JPH02290013A - Temperature processing method - Google Patents

Temperature processing method

Info

Publication number
JPH02290013A
JPH02290013A JP11089089A JP11089089A JPH02290013A JP H02290013 A JPH02290013 A JP H02290013A JP 11089089 A JP11089089 A JP 11089089A JP 11089089 A JP11089089 A JP 11089089A JP H02290013 A JPH02290013 A JP H02290013A
Authority
JP
Japan
Prior art keywords
wafer
temperature
temperature control
plate
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11089089A
Other languages
Japanese (ja)
Inventor
Haruo Iwazu
春生 岩津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Tokyo Electron Kyushu Ltd
Original Assignee
Tokyo Electron Ltd
Tokyo Electron Kyushu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd, Tokyo Electron Kyushu Ltd filed Critical Tokyo Electron Ltd
Priority to JP11089089A priority Critical patent/JPH02290013A/en
Publication of JPH02290013A publication Critical patent/JPH02290013A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To prevent the contamination of a body to be treated, and improve rising characteristics of temperature processing time, by arranging many protrusions and recesses on the surface side of a temperature processing plate, retaining the body to be treated by the protrusions, and performing direct tem perature control on the protrusions and radiation temperature control on the recesses. CONSTITUTION:After a wafer 24 is retained at three points on a hot plate 10 by protruding pins 12, said pins 12 are made to descend and the wafer is mounted on the plate 10. Thereby the wafer 24 is retained in the manner of line contact by mountain top points of protruding parts 16 of the plate 10 whose temperature is controlled, and baking is started. As a result, processing provided with both merits of direct temperature control system and proximity temperature control system is enabled, so that the contamination of a body to be treated can be prevented and rising characteristics of temperature processing time can be improved.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、加熱,冷却,温風等の温度処理方法に関する
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a temperature treatment method such as heating, cooling, hot air, etc.

(従来の技術) 半導体製造工程のホトレジスト処理工程においては、ウ
エハ表面の水分を脱水するため、あるいはウエハ表面に
塗布されたレジスト中の溶媒を除去するためなどに、温
度処理例えばベーク処理が行われ、あるいは塗布膜厚精
度を上げるための冷却温調処理が行われる。
(Prior Art) In the photoresist processing step of the semiconductor manufacturing process, temperature treatment, such as baking treatment, is performed in order to dehydrate the water on the wafer surface or to remove the solvent in the resist applied to the wafer surface. Alternatively, a cooling temperature control process is performed to improve the accuracy of the coating film thickness.

べ−キング方法としては、直接ホットプレート方式、バ
ッチ式熱風加熱方式、マイクロ波方式などがあるが、コ
ンパクト化,効率化.サイクルタイム短縮及び再現性の
向上の要求により、直接ホットプレート方式が主流とな
っている。
Baking methods include the direct hot plate method, batch hot air heating method, and microwave method, but these methods are more compact and efficient. Direct hot plate methods have become mainstream due to demands for shorter cycle times and improved reproducibility.

しかし、ホットプレート方式ではウエハをホットプレー
トに吸着させて全面をコンタクトして直接加熱するため
、ホットプレートとウエハとの密着状態によって熱の均
一性に大きく影響する。さらに、一般にホットプレート
がAI等の金属より成るため、ウエハの重金属汚染ある
いはウエハ裏面へのパーティクルの付着等の問題が発生
していた。特に、レジスト塗布後のベーキング工程にお
いては、プレート上に多数のパーティクルが付着してい
ることが判明している。パーティクルがウエハの裏面に
付着すると、その後の露光工程の際の各位置でのフォー
カスずれにより不良が発生する確率が大きくなってしま
う。
However, in the hot plate method, the wafer is attracted to the hot plate and the entire surface is brought into contact with the wafer to directly heat the wafer, so the degree of close contact between the hot plate and the wafer greatly affects the uniformity of heat. Furthermore, since the hot plate is generally made of metal such as AI, problems such as heavy metal contamination of the wafer and adhesion of particles to the back surface of the wafer have occurred. In particular, it has been found that a large number of particles adhere to the plate during the baking process after applying the resist. If particles adhere to the back surface of the wafer, there is a high probability that defects will occur due to defocus at each position during the subsequent exposure process.

