JPH02289646A - Heat-resistant resin paste and ic using same paste - Google Patents

Heat-resistant resin paste and ic using same paste

Info

Publication number
JPH02289646A
JPH02289646A JP1339286A JP33928689A JPH02289646A JP H02289646 A JPH02289646 A JP H02289646A JP 1339286 A JP1339286 A JP 1339286A JP 33928689 A JP33928689 A JP 33928689A JP H02289646 A JPH02289646 A JP H02289646A
Authority
JP
Japan
Prior art keywords
heat
resistant resin
resin
paste
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1339286A
Other languages
Japanese (ja)
Other versions
JP2697215B2 (en
Inventor
Hiroshi Nishizawa
西沢 廣
Kenji Suzuki
健司 鈴木
Yoshiyuki Mukoyama
向山 吉之
Noburu Kikuchi
宣 菊地
Tonobu Sato
佐藤 任延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP1339286A priority Critical patent/JP2697215B2/en
Publication of JPH02289646A publication Critical patent/JPH02289646A/en
Application granted granted Critical
Publication of JP2697215B2 publication Critical patent/JP2697215B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Formation Of Insulating Films (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

PURPOSE:To obtain a heat-resistant resin paste useful as an interlaminar insulating film or surface protecting film of IC, having thixotropic properties, comprising two kinds of organic liquids, heat-resistant resin soluble in the organic liquids and fine particles of heat-resistant resin soluble only in one of the liquids. CONSTITUTION:A heat-resistant resin paste comprising a mixed organic liquid comprising (A) an organic liquid (e.g. N-methylpyrrolidone) and (B) an organic liquid (e.g. diethylene glycol dimethyl ether) more volatile than the component A, (C) a heat-resistant resin (e.g. preferably polyamide resin) soluble in the mixed organic liquids and (D) fine particles of heat-resistant resin soluble in the component A but not in the component B, preferably polyamide or polyimide having <=40mum average particle diameter prepared by nonaqueous dispersion polymerization method, prepared by dispersing the component D into a solution containing the components A, B and C, having >=1.5 thixotropic coefficient. IC having an interlaminar insulating film or surface protecting film prepare from the paste.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は,スクリーン印刷用オーバーコート材K適した
新規な耐熱樹脂ペーストおよびこれを用いたICE関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a new heat-resistant resin paste suitable for overcoat material K for screen printing, and an ICE using the same.

(従来の技術) 通常,樹脂溶液は.それ自身ではチキントロピー性を#
1とんど示さない。チキントロピーは等温状態Kおいて
も変形の九めに見掛け粘度が一時的K低下する現象とし
て定義され,例えば印刷時の高ぜん断速度下では粘度が
一時的k低下して流動し,基材K転移後はだれ念リ流れ
たりしないことが要求されるスクリーン印刷用ペースト
Kは必要不可欠な流動特性である。樹脂溶液にチキント
ロピー性を付与する九めの一つの方法は樹脂溶液Kフイ
ラーとして樹脂微粒子を分散させてペースト化すること
である。このようなペーストとしては種々のものが知ら
れている。
(Prior art) Usually, the resin solution is... #chickentropy by itself
1. Not shown at all. Chickentropy is defined as a phenomenon in which the apparent viscosity temporarily decreases at the ninth stage of deformation even in an isothermal state. For example, under high shear speed during printing, the viscosity temporarily decreases and the base material flows. The screen printing paste K is required to not drip or flow after the K transition, which is an essential flow characteristic. A ninth method for imparting chicken-tropic properties to a resin solution is to disperse fine resin particles as a resin solution K filler and form it into a paste. Various types of such pastes are known.

耐熱性をそれほど必要としない用途に使用される樹脂溶
液としては.例えばロジン変性フェノール樹脂.ロジン
変性マレイン樹脂,メラミン樹脂,エボキシ樹脂等の樹
脂溶液があり,爾度な耐熱性が要求される用途にはポリ
イミド樹脂の前駆体であるポリアミド酸樹脂.m媒可溶
性のポリイミド樹脂,ポリアミドイミド樹脂.ポリアミ
ド樹脂等の樹脂溶液などが知られている。また,これら
の樹脂溶液K分散されてペーストを形成する樹脂微粒子
としては.耐熱性をそれほど必要としない用途では脂肪
族系ポリアミド樹脂微粒子.メラミン樹脂微粒子,エボ
キシ樹脂微粒子,フェノール樹脂微粒子などが知られて
おり,f!!J度な耐熱性が要求される用途ではポリイ
ミド樹脂微粒子,ポリアミドイミド樹脂微粒子.ポリア
ミド樹脂微粒子などが知られている。
As a resin solution used for applications that do not require much heat resistance. For example, rosin-modified phenolic resin. There are resin solutions such as rosin-modified maleic resins, melamine resins, and epoxy resins, and polyamic acid resins, which are precursors of polyimide resins, are available for applications that require high heat resistance. M-medium soluble polyimide resin, polyamideimide resin. Resin solutions such as polyamide resins are known. In addition, the resin fine particles that are dispersed in these resin solutions to form a paste are as follows. Aliphatic polyamide resin fine particles are used for applications that do not require much heat resistance. Melamine resin particles, epoxy resin particles, phenolic resin particles, etc. are known, and f! ! Polyimide resin particles and polyamide-imide resin particles are used for applications that require high heat resistance. Polyamide resin fine particles are known.

