser welding facility with a jig not illustrated. Has been placed. The small opening 10 is a circular hole having a size slightly wider than the focal diameter at which the laser beam is most narrowed for reasons described later, and the size including such a circular hole is also used when the small opening 10 has another shape. Formed.

放射光測定センサ12は、レーザ照射にともなう測定基準面11からの放射光14を測定可能なセンサ、例えば400〜1100nmの波長帯を検出可能なセンサが好適であるが、これに限定されるものではない。レーザ加工設備に放射光測定装置が付設されている場合には、それを利用することもできる。   The synchrotron radiation measuring sensor 12 is preferably a sensor capable of measuring the synchrotron radiation 14 from the measurement reference plane 11 accompanying laser irradiation, for example, a sensor capable of detecting a wavelength band of 400 to 1100 nm, but is not limited thereto. is not. If the laser processing equipment is equipped with a synchrotron radiation measuring device, it can also be used.

検査時および検査に先立つデータ取得時において、レーザ加工ヘッド1は、その光軸5が小開口10の中心を通るように、測定基準面11に対して所定距離だけ離隔されて垂直に位置決めされる。図示例では、測定基準面11が水平に配置されているが、これに限定されるものではない。   At the time of inspection and at the time of data acquisition prior to the inspection, the laser processing head 1 is vertically positioned with a predetermined distance from the measurement reference plane 11 so that the optical axis 5 passes through the center of the small opening 10. . In the illustrated example, the measurement reference plane 11 is disposed horizontally, but the present invention is not limited to this.

上記検査位置100において、定常状態時に小開口10にレーザ光を照射した場合、レーザ光は全て小開口10を通過するため、測定基準面11における上方への反射は無く、放射光測定センサ12に検出される放射光は極めて低いレベルとなる。それに対し、熱レンズ効果等により焦点シフトが発生している場合には、小開口10の上方で焦点径に一旦集光した後に拡がった状態となり、小開口10より大きいスポット周辺部分の光は周囲の測定基準面11に当たり上方に反射するので、放射光測定センサ12に放射光14として測定され、それにより焦点シフトの発生を検出できる。   When the small aperture 10 is irradiated with the laser beam at the inspection position 100 in a steady state, all the laser beam passes through the small aperture 10, so there is no reflection upward on the measurement reference plane 11, and the synchrotron radiation measuring sensor 12 The detected radiation is at a very low level. On the other hand, when a focus shift occurs due to the thermal lens effect or the like, the light is focused once on the focal diameter above the small aperture 10 and then spreads. Therefore, it is measured as the radiated light 14 by the radiated light measurement sensor 12, thereby detecting the occurrence of the focus shift.

上記の放射光14のレベルは、焦点シフト量が大きくなればなるほど大きくなるので、放射光レベルを測定することによって、焦点シフト量を特定することができる。また、その状態からレーザ加工ヘッド1の焦点を調整して、放射光レベルが最小となるように補正すれば、直ちに焦点ずれの補正が可能となる。このように、焦点ずれの検出および補正にはいくつかの実施形態があり、以下、その代表的なものについて述べる。   Since the level of the radiation light 14 increases as the focus shift amount increases, the focus shift amount can be specified by measuring the radiation light level. Further, if the focal point of the laser processing head 1 is adjusted from that state and the radiation light level is corrected to the minimum, the defocus can be corrected immediately. As described above, there are several embodiments for detecting and correcting defocus, and typical ones will be described below.

(第1実施形態)
焦点ずれが生じている場合に、少しずつ焦点調整を実施して放射光レベルが最小となる状態を検知しようとすると、焦点調整、レーザ照射、放射光測定を何度か繰り返す必要があり、1回毎の補正量が小さければ測定回数は増え、大きければ最小状態を行き過ぎる恐れがある。そこで、放射光レベルと焦点シフト量の相関データを予め取得しておき、実際の検査時においては、この相関データを参照して、放射光レベルの測定値に適合する焦点シフト量を指定することで、1回の測定のみでレーザの焦点位置を補正可能となる。
(First embodiment)
When focus adjustment is performed little by little and an attempt is made to detect a state in which the level of emitted light is minimized when focus is shifted, it is necessary to repeat focus adjustment, laser irradiation, and emitted light measurement several times. If the correction amount for each time is small, the number of measurements increases, and if it is large, the minimum state may be exceeded. Therefore, correlation data between the synchrotron radiation level and the focus shift amount is acquired in advance, and at the time of actual inspection, the correlation shift data is referred to and a focus shift amount that matches the measurement value of the synchrotron radiation level is designated. Thus, the focal position of the laser can be corrected by only one measurement.