このような問題を除去するため、ホットプレ−トとウエ
ハとの間にわすかな隙間が設けられる如く、3点支持に
より直接ウエハをポッ1・プレー1・に密着さぜずにベ
ークを行うプロキシミティベク方式がある。
In order to eliminate this problem, we have developed a proximity technique in which baking is performed without directly touching the wafer to the pot 1 or plate 1 using three-point support, so that there is a slight gap between the hot plate and the wafer. There is a vector method.

(発明が解決しようとする課題) しかしながら、上記方式は例えばセラミック製のピンに
よる3点支持部以外の領域は均一に温調されるが、3点
支持部では温度勾配が形成されてしまう欠点があった。
(Problem to be Solved by the Invention) However, although the above method uniformly controls the temperature in areas other than the three-point support section using, for example, ceramic pins, it has the disadvantage that a temperature gradient is formed at the three-point support section. there were.

さらに、ウエハへの熱伝導の立ち」二がりが遅れ、かつ
、温度コンl・ロールが困難である。
Furthermore, the rise and fall of heat conduction to the wafer is delayed, and temperature control is difficult.

このような問題は、被処理体を加熱する場合も冷却する
場合も同様である。
Such problems are the same whether the object to be processed is heated or cooled.

そこで、本発明は従来の直接温調方式 プロキシミティ
温調方式の双方の問題点を解決するために成されたもの
であり、被処理体の汚染を防止でき、加熱又は冷却等の
立ち上がりを早くできると共に、温度コントロールか容
易でかつ均一な温度分布を得ることができる温度処理方
法を提43%することにある。
Therefore, the present invention was developed to solve the problems of both the conventional direct temperature control method and the proximity temperature control method. The object of the present invention is to provide a temperature treatment method that can easily control the temperature and obtain a uniform temperature distribution.

[発明の構成] (課題を解決するための手段) 本発明の温度処理方法は、温度処理プレート表面側に多
数の凹凸部を設け、上記凸部にて被処理体を支持すると
共に、この凸部での直接温調及び四部での幅射温調によ
り、被処理体を温度処理することを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The temperature treatment method of the present invention includes providing a large number of concave and convex portions on the surface side of a temperature treatment plate, supporting the object to be treated on the convex portions, and supporting the object to be treated by the convex portions. The object to be treated is temperature-treated by direct temperature control in one part and radiation temperature control in four parts.

(作用) 本発明では、温度処理プレー1・上に形成した多数の凹
凸部のうちの凸部にて被処理体を支持している。従って
、直接温調方式のように全面とコンタクトする場合と比
較すれば、凹部との間に形成されるギャップによりその
接触面積が大幅に減少するので、被処理体へのパーティ
クル付着量が減少し、歩留りの向上を図れる。
(Function) In the present invention, the object to be processed is supported by the convex portions among the many concavo-convex portions formed on the temperature treatment plate 1. Therefore, compared to the case of contacting the entire surface as in the direct temperature control method, the contact area is significantly reduced due to the gap formed between the recess and the amount of particles adhering to the object to be processed is reduced. , yield can be improved.

さらに、凸部によって多数箇所支持を実現しているので
、全面コンタクトのような密着不良が生じずに均熱温調
を確保でき、被処理体全面での熱均一性が向上する。
Furthermore, since support is achieved at multiple points by the convex portions, uniform temperature control can be ensured without causing poor adhesion unlike full-surface contact, and heat uniformity over the entire surface of the object to be processed can be improved.

さらに加えて、従来のプロキシミティ温調方式と異なり
、四部からの輻射に加えて、多数の凸部での接触による
直接温調を実現できるので、所定処理温度に達するまで
の立ち上がり特性をも大幅に向上し、処理スループット
が向上ずる。
In addition, unlike the conventional proximity temperature control method, in addition to radiation from four parts, direct temperature control can be achieved by contacting many convex parts, which greatly improves the rise characteristics until the predetermined processing temperature is reached. This improves processing throughput.

(実施例) 以下、本発明をウエハの温度処理としてのべ−キング方
法に適用したー実施例を、図面を参照して具体的に説明
する。
(Example) Hereinafter, an example in which the present invention is applied to a baking method as a temperature treatment of a wafer will be specifically described with reference to the drawings.

第1図に示すように、温度処理プレー1・の一例である
ホットプレ−1− 1 0は、AI203等の金属板か
ら成り、ウエハ24をこのホッI・プレー1・10上に
搬入出するために、ポットプレ−1・10表面よりウエ
ハ24を突き上げるための3木の突き上げピン12が上
下動自在に配設されている。
As shown in FIG. 1, the hot plate 1-10, which is an example of the temperature treatment plate 1, is made of a metal plate such as AI203. Three push-up pins 12 for pushing up the wafer 24 from the surface of the pot plates 1 and 10 are arranged to be movable up and down.