(発明が解決しようとする課題) 半導体素子.配線板の絶縁膜,保護膜などに用いるスク
リーン印刷用ペーストKは高度な耐熱性,可とう性.耐
湿性および耐食性が要求される。このような用途Kは上
記し念耐熱樹脂溶液に無機微粒子か有機微粒子のフイラ
を分散させたペーストが開発されている。しかし,無機
微粒子はそれ自身固く,その上比重が大きいのでペース
ト中の体積占有率が大きくなるため樹脂が本来もってい
る可とり性を著しく損ねる。可とり性が十分でないと皮
膜にクラツクが発生し易く,無機微粒子は半導体素子の
表面を傷つけ易いので.無機微粒子を含むペーストを用
いた絶縁膜,保護膜は信頼性κ欠ける。
(Problem to be solved by the invention) Semiconductor element. Screen printing paste K, used for insulating and protective films on wiring boards, has a high degree of heat resistance and flexibility. Moisture resistance and corrosion resistance are required. For such applications K, as described above, a paste has been developed in which a filler of inorganic or organic fine particles is dispersed in a heat-resistant resin solution. However, inorganic fine particles are themselves hard and have a high specific gravity, which increases their volume occupancy in the paste, significantly impairing the inherent flexibility of the resin. If the film is not sufficiently malleable, cracks are likely to occur in the film, and inorganic fine particles can easily damage the surface of semiconductor devices. Insulating films and protective films using pastes containing inorganic particles lack reliability.

一方,可とり性に優れた有機微粒子は上記した問題の解
決が期待できる材料として検討されているが,皮膜中K
フイラとして分散し虎状態で,結合剤の樹脂と粒子表面
との界面K空隙ができ易く,これが可とう性.耐湿性及
び耐食性を低下させる直接の原因となる。樹脂との親和
性K乏しい無機微粒子を用いたペーストではこの次陥が
よシ増大する。このように.皮膜中k微粒子がフィラと
して残存する従来のペーストではフィラが無機微粒子及
び有機微粒子に関係なく.皮膜は不均一で空隙ができ易
く,高度な可とう性,耐湿性及び耐食性が要求される用
途K対して必ずしも満足できるものとはいえなかった。
On the other hand, organic fine particles with excellent removability are being considered as a material that can be expected to solve the above problems, but
When dispersed as a filler, voids are likely to form at the interface between the binder resin and the particle surface, which gives flexibility. This directly causes a decrease in moisture resistance and corrosion resistance. In pastes using inorganic fine particles having poor affinity with resins, this problem increases. in this way. In conventional pastes in which K-fine particles remain as fillers in the film, the fillers remain regardless of whether they are inorganic or organic particles. The film is non-uniform and tends to have voids, and cannot necessarily be said to be satisfactory for Application K, which requires a high degree of flexibility, moisture resistance, and corrosion resistance.

本発明はこのよう壕問題点を解決するものであり.チキ
ソトロビー性を有し,皮膜の耐熱性.可とり性,耐湿性
及び耐食性κ優れた耐熱樹脂ペーストおよびこれを用い
たICを提供するものである。
The present invention solves this trench problem. Has thixotropic properties and heat resistance of the film. The present invention provides a heat-resistant resin paste with excellent malleability, moisture resistance, and corrosion resistance κ, and an IC using the same.

(課題を解決するための手段) 本発明は第一の有機液体(At) .第二の有機液体(
As). (At)と(Am)の混合有機液体に可溶性
の耐熱樹脂(B)及び(AI)Kは溶解するが( At
)には不溶な耐熱樹脂微粒子(C)を含み. (At)
. (As)及び(B)を含む溶液中に(C)が分散し
てなる耐熱樹脂ぺ−ストおよびこの耐熱樹脂ペーストを
用い7’hICK関する。
(Means for Solving the Problems) The present invention provides a first organic liquid (At). Second organic liquid (
As). The heat-resistant resin (B) and (AI)K, which are soluble in the mixed organic liquid of (At) and (Am), dissolve (At
) contains insoluble heat-resistant resin fine particles (C). (At)
.. This invention relates to a heat-resistant resin paste formed by dispersing (C) in a solution containing (As) and (B), and to 7'hICK using this heat-resistant resin paste.

本発明における耐熱樹脂ペーストは,結合剤として主に
機能する(AI)と(2)と(B)を含む溶液とペース
トのチキントロビー性付与剤として主に機能する(C)
とから構成されている。このペーストKおいて.(C)
は配合時Kけ(AI)− (Ax)及び(B)を含む溶
液中K分散してチキソトロピー性を発現し,加熱時には
(AI)K溶解して.最終的K (B)との均一な皮膜
を形成する。このように.本発明における耐熱樹脂ペー
ストは印刷特性K直接影響するチキントロピー性K優れ
,得られた皮膜はビンホール,空隙がなく均一であり,
優れた可とり性,耐湿性および耐食性が得られる。
The heat-resistant resin paste in the present invention mainly functions as a chicken trobby property imparting agent for the solution and paste containing (AI), (2), and (B), which mainly functions as a binder.
It is composed of. Put this paste K. (C)
When compounded, K disperses in a solution containing (AI)-(Ax) and (B) and exhibits thixotropic properties, and upon heating, (AI)K dissolves. A uniform film is formed with the final K (B). in this way. The heat-resistant resin paste of the present invention has excellent chicken tropism, which directly affects printing properties, and the resulting film is uniform without any holes or voids.
Provides excellent malleability, moisture resistance, and corrosion resistance.

(作用) 本発明Kおける第一の有機液体(AI)は第二の有機液
体(As)との混合有機液体に可溶性の耐熱樹脂(B)
を溶解し,単独で可溶性耐熱樹脂微粒子(C)を溶解す
るものが用いられる。また, (AI) Id (At
)よシもペーストから蒸発しに<<.(B)に対して良
溶媒であるものが好ましい。
(Function) The first organic liquid (AI) in the present invention K is a heat-resistant resin (B) soluble in the mixed organic liquid with the second organic liquid (As).
A material that dissolves the soluble heat-resistant resin fine particles (C) alone is used. Also, (AI) Id (At
) It also evaporates from the paste.<<. Those that are good solvents for (B) are preferred.

本発明κおける第二の有機液体(Ax)#:t第一の有
機液体(AI)との混合有機液体に可溶性の耐熱樹脂(
B)を溶解し.単独では耐熱樹脂微粒子(C)を溶解し
ないものが用いられる。また. (Ax) Fi(At
)に比べてペーストから蒸発し易<.(B)に対して良
溶媒でも貧溶媒でもよい。
Second organic liquid (Ax) # in the present invention κ: t A heat-resistant resin (
Dissolve B). A material that does not dissolve the heat-resistant resin fine particles (C) when used alone is used. Also. (Ax) Fi(At
) is easier to evaporate from the paste than <. It may be a good or poor solvent for (B).