放射光レベルと焦点シフト量の相関データの取得に際しては、レーザに焦点ずれを生じていない定常状態で、図1に示した検査位置100にて、小開口10をレーザ光軸5が通過するようにレーザ加工ヘッド1を測定基準面11の上方の所定位置に位置させ、測定基準面11の上方および下方に意図的に焦点位置を変化させてレーザ照射を行い、放射光測定センサ12により放射光14のレベルを測定し、焦点シフト量との相関データを関数またはルックアップテーブルとして準備しておく。   When acquiring the correlation data between the synchrotron radiation level and the focus shift amount, the laser optical axis 5 passes through the small aperture 10 at the inspection position 100 shown in FIG. 1 in a steady state where the laser is not defocused. The laser processing head 1 is positioned at a predetermined position above the measurement reference plane 11, laser irradiation is performed by intentionally changing the focal position above and below the measurement reference plane 11, and the emitted light is emitted by the synchrotron radiation measuring sensor 12. 14 levels are measured, and correlation data with the focus shift amount is prepared as a function or a lookup table.

図3(a)は、焦点シフト量と測定基準面11でのスポット径の関係を示すグラフであり、y軸は焦点シフト量を示し、x軸はスポット径を示しており、y軸方向の原点は測定基準面11となっている。このため、y軸のプラス方向は、レンズ2が測定基準面11から離れる方向となる。上述のように取得した放射光レベルと焦点シフト量の相関データは、焦点シフト量とスポット径の関係とほぼ一致しており、放射光レベルはスポット径とともに大きくなることが実験で分かっている。   FIG. 3A is a graph showing the relationship between the focus shift amount and the spot diameter on the measurement reference plane 11, where the y axis shows the focus shift amount, the x axis shows the spot diameter, and the y axis direction. The origin is the measurement reference plane 11. For this reason, the positive direction of the y-axis is the direction in which the lens 2 is separated from the measurement reference plane 11. The correlation data between the synchrotron radiation level and the focus shift amount acquired as described above are almost consistent with the relationship between the focus shift amount and the spot diameter, and it has been experimentally known that the synchrotron radiation level increases with the spot diameter.

しかし、図3(a)における符号4a,4b間のビームウエスト40ではスポット径の変化は小さく、放射光レベルも変化しない。これに対して、焦点が測定基準面11の上方にある場合(図4、4c)および下方にある場合(図4、4d)には、スポット径および放射光レベルの変化が大きくなる。そこで、小開口10の大きさは、ビームウエスト40の両側(4a,4b)におけるスポット径を基準に設定し、放射光強度の差を検出し易い焦点位置(4c,4d)にて測定を行う。   However, in the beam waist 40 between the reference numerals 4a and 4b in FIG. 3A, the change in the spot diameter is small and the radiated light level does not change. In contrast, when the focal point is above the measurement reference plane 11 (FIGS. 4 and 4c) and below the measurement reference surface 11 (FIGS. 4 and 4d), changes in the spot diameter and the emitted light level become large. Therefore, the size of the small aperture 10 is set with reference to the spot diameters on both sides (4a, 4b) of the beam waist 40, and the measurement is performed at the focal position (4c, 4d) at which the difference in emitted light intensity is easily detected. .

上記のような事前準備を行った後、通常の加工中における焦点ずれ検査は、次のように実施される。例えば、図2に示すような加工物21,22(鋼板)の溶接工程(200)において、レーザ照射スポット24が適正な径にあれば、一定幅の溶接ビード23が形成されるが、溶接工程(200)を重ねるに従ってレンズ2が加熱され、熱レンズ効果により焦点ずれを生じるので、所定回数の溶接工程(200)の終了時点、または、加工開始から所定時間経過後における溶接工程(200)の終了時点で、図5に示されるような手順で焦点ずれ検査工程(100)を行う。   After performing the above-mentioned pre-preparation, the defocus inspection during normal processing is performed as follows. For example, in the welding process (200) of the workpieces 21 and 22 (steel plates) as shown in FIG. 2, if the laser irradiation spot 24 has an appropriate diameter, a weld bead 23 having a certain width is formed. Since the lens 2 is heated as (200) overlaps and defocusing occurs due to the thermal lens effect, the welding process (200) at the end of the predetermined number of welding steps (200) or after a predetermined time has elapsed from the start of processing. At the end, the defocus inspection step (100) is performed according to the procedure shown in FIG.