なお、このホッ1・プレー1・10へのウエハ24の搬
入出動作は、前記3本の突き上げピン1−2と干渉しな
いための切欠部を有する図示しな搬送用ピンセッ1〜に
よって行われる。
The operation of loading and unloading the wafer 24 into and out of the hop 1, play 1, and 10 is carried out by means of transport tweezers 1 to 10 (not shown) having cutouts to prevent interference with the three push-up pins 1-2.

このホットプレ−1・10は、ヒータ(図示せず)を内
蔵し、使用目的に応じて温度コン1・ロールされる。す
なわち、デハイドレーショクベークであれば200’C
〜300’Cであり、プリベークであれば約100’C
であり、クーリングであれば室温にそれぞれ温度コンI
・ロールされる。
This hot play 1 10 has a built-in heater (not shown), and the temperature is controlled according to the purpose of use. In other words, if it is a dehydration bake, it will be 200'C.
~300'C, approximately 100'C for pre-baking
For cooling, the temperature controller I is set to room temperature.
- Rolled.

上記ホッ]・プレート10の特徴的構成として、このホ
ッ1・プレーl・10のウエハ24と対向する表面側に
は、例えば同心円状の凹部14及び凸部16から構成さ
れる凹凸部が形成されている。なお、前記四部14の深
さは、例えばウエハ24が四部14の底面より0.5m
m程度浮上するように設定される。
As a characteristic structure of the above-mentioned hot plate 10, an uneven portion consisting of, for example, a concentric recess 14 and a convex portion 16 is formed on the surface side of the hot plate 10 facing the wafer 24. ing. The depth of the four parts 14 is, for example, such that the wafer 24 is 0.5 m below the bottom surface of the four parts 14.
It is set to levitate by about m.

この四部14及び凸部]−6は、その断面を示す第2図
のように、例えば鋭角3角形状の山,谷でそれぞれ構成
されている。従って、このホットプレート10に載置さ
れるウエハ24は、前記鋭角山型の凸部16の頂点によ
って複数の同心円の線接触にて支持されることになる。
The four portions 14 and the convex portion]-6 are each formed of, for example, acute triangular peaks and valleys, as shown in FIG. 2, which shows a cross section thereof. Therefore, the wafer 24 placed on the hot plate 10 is supported by the apexes of the acute-angled convex portions 16 in line contact with a plurality of concentric circles.

また、前記四部14の溝深さずなわぢウエハ24の裏面
側に設定ギャップdとしては、所望の輻射熱伝達特性が
得られる値に設定されている。
Further, the groove depth of the four portions 14 and the gap d set on the back side of the wafer 24 are set to a value that allows desired radiant heat transfer characteristics to be obtained.

次に、作用について説明する。Next, the effect will be explained.

図示しない搬送用ピンセットに支持されたウエハ24は
、ホットプレート10の上方まで搬送され、ホットプレ
−1・10の突き上げピン12をUPLた状態にてこれ
に3点支持される。その後、この突き上げピン12をD
OWNさせ、ウエハ24をホットプレート10に載置す
ることで、温度コントロールされているホットプレート
10上でのウエハ24ベーキングが開始される。
The wafer 24 supported by transport tweezers (not shown) is transported to above the hot plate 10 and is supported at three points by the push-up pins 12 of the hot plates 1 and 10 in a UPL state. After that, push up this pin 12 to D
By turning on the wafer 24 and placing the wafer 24 on the hot plate 10, baking of the wafer 24 on the temperature-controlled hot plate 10 is started.

ここで、前記ウエハ24はホットプレー}10の凸部1
6としての山部頂点によってのみ同心円の線接触によっ
て支持されることになる。従って、この箇所以外の箇所
はウエハ24の裏面と接触せず、ギャップdが形成され
ていることになる。
Here, the wafer 24 is attached to the convex portion 1 of the hot plate}10.
It will be supported by concentric line contact only by the peak apex as 6. Therefore, the portion other than this portion does not come into contact with the back surface of the wafer 24, and a gap d is formed.