ここで. (As)と(A2)のペーストからの蒸発し
易さの度合Vi(At)と(A!)の沸点,蒸気圧,(
B)や(C)との親和性の強さに依存する。
here. The degree of ease of evaporation from the paste of (As) and (A2), the boiling point of Vi (At) and (A!), the vapor pressure of (
It depends on the strength of affinity with B) and (C).

一般的には沸点が低く.蒸気圧が高く樹脂との親和性に
乏しい有機液体ほどペーストから蒸発し易い。
Generally, the boiling point is low. Organic liquids with higher vapor pressure and poorer affinity with resin are more likely to evaporate from the paste.

本発明における(Al)と( At )の組合せ方は用
いる(B)と(C)の種類によって変化し,本発明の目
的とするペーストが得られるものであれば任意K選択で
きる。このような(A1)と(Ax)は具体的には,例
えば「溶剤ハンドブック」(講談社.1976年刊行)
の143〜852頁に掲載されている有機液体が用いら
れる。例えばN−メチルビロリドン.ジメチルアセトア
ミド,ジメチルホルムアミド.1,3−ジメチル−3.
 4, 5. 6−テトラヒドロー2 ( IH)一ピ
リミジノン,1.3−ジメチルー2一イミダゾリジノン
等の含窒素化合物.スルホラン,ジメチルスルホキシド
等の硫黄化合物,r一プチロラクトン.γ一カブロラク
トン.α−フ゜チロラクトン.ε一カブロラクトン等の
ラクトン類,ジオキサン,1.2−ジメトキシエタン.
ジエチレングリコールジメチル(又はジエチル,ジブロ
ピル.シフチル)エーテル,トリエチレングリコールジ
メチル(又はジエチル,ジブロピル,ジプチル)エーテ
ル,テトラエチレングリコールジメチル(又はジエチル
,ジプロピル,ジプチル)エーテル等のエーテル類,メ
チルエチルケトン,メチルイソブチルケトン.シクロヘ
キサノン,アセトフエノン等のケトン類,プタノール.
オクチルアルコール,エチレングリコール,グリセリン
.ジエチレングリコール七ノメチル(又はモノエチル)
エーテル.トリエチレングリコールモノメチル(又はモ
ノエチル)エーテル,テトラエチレングリコールモノメ
チル(又はモノエチル)エーテル等のアルコール類,フ
ェノール,クレゾール,キシレノール等のフェノール類
.酢酸エチル.酢酸プチル,エチルセロソルプアセテー
ト,プチルセロソルプアセテート等のエステル類.トル
エン,キシレン,シエチルベンゼン,シクロヘキサン等
の炭化水素類,トリクロロエタン.テトラクロロエタン
,モノクロロベンゼン等のハロゲン化炭化水素類,水な
どが用いられる。
The combination of (Al) and (At) in the present invention varies depending on the types of (B) and (C) used, and any combination can be selected as long as the desired paste of the present invention can be obtained. Specifically, such (A1) and (Ax) are described in, for example, "Solvent Handbook" (Kodansha, published in 1976).
The organic liquids listed on pages 143 to 852 of . For example, N-methylpyrrolidone. Dimethylacetamide, dimethylformamide. 1,3-dimethyl-3.
4, 5. Nitrogen-containing compounds such as 6-tetrahydro-2 (IH)-pyrimidinone and 1,3-dimethyl-2-imidazolidinone. Sulfur compounds such as sulfolane and dimethyl sulfoxide, r-butyrolactone. γ-cabrolactone. α-Ftyrolactone. Lactones such as ε-cabrolactone, dioxane, 1,2-dimethoxyethane.
Ethers such as diethylene glycol dimethyl (or diethyl, dibropyl, siftyl) ether, triethylene glycol dimethyl (or diethyl, dibropyl, diptyl) ether, tetraethylene glycol dimethyl (or diethyl, dipropyl, diptyl) ether, methyl ethyl ketone, methyl isobutyl ketone. Ketones such as cyclohexanone and acetophenone, butanol.
Octyl alcohol, ethylene glycol, glycerin. Diethylene glycol heptanomethyl (or monoethyl)
ether. Alcohols such as triethylene glycol monomethyl (or monoethyl) ether and tetraethylene glycol monomethyl (or monoethyl) ether; phenols such as phenol, cresol, and xylenol. Ethyl acetate. Esters such as butyl acetate, ethyl cellosol acetate, butyl cellosol acetate. Hydrocarbons such as toluene, xylene, ethylbenzene, cyclohexane, trichloroethane. Halogenated hydrocarbons such as tetrachloroethane and monochlorobenzene, water, etc. are used.

(A1)および(A2)はそれぞれ2種以上用いてもよ
い。本発明における第一の有機液体(八1)と第二の有
機液体(At)の混合有機液体に可溶性の耐熱樹脂CB
)は熱硬化性樹脂又は熱可塑性樹脂のいずれも便用でき
る。熱硬化性の可溶性の耐熱樹脂としては,例えば.末
端アセチレン化ポリイミド樹脂,末端マレイミド化ポリ
イミド樹脂,末端ノルボルネン化ポリイミド樹脂,BT
レジン(三菱ガス化学社製,商品名).ケルイミド(ロ
ーン・プーラン社製.商品名)等の付加重合型ポリイミ
ド樹脂,メラミン樹脂,フェノール樹脂,エボキシ樹脂
などが用いられる。熱可塑性の可溶性の耐熱樹脂として
は,例えば.「プラスチックハンドブック」(朝倉書店
,1979年刊行)の308〜618頁K掲載されてい
る可溶性耐熱樹脂が用いられる。
Two or more types of each of (A1) and (A2) may be used. Heat-resistant resin CB soluble in mixed organic liquid of first organic liquid (81) and second organic liquid (At) in the present invention
) can be either a thermosetting resin or a thermoplastic resin. Examples of thermosetting soluble heat-resistant resins include: Terminal acetylenated polyimide resin, terminal maleimidated polyimide resin, terminal norbornened polyimide resin, BT
Resin (manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name). Addition-polymerized polyimide resins such as Kelimide (manufactured by Lorne-Poulenc, trade name), melamine resins, phenol resins, epoxy resins, etc. are used. Examples of thermoplastic soluble heat-resistant resins include: The soluble heat-resistant resin listed in "Plastic Handbook" (Asakura Shoten, published in 1979), pages 308-618K, is used.