先ず、レーザ加工ヘッド1を、検査位置100に移動し、レーザ光軸5が小開口10を通過するように測定基準面11の上方の所定位置に位置させてレーザ照射を行い、放射光測定センサ12により放射光レベルを測定する。放射光レベルが正常閾値以下であれば、直ちに検査工程(100)を終了し、レーザ加工ヘッド1は、通常の溶接工程(200)に復帰する。   First, the laser processing head 1 is moved to the inspection position 100, laser irradiation is performed by positioning the laser processing head 1 at a predetermined position above the measurement reference plane 11 so that the laser optical axis 5 passes through the small aperture 10, and the radiation measurement sensor 12 to measure the emitted light level. If the emitted light level is below the normal threshold, the inspection process (100) is immediately terminated, and the laser processing head 1 returns to the normal welding process (200).

一方、放射光レベルが正常閾値よりも大きい場合には、焦点ずれが発生しているものと判断し、予め取得した放射光レベルと焦点シフト量の相関データを参照し、測定された放射光レベルから焦点シフト量を指定し、この焦点シフト量に基づいて焦点距離の補正値を算出する。この補正値の分だけレーザ加工ヘッド1と加工物21(または測定基準面11)間の距離が補正され、それをもって検査工程(100)を終了し、レーザ加工ヘッド1は、通常の溶接工程(200)に復帰する。   On the other hand, when the radiated light level is larger than the normal threshold, it is determined that a defocus has occurred, and the measured radiated light level is determined by referring to the correlation data between the radiated light level and the focus shift amount acquired in advance. Then, a focal shift amount is designated, and a focal length correction value is calculated based on the focal shift amount. The distance between the laser processing head 1 and the workpiece 21 (or the measurement reference surface 11) is corrected by this correction value, and the inspection process (100) is completed with this, and the laser processing head 1 is subjected to a normal welding process ( 200).

なお、図5に破線で示されるように、前記補正値の算出後、レーザ加工ヘッド1と測定基準面11の距離を補正して、再度、レーザ照射を行い、放射光測定センサ12により放射光レベルを測定し、放射光レベルが正常閾値以下であることを確認した後に検査工程(100)を終了し、レーザ加工ヘッド1を通常の溶接工程(200)に復帰させるようにすることもできる。   As shown by a broken line in FIG. 5, after calculating the correction value, the distance between the laser processing head 1 and the measurement reference plane 11 is corrected, laser irradiation is performed again, and the emitted light measurement sensor 12 emits the emitted light. After the level is measured and it is confirmed that the emitted light level is not more than the normal threshold value, the inspection process (100) is terminated, and the laser processing head 1 can be returned to the normal welding process (200).

また、算出した補正値は加工システムにフィードバックされるが、焦点距離の補正は、可動式レーザ加工ヘッドの場合には、加工位置を変更したプログラムを予め準備しておき、算出した補正値に適したプログラムを選択するようにしても良い。一方、固定式レーザ加工ヘッドの場合には、加工物側の位置を調整するようにしても良いし、ヘッド自体でレーザ光の照射位置を変更できる場合には、その機能を利用することもできる。これらは全て自動制御により実施可能である。   The calculated correction value is fed back to the machining system. However, in the case of a movable laser machining head, the focal length is corrected by preparing a program in which the machining position has been changed in advance, and suitable for the calculated correction value. You may be made to select the program. On the other hand, in the case of a fixed laser processing head, the position on the workpiece side may be adjusted. If the irradiation position of the laser beam can be changed by the head itself, the function can be used. . All of these can be implemented by automatic control.