このようなウエハ24の支持を実現することによって、
従来の直接温調方式及びプロキシミティ温調方式の欠点
を解消し、かつ、双方の利点を得た温調処理が可能とな
る。
By realizing such support for the wafer 24,
It is possible to eliminate the drawbacks of the conventional direct temperature control method and proximity temperature control method, and to achieve temperature control processing that has the advantages of both methods.

すなわち、直接温調方式によれば、ウエハ24の全面と
コンタクトしているので、温調プレー1・側の不純物が
ウエハ24の裏面に付着する可能性が極めて高いが、本
実施例の場合にはホットプレート10上にウエハ24と
接触しない多数の四部14が形成されているので、その
接触面積が大幅に減少し、パーティクル付着量を低減で
き、歩留りが向上する。さらに、直接温調方式では温調
プレート上の不純物の存在等により密着不良が生ずると
全面での均一温調が困難となるが、本実施例では不純物
を四部14に落とし込むことにより、凸部16での水平
な支持が達成でき、均一加熱を損なうことがない。
That is, according to the direct temperature control method, since the entire surface of the wafer 24 is in contact, there is a very high possibility that impurities on the temperature control plate 1 side will adhere to the back surface of the wafer 24, but in the case of this embodiment, Since a large number of four parts 14 that do not contact the wafer 24 are formed on the hot plate 10, the contact area is greatly reduced, the amount of attached particles can be reduced, and the yield can be improved. Furthermore, in the direct temperature control method, if poor adhesion occurs due to the presence of impurities on the temperature control plate, it becomes difficult to control the temperature uniformly over the entire surface, but in this embodiment, by dropping impurities into the four parts 14, horizontal support can be achieved without compromising uniform heating.

一方、従来のプロキシミティ温調方式と比較した場合に
は、ウエハ24とホットプレート10との間のギャップ
dを実現するに際して、ホットプレート10に凹凸部を
形成することで対処しているので、この凹凸部の加工に
より上記ギャップ距離を効率の良い輻射加熱に好適な距
離として所望に設定でき、ピン等でギャップを確保する
場合と比較しても、ホットプレート10の表面自体の加
工であるため強度的にも優れている。
On the other hand, when compared with the conventional proximity temperature control method, the gap d between the wafer 24 and the hot plate 10 is achieved by forming uneven parts on the hot plate 10. By machining this uneven portion, the gap distance can be set as desired as a distance suitable for efficient radiant heating, and compared to securing the gap with a pin etc., this process is performed on the surface of the hot plate 10 itself. It also has excellent strength.

そして、本実施例での加熱方法としては、ウエハ24の
裏面と直接接触する凸部16にて直接加熱ができ、また
、ギャップを介して対向配置される凹部14では、輻射
熱によりベークを実現できる。特に、従来のプロキシミ
ティ温調方式と比較した場合には、凸部16での直接加
熱の寄与により、所定加熱温度に達するまでの加熱時の
立ち上かり特性を大幅に向上でき、加熱処理のスルーブ
ットを向上することができる。
As for the heating method in this embodiment, direct heating can be performed using the convex portion 16 that is in direct contact with the back surface of the wafer 24, and baking can be achieved using radiant heat in the concave portions 14 that are arranged facing each other through a gap. . In particular, when compared with the conventional proximity temperature control method, due to the contribution of direct heating at the convex portion 16, the rise characteristics during heating until the predetermined heating temperature is reached can be greatly improved, and the heat treatment can be improved. Throughput can be improved.

なお、本発明は上記実施例に限定されるものではなく、
本発明の要旨の範囲内で種々の変形実施が可能である。
Note that the present invention is not limited to the above embodiments,
Various modifications are possible within the scope of the invention.

上記実施例では、温度処理としてベーキングの例につい
て説明したが、冷却,低温(常温以下),恒温の各種場
合であっても、温度処理であれぽいずれでも良い。
In the above embodiments, an example of baking was explained as the temperature treatment, but any temperature treatment may be used, including cooling, low temperature (below room temperature), and constant temperature.

また、上記実施例では、温調プレート10の凹凸部にウ
エハ24を載置して温度処理を行ったが、温調プレート
10に真空吸着機能を持たせ、吸着により凸部16との
密着状態をさらに良好とすることも可能である。すなわ
ち、第3図に示すように、温調プレート10の内部には
真空引き用管部18が設けられ、例えば前記凹部14に
連通する開口孔18aを形成することで、ウエハ24を
凸部16に真空吸着することが可能となる。
In the above embodiment, the wafer 24 was placed on the uneven portion of the temperature control plate 10 and subjected to temperature treatment. It is also possible to make it even better. That is, as shown in FIG. 3, a vacuum tube part 18 is provided inside the temperature control plate 10, and by forming an opening hole 18a communicating with the recessed part 14, the wafer 24 is moved to the convex part 16. vacuum adsorption becomes possible.