耐熱性と溶解性の観点から.好ましくはポリアミド樹脂
.ポリアミドイミド樹脂.ポリイミド樹脂(ポリイミド
樹脂の前駆体であるポリアミド酸樹脂を含む)が用いら
れる。
From the viewpoint of heat resistance and solubility. Preferably polyamide resin. Polyamideimide resin. Polyimide resin (including polyamic acid resin, which is a precursor of polyimide resin) is used.

テトラカルボン酸二無水物とアルコール及び/又はアル
コール誘導体とを反応させて得られるテトラカルボン酸
エステルに.ジアミンを混合または反応させた組成物又
はポリアミド酸エステルオリゴマーも用いられる。また
.テトラカルボン酸二無水物ととの二無水物と錯体を形
成しうる溶媒とを反応させて得られる錯体に.ジアミン
を混合または反応させた組成物又はポリアミド酸オリゴ
マーも用いられる。この溶媒としては.好ましくはN−
メチルビロリドン.ピリジン.C一カブロラクタム等が
用いられる。
A tetracarboxylic acid ester obtained by reacting a tetracarboxylic dianhydride with an alcohol and/or an alcohol derivative. A composition mixed with or reacted with a diamine or a polyamic acid ester oligomer may also be used. Also. A complex obtained by reacting the dianhydride with a solvent capable of forming a complex. Compositions mixed or reacted with diamines or polyamic acid oligomers may also be used. As for this solvent. Preferably N-
Methyl pyrrolidone. Pyridine. C-cabrolactam and the like are used.

ポリアミド樹脂.ポリアミドイミド樹脂,ポリイミド樹
脂としては.例えば,ポリカルボン酸又はその反応性酸
誘導体とジアミン(例えば.特開昭63−205640
号公報K記載されているもの)又はそのジアミンとホス
ゲン又は塩化チオニルと反応させて得られるジイソシア
ネートとを反応させて得られるものが用いられる。具体
的には.特開昭57−64955号公報に記載されてい
る可溶性ポリアミド樹脂,特開平1−40570号公報
に記載されている可溶性ポリアミドイミド樹脂,特開昭
62−283154号公報に記載されている可溶性ポリ
イミド樹脂などが挙げられる。
Polyamide resin. As for polyamide-imide resin and polyimide resin. For example, polycarboxylic acid or its reactive acid derivative and diamine (for example, JP-A-63-205640
(described in Publication No. K) or those obtained by reacting the diamine with a diisocyanate obtained by reacting with phosgene or thionyl chloride are used. in particular. Soluble polyamide resin described in JP-A-57-64955, soluble polyamide-imide resin described in JP-A-1-40570, soluble polyimide resin described in JP-A-62-283154 Examples include.

熱可塑性の可溶性耐熱樹脂(B)の分子量は成膜性,可
とり性を考慮すると,好ましくは還元粘度(濃度: 0
.5 9/de,溶媒:ジメチルホルムアミド,温度=
30℃)で0.3以上のものが用いられる。また,可溶
性の耐熱樹脂(B)の熱分解開始温度は.好まし<Fi
2 5 0”C以上,特KIHましくは\、 350℃以上であり,可溶性の耐熱樹脂(H)は単独で
又は混合して用いられる。
Considering the film-forming properties and detachability, the molecular weight of the thermoplastic soluble heat-resistant resin (B) is preferably reduced viscosity (concentration: 0
.. 5 9/de, solvent: dimethylformamide, temperature =
30°C) of 0.3 or more. In addition, the thermal decomposition initiation temperature of the soluble heat-resistant resin (B) is . Preferably<Fi
The temperature is 250"C or higher, especially KIH, or 350°C or higher, and the soluble heat-resistant resin (H) can be used alone or in combination.

本発明における第一の有機液体(A1)には溶解するが
.第二の有機液体(As)Kは不溶でありH (AIL
(A2)及び可溶性耐熱樹脂CB)を含む溶液中に分散
する耐熱樹脂微粒子(C) #′i,例えば上記した可
溶性の耐熱樹脂CB)から得られる微粒子が用いられる
。耐熱性と(Ar)K対する溶解性の観点から,好まし
くは上記したポリアミド樹脂.ポリアミドイミド樹脂,
ポリイミド樹脂(ポリイミド樹脂の前駆体であるボ+J
アミド酸樹脂を含む)の微粒子が用いられる。また.微
粒子の合成の容易さ,コスト.チキントロピー性を考慮
すると.好ましくは非水分散重合法(例えば.特公昭6
0−48531号公報,特開昭59−230018号公
報に記載されている方法)で得られ九平均粒子径が40
μm以下であるポリアミド樹脂,ポリアミドイミド樹脂
およびポリイミド樹脂が用いられる。本発明におけるペ
ーストをスクリーン印刷に用いる場合,ペーストのチキ
ソトロピー性,皮膜の均一性及び膜厚との調和を考慮す
ると耐熱樹脂微粒子(C)は,好ましくけ平均粒子径が
0.1〜5μmとされる。
Although it dissolves in the first organic liquid (A1) in the present invention. The second organic liquid (As) K is insoluble and H (AIL
Heat-resistant resin fine particles (C) #'i dispersed in a solution containing (A2) and soluble heat-resistant resin CB), for example, fine particles obtained from the above-mentioned soluble heat-resistant resin CB) are used. From the viewpoint of heat resistance and solubility in (Ar)K, the above-mentioned polyamide resin is preferred. polyamideimide resin,
Polyimide resin (polyimide resin precursor Bo+J)
(containing amic acid resin) are used. Also. Ease and cost of synthesizing fine particles. Considering the chicken tropism. Preferably, a non-aqueous dispersion polymerization method (for example,
0-48531, JP-A-59-230018) and has a nine-average particle diameter of 40
Polyamide resins, polyamideimide resins, and polyimide resins having a diameter of μm or less are used. When the paste of the present invention is used for screen printing, the heat-resistant resin fine particles (C) preferably have an average particle diameter of 0.1 to 5 μm in consideration of the thixotropy of the paste, uniformity of the film, and harmony with the film thickness. Ru.