(第2実施形態)
上記実施形態では焦点ずれ検査におけるレーザ加工ヘッド1の所定位置が測定基準面11を起点として設定される場合を示したが、既に述べた通り、ビームウエスト40ではスポット径の変化が小さい。しかも、自動車の鋼板溶接で使用する加工スポット径は、通常1mm以下と極めて細いため、1mm以下の穴径を管理し、放射光を適当な強度で測定して焦点ずれを検出することは、可能ではあるが、設備コスト面で不利である。そこで、定常状態の測定を焦点(ビームウエスト)ではなく、図4に符号4cで示すように、集光後に径が数mm以上に拡がった部分とすることで、基本的な放射光量を多くすることができ、かつ、その変化量も多くなるので、容易かつ低コストに焦点ずれ検出が可能となる。
(Second Embodiment)
In the above embodiment, the case where the predetermined position of the laser processing head 1 in the defocus inspection is set with the measurement reference plane 11 as the starting point has been described. However, as described above, the change in the spot diameter is small at the beam waist 40. Moreover, since the processing spot diameter used in automobile steel plate welding is usually very thin, 1 mm or less, it is possible to manage the hole diameter of 1 mm or less and measure the emitted light at an appropriate intensity to detect defocusing. However, it is disadvantageous in terms of equipment costs. Therefore, the measurement of the steady state is not a focal point (beam waist), but a portion whose diameter is expanded to several mm or more after condensing as shown by reference numeral 4c in FIG. In addition, since the amount of change can be increased, defocus detection can be performed easily and at low cost.

すなわち、焦点位置から所定量(yc)ずれた位置に測定基準面11を設置し、換言すれば、測定基準面11の上方に所定量(yc)ずれた位置を焦点位置とするとともに、小開口10を、前記所定量(yc)をデフォーカス量とした場合のスポット径より小さい適当な大きさに作成しておき、その状態で、予め放射光レベルと焦点シフト量の相関データを取得し、検査時にも、測定基準面11の上方に所定量(yc)ずれた位置を焦点位置として、レーザ照射および放射光レベルの測定を行う。   That is, the measurement reference plane 11 is installed at a position deviated from the focal position by a predetermined amount (yc). In other words, a position deviated by a predetermined amount (yc) above the measurement reference plane 11 is set as the focal position, and a small aperture 10 is created in an appropriate size smaller than the spot diameter when the predetermined amount (yc) is set as the defocus amount, and in this state, correlation data between the radiation light level and the focus shift amount is acquired in advance. Also at the time of inspection, laser irradiation and radiation light level measurement are performed with a position shifted by a predetermined amount (yc) above the measurement reference plane 11 as a focal position.

例えば、図6(b)に示すように、測定面で4eとなる位置での放射光レベルにあるとき、測定基準面11の上方に所定量(yc)ずれた状態で取得された相関データを参照することで、測定面で4cとなる位置での放射光レベルを基準として、測定面に焦点を合わせるための焦点シフト量を認識することができる。その後は、前記同様に、焦点シフト量に基づいて焦点距離の補正値を算出して、レーザ加工ヘッド1と加工物21(または測定基準面11)間の距離を補正し、それをもって検査工程(100)を終了するか、または、再度レーザ照射および放射光レベル測定を行い、放射光レベルが正常閾値以下であることを確認した後に検査工程(100)を終了し、レーザ加工ヘッド1を通常の溶接工程(200)に復帰させる。なお、図3に示すように、集光の手前側(4d)でも径は大きくなるが、通常、焦点ずれは焦点距離が短くなる方向に生じるので、測定面で4cとなる位置の近傍で測定することが有利な場合が多い。   For example, as shown in FIG. 6 (b), the correlation data acquired in a state shifted by a predetermined amount (yc) above the measurement reference plane 11 when the radiation level is at the position 4e on the measurement plane. By referencing, it is possible to recognize the focus shift amount for focusing on the measurement surface with reference to the radiation level at the position 4c on the measurement surface. Thereafter, as described above, a correction value of the focal length is calculated based on the focal shift amount, and the distance between the laser processing head 1 and the workpiece 21 (or the measurement reference plane 11) is corrected, and the inspection step ( 100) is finished, or laser irradiation and radiated light level measurement are performed again, and after confirming that the radiated light level is below the normal threshold, the inspection step (100) is finished, and the laser processing head 1 is moved to the normal state. Return to the welding process (200). As shown in FIG. 3, the diameter increases on the near side (4d) of the light collection, but since the focal shift usually occurs in the direction of shortening the focal length, measurement is performed in the vicinity of the position 4c on the measurement surface. It is often advantageous to do so.