また、凹凸部の形状としても種々の断面,平面形状を採
用でき、例えば直接温調効果を高めるためにはウエハ2
4面接触する凸部16を配置すれば良い。あるいは、多
数箇所での点接触でも良い。
In addition, various cross-sectional and planar shapes can be adopted as the shape of the uneven portion. For example, in order to enhance the direct temperature control effect,
It is sufficient to arrange the convex portions 16 in contact with each other on four sides. Alternatively, point contact at multiple locations may be used.

その平面構成も、同心円状,スパイラル状に連設するも
のに限らず、多数の小面積突起等でも良い。
Its planar configuration is not limited to concentric circles or spiral configurations, but may also include a large number of small-area protrusions.

さらに、被処理体としてはウエハに限らず、TPT }
ランジスタ回路が形成された液晶基板の温度処理等にて
適用しても良い。
Furthermore, the object to be processed is not limited to wafers, but also TPT.
It may also be applied to temperature treatment of a liquid crystal substrate on which a transistor circuit is formed.

[発明の効果] 以上説明したように、本発明によれば温度処理プレート
表面に多数の凹凸部を形成し、凸部によって被処理体を
多数箇所にて支持し、かつ、四部によりウエハとの間に
ギャップを形成できるので、従来の直接温調方式 プロ
キシミティ温調方式の双方の利点を確保でき、パーティ
クル付着を少なくし、かつ、均熱温調により歩留りを高
めることができ、しかも、温度処理時の立ち上がり特性
を良好とすることで温度処理のスルーブッ1・を向」二
できる。
[Effects of the Invention] As explained above, according to the present invention, a large number of uneven portions are formed on the surface of the temperature processing plate, the object to be processed is supported at multiple locations by the projecting portions, and the four portions are used to support the wafer. Since a gap can be formed between the two, it is possible to secure the advantages of both the conventional direct temperature control method and proximity temperature control method, reduce particle adhesion, and increase yield through uniform heating temperature control. By improving the start-up characteristics during processing, the throughput of temperature processing can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法が実施されるポッ1・プレートの
一例を示す概略平面図、 第2図は、第1図のA部拡大断面図、 第3図は、真空吸着機能を付加したホッ1・ブレトの変
形例を説明するための概略断面図である。 10・・・温調プレー1・、 12・・・突き出しピン、 14・・・凹部、16・・・凸部、 18・・・真空引き用管部、18a・・開口孔、24・
・ウエハ。
Fig. 1 is a schematic plan view showing an example of a pop-up plate on which the method of the present invention is carried out, Fig. 2 is an enlarged sectional view of section A in Fig. 1, and Fig. 3 is a pop-up plate with a vacuum suction function added. FIG. 3 is a schematic cross-sectional view for explaining a modification of Hot 1-Breto. DESCRIPTION OF SYMBOLS 10... Temperature control play 1., 12... Ejection pin, 14... Recessed part, 16... Convex part, 18... Vacuuming pipe part, 18a... Opening hole, 24...
・Wafer.

Claims (1)

【特許請求の範囲】[Claims] (1)温度処理プレート表面側に多数の凹凸部を設け、
上記凸部にて被処理体を支持すると共に、この凸部での
直接温調及び凹部での幅射温調により、被処理体を温度
処理することを特徴とする温度処理方法。
(1) Provide a large number of uneven parts on the surface side of the temperature treatment plate,
A temperature treatment method characterized in that the object to be treated is supported by the convex portion and the object to be treated is subjected to temperature treatment by direct temperature control in the convex portion and radial temperature control in the concave portion.
JP11089089A 1989-04-28 1989-04-28 Temperature processing method Pending JPH02290013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11089089A JPH02290013A (en) 1989-04-28 1989-04-28 Temperature processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11089089A JPH02290013A (en) 1989-04-28 1989-04-28 Temperature processing method

Publications (1)

Publication Number Publication Date
JPH02290013A true JPH02290013A (en) 1990-11-29

Family

ID=14547283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11089089A Pending JPH02290013A (en) 1989-04-28 1989-04-28 Temperature processing method