このような耐熱樹脂微粒子(C) Vi上記した非水分
散重合法で得ることができる。
Such heat-resistant resin fine particles (C) Vi can be obtained by the non-aqueous dispersion polymerization method described above.

耐熱樹脂微粒子(C)は上記した非水分散重合法で得る
ことができるが,他の方法,例えば樹脂溶液から回収し
た粉末を機械粉砕する方法,樹脂溶液に貧溶媒を加えな
がら高ぜん断下K微粒子化する方法.樹脂溶液の噴霧油
滴を乾燥して微粒子を得る方法等があり.任意の方法が
用いられる。
The heat-resistant resin fine particles (C) can be obtained by the above-mentioned non-aqueous dispersion polymerization method, but other methods are also available, such as mechanically pulverizing the powder recovered from the resin solution, or under high shear while adding a poor solvent to the resin solution. How to make K fine particles. There are methods such as drying sprayed oil droplets of resin solution to obtain fine particles. Any method can be used.

熱可塑性の耐熱樹脂微粒子(C)を用いる場合Kは,そ
の分子量は成膜性,可とり性を考慮すると好ましくは還
元粘度でO.,!以上のものが用いられる。
When using thermoplastic heat-resistant resin fine particles (C), the molecular weight of K should preferably be O. ,! The above are used.

熱硬化性と熱可塑性の耐熱樹指微粒子(C)の熱分解開
始温度は,好ましくは250℃以上,特に好ましくは3
50℃以上であり,これらは単独で又は混合して用いら
れる。
The thermal decomposition initiation temperature of the thermosetting and thermoplastic heat-resistant resin particles (C) is preferably 250°C or higher, particularly preferably 3°C.
The temperature is 50°C or higher, and these can be used alone or in combination.

本発明Kおける耐熱樹脂ペーストの好ましい態様を以下
K示す。まず,第一の有機液体(A+)と第二の有機液
体(As)との組合せは,例えば次の2種類K分類され
る。
Preferred embodiments of the heat-resistant resin paste in the present invention are shown below. First, the combinations of the first organic liquid (A+) and the second organic liquid (As) are classified into the following two types K, for example.

(a)  (A+)が上記したN−メチルビロリドン,
ジメチルアセトアミド等の含窒素化合物,ジメチルスル
ホキシド等の硫黄化合物,r−プチロラクトン等のラク
トン類,キシレノール等のフェノール類.(At)が上
記したジエチレングリコールジメチルエーテル等qエー
テル類,シクロヘキサノン等のケトン類,プチルセロソ
ルプアセテート等のエステル類,プタノール等のアルコ
ール類,キシレン等の炭化水素類 (b)  (AI)が上記したテトラエチレングリコー
ルジメチルエーテル等のエーテル類,シクロヘキサノン
等のケトン類. (A2)が上記したプチルセロソルプ
アセテート,酢エチ等のエステル類,ブタノール,メチ
ル力ルピトール等のアルコール類.キシレン等の炭化水
素類 (a)型の混合有機液体に適用できる可溶性の耐熱樹脂
(B)と耐熱樹脂微粒子(C)としては,例えば次のも
のが挙げられる。
(a) (A+) is N-methylpyrrolidone as described above;
Nitrogen-containing compounds such as dimethylacetamide, sulfur compounds such as dimethyl sulfoxide, lactones such as r-butyrolactone, and phenols such as xylenol. (At) is the above-mentioned q ethers such as diethylene glycol dimethyl ether, ketones such as cyclohexanone, esters such as butylcellosolp acetate, alcohols such as butanol, and hydrocarbons such as xylene (b) (AI) is the above-mentioned Ethers such as tetraethylene glycol dimethyl ether, ketones such as cyclohexanone. (A2) is the above-mentioned butylcellosolp acetate, esters such as ethyl acetate, and alcohols such as butanol and methyl lupitol. Examples of the soluble heat-resistant resin (B) and heat-resistant resin fine particles (C) that can be applied to the mixed organic liquid of the hydrocarbon type (a) such as xylene include the following.

(B)としては,例えば以下の式(1)〜(10)で表
わされるくり返し単位を有する耐熱樹脂が用いられる。
As (B), for example, a heat-resistant resin having repeating units represented by the following formulas (1) to (10) is used.

(式中, Xは一CH2.0− 一〇〇一 (式中, 几1とR2は水素又は炭素数1〜6の炭化水素基であ一
り, Xは式(1)のXと同じである) C}{3 CFs ・・・(3) CFs においても同じ), mは1〜1 00の整数である。) であり, mは1〜iooの整数である) ・・・(2) ・・・(5) ・・・(9) ・・・α0 (式中, R3とR4はメチル, エチル, プロビル又 (C)としては, 例えば式(ロ)〜(至)で表わされるくりはフエニルで
ある) 返し単位を有する耐熱樹脂微粒子が挙げられる。
(In the formula, X is 1CH2.0-1001 (wherein, 1 and R2 are hydrogen or a hydrocarbon group having 1 to 6 carbon atoms, and ) C}{3 CFs (3) The same applies to CFs), m is an integer from 1 to 100. ), m is an integer from 1 to ioo) ...(2) ...(5) ...(9) ...α0 (wherein, R3 and R4 are methyl, ethyl, probyl or As (C), for example, heat-resistant resin fine particles having a return unit in the formulas (b) to (b) (wherein is phenyl) may be mentioned.