(第3実施形態)
上記各実施形態では、予め取得した放射光レベルと焦点シフト量の相関データを参照することで、1回のレーザ照射における放射光レベルの測定からそれに適合する焦点シフト量を指定して焦点位置を補正する場合について述べたが、相関データを準備せずに、直接放射光レベルを測定する場合にも、以下のように焦点シフト量を算出することで、測定回数を少なく抑えることができる。
(Third embodiment)
In each of the above embodiments, by referring to the correlation data between the radiated light level and the focus shift amount acquired in advance, the focus position is specified by designating a focus shift amount suitable for the measurement from the radiated light level in one laser irradiation. Although the case where correction is performed has been described, the number of times of measurement can be reduced by calculating the focus shift amount as described below even when the radiation light level is directly measured without preparing correlation data.

先ず、前記同様に、レーザ加工ヘッド1を測定基準面11の上方に位置させた状態で、1回目のレーザ照射を行い、放射光レベルを測定する。次いで、焦点位置を所定ピッチだけ上方に移動して2回目のレーザ照射を行い、放射光レベルを測定し、1回目の放射光レベルと比較することにより、所定ピッチ当たりの放射光レベルの変化量、すなわち、放射光レベルの強度勾配が得られ、この強度勾配に基づいて、放射光レベルがゼロになる焦点位置を求め、それを基準として1回目のレーザ照射位置における焦点シフト量を算出できる。   First, in the same manner as described above, the laser processing head 1 is positioned above the measurement reference plane 11, and the first laser irradiation is performed to measure the emitted light level. Next, the focal position is moved upward by a predetermined pitch, the second laser irradiation is performed, the emitted light level is measured, and the amount of change in the emitted light level per predetermined pitch is compared with the first emitted light level. That is, an intensity gradient of the radiated light level is obtained, and based on this intensity gradient, a focal position where the radiated light level becomes zero can be obtained, and a focus shift amount at the first laser irradiation position can be calculated based on this.

この場合も、前記同様に、測定基準面11の上方に所定量(yc)ずれた位置を焦点位置(4c)とすることが好適である。また、上記の2回目のレーザ照射および放射光レベル測定の後、さらに、同ピッチ(または任意のピッチ)上方に焦点位置を移動して3回目のレーザ照射を行い、放射光レベルがゼロになる焦点位置を曲線的に近似して求め、それを基準として1回目のレーザ照射位置における焦点シフト量を算出することもできる。   Also in this case, as described above, it is preferable that the position shifted by a predetermined amount (yc) above the measurement reference plane 11 is the focal position (4c). Further, after the second laser irradiation and the measurement of the emitted light level, the focus position is further moved upward by the same pitch (or an arbitrary pitch), and the third laser irradiation is performed, and the emitted light level becomes zero. It is also possible to calculate the focus shift amount at the first laser irradiation position with the focus position approximated by a curve and using it as a reference.

また、1回目のレーザ照射後に焦点位置を下方に移動して2回目のレーザ照射を行うに際して、1回目のレーザ照射における放射光レベルが比較的小さい場合、すなわち焦点シフト量が比較的小さい場合には、2回目のレーザ照射の焦点位置の移動ピッチを相対的に小さくすることが考えられる。なぜならば、2回目の放射光レベルが1回目と同様に小さければ、焦点が測定面とほぼ一致していることが推測されるからである。逆に、1回目のレーザ照射における放射光レベルが比較的大きい場合は、焦点位置を下方に移動して2回目のレーザ照射を行うことも有効である。   Further, when the second laser irradiation is performed by moving the focal position downward after the first laser irradiation, the radiation light level in the first laser irradiation is relatively small, that is, the focus shift amount is relatively small. Can be considered to relatively reduce the movement pitch of the focal position of the second laser irradiation. This is because it is estimated that the focal point substantially coincides with the measurement surface if the second level of emitted light is as low as the first level. On the contrary, when the level of the emitted light in the first laser irradiation is relatively high, it is also effective to perform the second laser irradiation by moving the focal position downward.