Country Status (1)

Country Link
JP (1) JPH02290013A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0488045U (en) * 1990-12-18 1992-07-30
US5817156A (en) * 1994-10-26 1998-10-06 Tokyo Electron Limited Substrate heat treatment table apparatus
US5834737A (en) * 1995-05-12 1998-11-10 Tokyo Electron Limited Heat treating apparatus
JPH11162695A (en) * 1997-11-27 1999-06-18 Tokyo Ohka Kogyo Co Ltd Plasma processing device
KR100680769B1 (en) * 1998-08-26 2007-02-08 동경 엘렉트론 주식회사 Heat processing apparatus
US7432476B2 (en) 2005-05-12 2008-10-07 Dainippon Screen Mfg. Co., Ltd. Substrate heat treatment apparatus
US7718925B2 (en) 2005-12-06 2010-05-18 Dainippon Screen Mfg. Co., Ltd. Substrate heat treatment apparatus
US8003919B2 (en) 2005-12-06 2011-08-23 Dainippon Screen Mfg. Co., Ltd. Substrate heat treatment apparatus
US8138456B2 (en) 2006-05-08 2012-03-20 Tokyo Electron Limited Heat processing method, computer-readable storage medium, and heat processing apparatus
US8608885B2 (en) 2005-12-07 2013-12-17 Dainippon Screen Mfg. Co., Ltd. Substrate heat treatment apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0488045U (en) * 1990-12-18 1992-07-30
US5817156A (en) * 1994-10-26 1998-10-06 Tokyo Electron Limited Substrate heat treatment table apparatus
US5834737A (en) * 1995-05-12 1998-11-10 Tokyo Electron Limited Heat treating apparatus
JPH11162695A (en) * 1997-11-27 1999-06-18 Tokyo Ohka Kogyo Co Ltd Plasma processing device
KR100680769B1 (en) * 1998-08-26 2007-02-08 동경 엘렉트론 주식회사 Heat processing apparatus
US7432476B2 (en) 2005-05-12 2008-10-07 Dainippon Screen Mfg. Co., Ltd. Substrate heat treatment apparatus
US7718925B2 (en) 2005-12-06 2010-05-18 Dainippon Screen Mfg. Co., Ltd. Substrate heat treatment apparatus
US8003919B2 (en) 2005-12-06 2011-08-23 Dainippon Screen Mfg. Co., Ltd. Substrate heat treatment apparatus
US8608885B2 (en) 2005-12-07 2013-12-17 Dainippon Screen Mfg. Co., Ltd. Substrate heat treatment apparatus
US8138456B2 (en) 2006-05-08 2012-03-20 Tokyo Electron Limited Heat processing method, computer-readable storage medium, and heat processing apparatus

Similar Documents

Publication Publication Date Title
TWI447844B (en) Temperature measurement and control of wafer support in thermal processing chamber
US7005009B2 (en) Film forming apparatus, film forming method and tray for substrate
JPH02290013A (en) Temperature processing method
KR100583134B1 (en) Substrate Processing Unit and Processing Method
US20090001071A1 (en) Method and System for Cooling a Bake Plate in a Track Lithography Tool
JPH0521876Y2 (en)
US20080099181A1 (en) Method to cool a bake plate using an actively chilled transfer shuttle
JP4148387B2 (en) Heat treatment equipment
JP3324974B2 (en) Heat treatment apparatus and heat treatment method
US7431584B2 (en) Heat processing apparatus and heat processing method
US4412388A (en) Method for drying semiconductor substrates
CN101408738A (en) Split vertical type hot plate system in photolithography guide rail equipment
JPH0547652A (en) Substrate heater
JP4148388B2 (en) Heat treatment equipment
JP2002203779A (en) Heat treatment equipment
JP3785650B2 (en) Single wafer heat treatment system
JPH07106239A (en) Substrate heating device
JPS63229829A (en) Drying system for sheet-like object
JPH10229114A (en) Substrate heating device
JP3578405B2 (en) heating furnace
JPH036018A (en) Lamp annealing apparatus for semiconductor device manufacture
KR102221284B1 (en) Hot plate and apparatus for heat-treating substrate with the hot plate, and fabricating method of the hot plate
JP2003068598A (en) Baking method and baking system
US4588379A (en) Configuration for temperature treatment of substrates, in particular semi-conductor crystal wafers
JPH02125610A (en) Hot plate