CHs ・・・(8) である (以下の式においても同じ) ・・・(至) (式中, Zは一CHx , 一〇− 一So2 , 一〇〇一 下の式においても同じ) ・・・(至) (b)型の混合有機液体に適用できる(B)と(C)と
しては例えば次のものが挙げられる。
CHs ... (8) (same in the following formulas) ... (to) (In the formula, Z is 1CHx, 10-1So2, 1001 The same is true in the formula below) (To) Examples of (B) and (C) that can be applied to the (b) type mixed organic liquid include the following.

の整数である) (B3としては, 例えば弐■, (自)で表わされるくク (C)としては, 例えば前記した式(1)の式中Xが 返し単位を有する耐熱樹脂. 上記の式(6)で表わさ れるポリシロキサンイミ ドが用いられる。is an integer) (As B3, For example, 2■, Kku represented by (self) As for (C), For example, in the above formula (1), X is A heat-resistant resin with a turning unit. Expressed by the above equation (6) Polysiloxane imide is used.

であるポリエーテルアミ ドイミ ド, 前記した式(5) 〜式(9)(但し, 式(5), (6), (8)中のXが リイミドが用いられる。polyether amide Doimi Do, The above formula (5) ~Formula (9) (however, Formula (5), (6), (8) The X inside Liimide is used.

(AI)と(AI)の割合は, 好まし< Fi(AI)1 0〜70 重量部に対して(A.)90〜30重量部が用いられ(
;χ゛3 しm る。(A1)が10重量部未満であると(Clの成膜性
が低下し,70重量部を越えると(A!). (At)
とfB)を含む溶液に(C)が溶解し易くなり,(C)
がペースト中に分散しにくくなる。
The ratio of (AI) to (AI) is preferably < Fi (AI) 1 0 to 70 parts by weight to (A.) 90 to 30 parts by weight.
;χ゛3 If (A1) is less than 10 parts by weight (Cl film-forming properties decrease, and if it exceeds 70 parts by weight (A!). (At)
(C) becomes easier to dissolve in a solution containing fB), and (C)
becomes difficult to disperse into the paste.

(Al)と(At)の沸点はスクリーン印刷時のペース
トの可使時間を考慮すると100℃以上であることが好
ましい。
The boiling points of (Al) and (At) are preferably 100° C. or higher, considering the pot life of the paste during screen printing.

(ClとfB)のペースト中の濃度は,好ましくはペー
ストの粘度が30〜10,000ボアズ,チキントロピ
ー係数が1.5以上となるように調製される。
The concentrations of (Cl and fB) in the paste are preferably adjusted so that the paste has a viscosity of 30 to 10,000 Boas and a Chickentropy coefficient of 1.5 or more.

ペーストの粘度が30ボアズ未満であると印刷後のペー
ストにだれが生じ易ぐ,10,000ボアズを越えると
印刷の作業性が低下する。特に好ましくは300〜5,
 0 0 0ボアズとされる。
If the viscosity of the paste is less than 30 boas, sagging is likely to occur in the paste after printing, and if it exceeds 10,000 boas, printing workability decreases. Particularly preferably 300 to 5,
It is assumed to be 0 0 0 Boaz.

(H)と(C)の割合は.好塘しくけ総量を100重量
部としてiB)5〜70重量部に対して(C) 9 5
〜30重量部が用いられる。(C)の割合を多くすると
チキソトロピー性と乾燥膜厚を増大できる。
The ratio of (H) and (C) is. (C) 9 5 for iB) 5 to 70 parts by weight, assuming the total amount of Yoshitang Shikke is 100 parts by weight
~30 parts by weight are used. When the proportion of (C) is increased, thixotropy and dry film thickness can be increased.

ペーストのチキントロピー係数FiE型粘度計(東京計
器社製,EHD−U型)を用いて試料量0.49.測定
温度25℃で測定した。回転数1rpmと1 0 rp
mのペーストのみかけ粘度,η!とη1oの比,η1/
η重◎として表される。
The chicken tropy coefficient of the paste was measured using a FiE type viscometer (manufactured by Tokyo Keiki Co., Ltd., model EHD-U) in a sample amount of 0.49. Measurement was carried out at a measurement temperature of 25°C. Rotation speed: 1 rpm and 10 rpm
Apparent viscosity of paste m, η! and η1o, η1/
It is expressed as η weight ◎.

(C)と(B)の総和のペースト中の濃度は.好ましく
tiio〜90重量慢とされる。10重量チ未満である
と皮膜の乾燥膜厚を厚くしにくくなり,90重量一を越
えるとペーストの流動性が損われる。
The total concentration of (C) and (B) in the paste is. Preferably, the weight is between tiio and 90%. If it is less than 10% by weight, it will be difficult to increase the dry thickness of the film, and if it exceeds 90% by weight, the fluidity of the paste will be impaired.

本発明Kおけるペーストの皮膜の乾燥膜厚や可とう性は
(B)とfclがそれぞれ熱硬化性か熱可塑性であるか
κよって変化する。一般的K熱硬化性樹脂は比較的低分
子量で溶解性K優れるので.熱硬化性のCB+を用いる
と,ペースト中の(B)の濃度を大きくでき,乾燥膜厚
が増大する。
The dry film thickness and flexibility of the paste film in the present invention K vary depending on whether (B) and fcl are thermosetting or thermoplastic, respectively. General K thermosetting resins have a relatively low molecular weight and excellent solubility K. If thermosetting CB+ is used, the concentration of (B) in the paste can be increased, increasing the dry film thickness.

しかし,熱硬化性樹脂の硬化物の可とり性は一般的K著
しく劣るものである。一方,熱可塑性樹脂Fi溶解性,
可とり性において熱硬化性樹脂とは逆の性質を示す。し
九がって,{B}と(C)の一つの好ましい組合せは熱
硬化性の(B)と樹可塑性の(C)を用いることである
However, the removability of the cured product of thermosetting resin is significantly inferior to that of general K. On the other hand, the thermoplastic resin Fi solubility,
In terms of flexibility, it exhibits the opposite property to thermosetting resins. Therefore, one preferred combination of {B} and (C) is to use thermosetting (B) and dendritic (C).