上記各実施形態では小開口10が測定基準面11を貫通する円孔の場合を示したが、それ以外に、平行なスリットやV字状のスリット、測定基準面11の一側から切欠されたU字状またはV字状の切欠部やスリットであっても良い。V字状のスリットの場合、対向する縁部の間隔が位置に比例して変化するので、レーザ光軸の位置を変更することで、1つの測定基準面にて異なる複数のスポット径に対応できる。   In each of the above embodiments, the case where the small opening 10 is a circular hole penetrating the measurement reference surface 11 is shown. In addition, a parallel slit, a V-shaped slit, or a notch is formed from one side of the measurement reference surface 11. It may be a U-shaped or V-shaped cutout or slit. In the case of a V-shaped slit, the distance between the opposing edges changes in proportion to the position. Therefore, by changing the position of the laser optical axis, it is possible to cope with a plurality of different spot diameters on one measurement reference plane. .

また、測定基準面11に大きさの異なる複数の小開口(円孔、スリット、切欠部)を設け、異なる複数のスポット径に対応させることもできる。測定基準面11は平板状以外のブロック状等であっても良い。その場合、小開口は必ずしも貫通しなくても良いが、放射光が、開口内部からの反射光に影響されないようにする必要がある。   In addition, a plurality of small openings (circular holes, slits, notches) having different sizes may be provided on the measurement reference surface 11 so as to correspond to a plurality of different spot diameters. The measurement reference plane 11 may have a block shape other than a flat plate shape. In that case, the small aperture does not necessarily pass through, but it is necessary to prevent the emitted light from being affected by the reflected light from the inside of the aperture.

以上、本発明の実施の形態について述べたが、本発明は上記実施形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変形および変更が可能であることを付言する。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications and changes can be made based on the technical idea of the present invention.

1 レーザ加工ヘッド
2 レンズ
3 保護ガラス
4 レーザ光
5 レーザ光軸
10 小開口(円孔)
11 測定基準面(測定用板)
12 放射光測定センサ
14 放射光
21,22 加工物
23 溶接ビード
24 レーザ照射スポット
40 ビームウエスト
100 検査位置(検査工程)
200 加工位置(溶接工程)
DESCRIPTION OF SYMBOLS 1 Laser processing head 2 Lens 3 Protective glass 4 Laser light 5 Laser optical axis 10 Small opening (circular hole)
11 Measurement reference plane (measurement plate)
12 Synchrotron radiation measurement sensor 14 Synchrotron radiation 21, 22 Workpiece 23 Weld bead 24 Laser irradiation spot 40 Beam waist 100 Inspection position (inspection process)
200 Processing position (welding process)

Claims (5)

小開口を有する測定基準面に対して、前記小開口をレーザ光軸が通過するように加工ヘッドを位置させ、前記測定基準面またはその前側もしくは後側に焦点を合わせてレーザを照射し、前記測定基準面の前記小開口の周囲の少なくとも一部から放射される放射光のレベルを測定し、その測定値から焦点シフト量を求め、前記レーザの焦点位置を補正することを特徴とするレーザの焦点ずれ検査方法。   With respect to the measurement reference plane having a small aperture, a processing head is positioned so that the laser optical axis passes through the small aperture, and the measurement reference plane or its front side or rear side is focused and irradiated with laser, A level of radiation emitted from at least a part of the measurement reference plane around the small aperture is measured, a focus shift amount is obtained from the measured value, and the focal position of the laser is corrected. Defocus inspection method. 放射光レベルと焦点シフト量の相関データを予め取得しておき、前記相関データを参照して前記測定値に適合する焦点シフト量を指定し、前記レーザの焦点位置を補正することを特徴とする請求項1記載のレーザの焦点ずれ検査方法。   Correlation data between a synchrotron radiation level and a focus shift amount is acquired in advance, a focus shift amount that matches the measurement value is designated with reference to the correlation data, and the focus position of the laser is corrected. The laser defocusing inspection method according to claim 1. 前記相関データは、焦点が前記測定基準面の前側もしくは後側に所定量ずれた測定位置にて取得されることを特徴とする請求項2記載のレーザの焦点ずれ検査方法。   3. The laser defocus inspection method according to claim 2, wherein the correlation data is acquired at a measurement position in which a focus is shifted by a predetermined amount toward the front side or the rear side of the measurement reference plane. 前記放射光レベルの測定を少なくとも2回行い、それより放射光レベルの強度勾配を得て焦点シフト量を算出し、前記レーザの焦点位置を補正することを特徴とする請求項1記載のレーザの焦点ずれ検査方法。   2. The laser according to claim 1, wherein the measurement of the emitted light level is performed at least twice, an intensity gradient of the emitted light level is obtained therefrom, a focus shift amount is calculated, and a focal position of the laser is corrected. Defocus inspection method. 前記小開口は、前記測定基準面を貫通する円孔またはスリット、または、前記測定基準面の一側から切欠されたU字状またはV字状の切欠からなることを特徴とする請求項1〜4の何れか一項記載のレーザの焦点ずれ検査方法。   The said small opening consists of a circular hole or a slit which penetrates the said measurement reference plane, or a U-shaped or V-shaped notch cut out from one side of the said measurement reference plane. 5. The method of inspecting a laser defocus according to claim 4.
JP2014125478A 2014-06-18 2014-06-18 Laser defocusing inspection method and correction method Active JP6519106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014125478A JP6519106B2 (en) 2014-06-18 2014-06-18 Laser defocusing inspection method and correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014125478A JP6519106B2 (en) 2014-06-18 2014-06-18 Laser defocusing inspection method and correction method