(C)を(AI). (A!)及び(B)を含む溶液中
K分散させる方法としては通常.塗料分野で行なわれて
いるロール練り,ミキサー混合などが適用され.十分な
分散が行なわれる方法であれば特に制限はない。
(C) to (AI). The method for dispersing K in a solution containing (A!) and (B) is usually the following. Roll kneading and mixer mixing, which are used in the paint field, are applied. There is no particular restriction on the method as long as sufficient dispersion is achieved.

三本ロールKよる複数回の混線が最も好ましい。It is most preferable to cross-wire a plurality of times using three rolls K.

本発明におけるペーストのチキントロピー係数は1.5
以上とすることが好ましい。1.5未満であると基材に
転写されたペーストにだれが発生し易く.十分なパター
ン精度が得られにくい。
The chicken tropy coefficient of the paste in the present invention is 1.5
It is preferable to set it as above. If it is less than 1.5, sagging is likely to occur in the paste transferred to the base material. It is difficult to obtain sufficient pattern accuracy.

本発明のペーストは基材に塗布され次後,好ましくけ最
終的K150〜500℃で1〜120分間堺付けること
Kよって強じんな皮膜を形成させることができる。
The paste of the present invention can be applied to a substrate and then subjected to final polishing preferably at a temperature of 150 to 500 DEG C. for 1 to 120 minutes to form a tough film.

本発明のペーストには,必要に応じて消泡剤.顔料.染
料.可塑剤.酸化防止剤などを併用してもよい。
The paste of the present invention may contain an antifoaming agent if necessary. Pigment. dye. Plasticizer. Antioxidants and the like may also be used together.

本発明Kなる耐熱樹脂ペーストはシリコンウエハを基板
としたモノリシツクIC,セラミック基板やガラス基板
を用いるノ・イプリツドIC,サーマルヘッド,イメー
ジセンサー.マルチチップ高密度実装基板等のデバイス
.フレキシブル配線板,リジット配線板等の各種配線板
などの層間絶縁膜及び/又は表面保護膜,各種耐熱印字
用インク.耐熱接着剤などK広〈利用でき,工業的K極
めて有用である。
The heat-resistant resin paste of the present invention can be applied to monolithic ICs using silicon wafers as substrates, embedded ICs using ceramic substrates or glass substrates, thermal heads, and image sensors. Devices such as multi-chip high-density mounting boards. Interlayer insulation film and/or surface protection film for various wiring boards such as flexible wiring boards and rigid wiring boards, and various heat-resistant printing inks. Heat-resistant adhesives can be widely used and are extremely useful in industrial applications.

本発明になる耐熱樹脂ペーストを,モノリシツクIC等
の半導体装置の保護膜K用いる場合には,ウラン,トリ
ウム等のα線源物質,ナトリウム.カリウム,鋼.鉄等
のイオン性不純物などの含量を少なくすることが好まし
い。保護膜のウラン,トリウム等のα線源物質の総含量
け1 ppb以下が好ましく,よシ好まし<Fi0.2
ppb以下とされる。
When the heat-resistant resin paste of the present invention is used as a protective film for semiconductor devices such as monolithic ICs, α-ray source materials such as uranium and thorium, sodium. Potassium, steel. It is preferable to reduce the content of ionic impurities such as iron. The total content of α-ray source materials such as uranium and thorium in the protective film is preferably less than 1 ppb, more preferably <Fi0.2
It is assumed to be less than ppb.

これは0.2乃至l ppbを境Kして保護膜から放射
されるα線の素子の誤動作に対する影響が色激K減少す
るからである。得られた保護膜のウラン.トリウム等の
α線源物質の総含量が0.2乃至1pI)bを超える場
合には.前記樹脂の製造K用いられるモノマ,溶剤,樹
脂の精製等に用いられる沈殿剤.有機液体(A+). 
(As)等を精製することによシウラン,トリウム等の
α線源物質の総含量を減少させることができる。精製は
.樹脂の製造K用いられるモノマ,溶剤.樹脂の精製等
K用いられる沈殿剤,有機液体(A1). (2)等を
蒸留,昇華,再結晶.抽出などによって.また.合成し
次樹脂溶液を精製した貧溶媒中に沈殿させる工程を複数
回行なうことが便利である。
This is because the influence of α rays emitted from the protective film on malfunction of the device is reduced by K within the range of 0.2 to 1 ppb. Uranium in the resulting protective film. If the total content of α-ray source substances such as thorium exceeds 0.2 to 1 pI)b. Monomers used in the production of the resin, solvents, precipitants used in the purification of the resin, etc. Organic liquid (A+).
By purifying (As) etc., the total content of α-ray source substances such as siluran and thorium can be reduced. As for purification. Monomers and solvents used in resin production. Precipitating agents and organic liquids used in resin purification, etc. (A1). Distillation, sublimation, and recrystallization of (2), etc. By extraction etc. Also. It is convenient to carry out multiple steps of precipitating the synthesized resin solution into a purified poor solvent.

また.使用時の腐食.リークなどを少なくするため,ナ
トリウム,カリウム,銅,鉄等のイオン性不純物の含量
は2 pI)m以下が好ましく,より好ましくはt p
pm以下とされる。得られたペーストのイオン性不純物
の総含量が1乃至2 ppmを超える場合には,上記の
樹脂の製造に用いられるモノマ等を上記の精製と同じ工
程で精製することによりイオン性不純物の総含量を減少
させることができる。精製は必ずしも用いられるモノマ
等の全てについて行なう必要はない。例えばモノマのみ
あるいはモノマおよび溶剤Kクいてのみ精製を行なって
もよい。
Also. Corrosion during use. In order to reduce leakage, the content of ionic impurities such as sodium, potassium, copper, iron, etc. is preferably 2 pI)m or less, more preferably tpI)m or less.
pm or less. If the total content of ionic impurities in the resulting paste exceeds 1 to 2 ppm, the total content of ionic impurities can be reduced by refining the monomers used in the production of the above resin in the same process as the above purification. can be reduced. It is not necessary to purify all of the monomers used. For example, purification may be carried out using only the monomer or only the monomer and the solvent K.