Publications (2)

Publication Number Publication Date
JP2016002580A true JP2016002580A (en) 2016-01-12
JP6519106B2 JP6519106B2 (en) 2019-05-29

Family

ID=55222291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014125478A Active JP6519106B2 (en) 2014-06-18 2014-06-18 Laser defocusing inspection method and correction method

Country Status (1)

Country Link
JP (1) JP6519106B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019038000A (en) * 2017-08-23 2019-03-14 ファナック株式会社 Laser processing method for adjusting focal shift according to kind and level of contamination in external optical system before laser processing
JP2019093431A (en) * 2017-11-24 2019-06-20 ファナック株式会社 Laser processing device warning abnormal condition of external optical system before laser processing
CN110238547A (en) * 2019-05-09 2019-09-17 西安理工大学 It is a kind of for measuring the system and measurement method of high power laser focal position
WO2019183797A1 (en) * 2018-03-27 2019-10-03 深圳市柔宇科技有限公司 Detection platform, system and method for focal point of laser beam
US10556295B2 (en) 2017-08-23 2020-02-11 Fanuc Corporation Laser machining device that detects contamination of optical system before laser machining
US10792758B2 (en) 2017-09-14 2020-10-06 Fanuc Corporation Laser machining device for correcting processing conditions before laser machining based on contamination level of optical system
CN112935530A (en) * 2021-04-25 2021-06-11 山东大学深圳研究院 Method and device for determining pulse laser focus position
CN113310669A (en) * 2021-05-24 2021-08-27 深圳市大族数控科技股份有限公司 Method for testing laser focal length and galvanometer uniformity of galvanometer
CN113932717A (en) * 2021-11-24 2022-01-14 武汉联影智融医疗科技有限公司 Robot precision verification system and method
US11565344B2 (en) 2019-04-19 2023-01-31 Fanuc Corporation Device and method for learning focal position offset of laser processing apparatus, and laser processing system correcting focal position offset

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290681A (en) * 1989-04-28 1990-11-30 Amada Co Ltd Focusing method for laser beam machine
JPH07232290A (en) * 1994-02-23 1995-09-05 Matsushita Electric Ind Co Ltd Focus adjusting device for laser beam machine
JP2002239768A (en) * 2001-02-15 2002-08-28 Komatsu Ltd Laser beam machining device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290681A (en) * 1989-04-28 1990-11-30 Amada Co Ltd Focusing method for laser beam machine
JPH07232290A (en) * 1994-02-23 1995-09-05 Matsushita Electric Ind Co Ltd Focus adjusting device for laser beam machine
JP2002239768A (en) * 2001-02-15 2002-08-28 Komatsu Ltd Laser beam machining device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10946484B2 (en) 2017-08-23 2021-03-16 Fanuc Corporation Laser machining method adjusting focus shift depending on type and level of contamination of external optical system before laser machining
DE102018119900B4 (en) * 2017-08-23 2020-12-10 Fanuc Corporation Laser processing method which, before laser processing, regulates a focus shift depending on the type and degree of contamination of an external optical system
JP2019038000A (en) * 2017-08-23 2019-03-14 ファナック株式会社 Laser processing method for adjusting focal shift according to kind and level of contamination in external optical system before laser processing
DE102018119902B4 (en) 2017-08-23 2023-01-05 Fanuc Corporation Laser processing device that detects contamination of an optical system before laser processing
US10556295B2 (en) 2017-08-23 2020-02-11 Fanuc Corporation Laser machining device that detects contamination of optical system before laser machining
US10792758B2 (en) 2017-09-14 2020-10-06 Fanuc Corporation Laser machining device for correcting processing conditions before laser machining based on contamination level of optical system
JP2019093431A (en) * 2017-11-24 2019-06-20 ファナック株式会社 Laser processing device warning abnormal condition of external optical system before laser processing
US11007608B2 (en) 2017-11-24 2021-05-18 Fanuc Corporation Laser machining device warning of anomaly in external optical system before laser machining
WO2019183797A1 (en) * 2018-03-27 2019-10-03 深圳市柔宇科技有限公司 Detection platform, system and method for focal point of laser beam
US11565344B2 (en) 2019-04-19 2023-01-31 Fanuc Corporation Device and method for learning focal position offset of laser processing apparatus, and laser processing system correcting focal position offset
CN110238547A (en) * 2019-05-09 2019-09-17 西安理工大学 It is a kind of for measuring the system and measurement method of high power laser focal position
CN110238547B (en) * 2019-05-09 2020-12-18 西安理工大学 System and method for measuring position of high-power laser focus
CN112935530A (en) * 2021-04-25 2021-06-11 山东大学深圳研究院 Method and device for determining pulse laser focus position
CN112935530B (en) * 2021-04-25 2022-12-13 山东大学深圳研究院 Method and device for determining position of pulse laser focus
CN113310669A (en) * 2021-05-24 2021-08-27 深圳市大族数控科技股份有限公司 Method for testing laser focal length and galvanometer uniformity of galvanometer
CN113932717A (en) * 2021-11-24 2022-01-14 武汉联影智融医疗科技有限公司 Robot precision verification system and method
CN113932717B (en) * 2021-11-24 2023-09-26 武汉联影智融医疗科技有限公司 Robot precision verification system and method

Also Published As

Publication number Publication date
JP6519106B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
JP6519106B2 (en) Laser defocusing inspection method and correction method
KR102156686B1 (en) Detection of hot cracks in laser welding
JP6220718B2 (en) Laser welding quality determination method and laser welding quality determination device
JP5393150B2 (en) Determination method of laser beam focus position
US20200171599A1 (en) Method and device for carrying out and monitoring a machining process of a first workpiece and a second workpiece by means of a high-energy machining beam
US11065721B2 (en) Method for determining the reference focal position of a laser beam
EP4026648B1 (en) Laser machining device, and process of laser machining
JP2019093429A (en) Laser processing device warning dirt of protection window during laser processing
JP6535480B2 (en) Laser processing state determination method and apparatus
US10556295B2 (en) Laser machining device that detects contamination of optical system before laser machining
US8439902B2 (en) Apparatus and method for processing material with focused electromagnetic radiation
TWI542430B (en) Laser processing method
KR20160127461A (en) Laser apparatus and method of manufacturing the same
JP2019109052A (en) X-ray diffraction measurement device
JP6584053B2 (en) Laser processing apparatus and laser processing method
JP6727724B2 (en) Wafer position measuring device and wafer position measuring method
US20210121989A1 (en) Method and device for checking a focus position of a laser beam in relation to a workpiece
KR20160073785A (en) Laser processing system and laser processing method using the laser processing system
JP2019038000A (en) Laser processing method for adjusting focal shift according to kind and level of contamination in external optical system before laser processing
JP7308439B2 (en) LASER PROCESSING DEVICE AND OPTICAL ADJUSTMENT METHOD
JP7396851B2 (en) Control device, control system, and program
JP6081833B2 (en) Laser welding method and laser welding apparatus
JP2018051567A (en) Laser processing apparatus and laser processing method
CN113714635A (en) Laser processing apparatus
KR102052102B1 (en) Laser processing system and calibration for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190408

R151 Written notification of patent or utility model registration

Ref document number: 6519106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151