本発明におけるICとしては,モノリシツクIC,ハイ
ブリッドIC,マルテテツブ尚密度実装基板等がある。
The IC used in the present invention includes a monolithic IC, a hybrid IC, a multi-layer high-density mounting board, and the like.

モノリシツクICFi,例えば第3図K示す構造を有す
るもので.本発明になる耐熱樹脂ペースト#iLSIチ
ツブ2の上に塗工され加熱されて耐熱樹脂皮膜1(表面
保護膜)とされる。
A monolithic ICFi, for example, one having the structure shown in FIG. 3K. The heat-resistant resin paste of the present invention is applied onto the #iLSI chip 2 and heated to form the heat-resistant resin film 1 (surface protection film).

第3図において,lは耐熱樹脂皮膜,2はLSIチップ
.3けボンデイングワイヤ,4は樹脂パッケージ,5#
′iリード,6は支持体である。
In Fig. 3, l is a heat-resistant resin film, and 2 is an LSI chip. 3 bonding wires, 4 resin package, 5#
'i lead, 6 is a support.

ハイブリッドICは,例えば第4図に示す構造を有する
もので.第1層配線11および抵抗層12の上に.本発
明になる耐熱樹脂ペーストを塗工,加熱して耐熱樹脂皮
膜10(層間絶縁膜)とされる。この上K,第2層配線
9が形成される。
For example, a hybrid IC has the structure shown in Figure 4. on the first layer wiring 11 and the resistance layer 12. The heat-resistant resin paste of the present invention is applied and heated to form a heat-resistant resin film 10 (interlayer insulation film). On top of this, second layer wiring 9 is formed.

第4図において,7はダイオードチップ,8ははんだ.
9は第2層配線.10は耐熱樹脂皮膜,l1は第1層配
線,12け抵抗層,13はアルミナ基板である。
In Figure 4, 7 is a diode chip and 8 is solder.
9 is the second layer wiring. 10 is a heat-resistant resin film, l1 is a first layer wiring, 12 is a resistive layer, and 13 is an alumina substrate.

マルチチップ高密度実装基板は,例えば第5図K示す構
造を有するもので,セラミック多層配線板20の上に公
知の方法Kよシ配線層15.16の形成,本発明になる
耐熱樹脂ペーストの塗工,加熱による耐熱樹脂皮膜14
(層間絶縁膜)の形成等をくり返して,銅/耐熱樹脂多
層配線層19次K,本発明を比較例,実施例Kよって説
明する。
The multi-chip high-density mounting board has, for example, the structure shown in FIG. Heat-resistant resin film 14 by coating and heating
By repeating the formation of (interlayer insulating film), etc., a 19th-order copper/heat-resistant resin multilayer interconnection layer is formed.The present invention will be explained with reference to a comparative example and an example K.

比較例1 (1)  耐熱樹脂の調製 トリメリット酸無水物   1’lO   1.00N
−メチルピロリドン   606 上記成分を温度計,かきまぜ機,窒素導入管および水分
定量器をつけた四つ口フラスコ内にかくはんしながら入
れ,窒素ガスを通しなから160’CK昇温した。徐々
K温度を上げ.留出する水を系外に除去しながら205
℃に昇温し,205〜210℃の温度範囲で反応を進め
た。反応終点をガードナー粘度で管理し,還元粘度(溶
媒をジメチルホルムアミドとして,試料濃度0.5g/
dgで30℃で測定,以下同様) 0.4 1 (dl
/ 9 )のポリエーテルアミドイミド樹脂を得た。得
られたポリエーテルアミドイミド樹脂のN−メチルピロ
リドン溶液をN−メチルピロリドンで約25重量チにな
るように希釈し,この溶液をミキサーで強力にかくけん
した水中K投下し,固形のポリエーテルアミドイミド樹
脂を回収した。この固形樹脂を熱水でよく洗浄した後.
多量の水及びメタノールで煮沸洗浄した。これをr取し
之後.150℃の熱風乾燥機で6時間乾燥させて粉末の
N−メチルビロリドンK可溶性の次式のくり返し単位を
有するポリエーテルアミドイミド樹脂を得た。
Comparative Example 1 (1) Preparation of heat-resistant resin Trimellitic anhydride 1'lO 1.00N
-Methylpyrrolidone 606 The above ingredients were stirred and put into a four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a moisture meter, and the temperature was raised to 160'CK without passing nitrogen gas. Gradually raise the K temperature. 205 while removing distilled water from the system.
℃, and the reaction was carried out in a temperature range of 205 to 210℃. The end point of the reaction was controlled by Gardner viscosity, and the reduced viscosity (using dimethylformamide as the solvent, sample concentration of 0.5 g/
0.4 1 (dl
/ 9) polyether amide imide resin was obtained. The N-methylpyrrolidone solution of the obtained polyetheramide-imide resin was diluted with N-methylpyrrolidone to a weight of about 25%, and this solution was poured into water that had been strongly stirred with a mixer to form a solid polyether. Amidimide resin was recovered. After washing this solid resin thoroughly with hot water.
It was washed by boiling with a large amount of water and methanol. After getting this. It was dried in a hot air dryer at 150° C. for 6 hours to obtain a powdery N-methylpyrrolidone K-soluble polyetheramide-imide resin having repeating units of the following formula.

(2)樹脂微粒子の調製 温度計,かきまぜ機,窒素導入管および水分定量器をつ
けた四つロフラスコ内に窒素ガスを通しながらビロメリ
ット酸二無水物2189(1モル)とN−メチルピロリ
ドン(水分0.03チ)16729を入れ,かくはんし
ながら50℃に昇温し,同温度で0.5時間保ち完全に
溶解して均一な溶液とした。これに4.4′−ジアミノ
ジフエニルエーテル1009(0.5モル)と4.4′
−ジアミノジフエニルメタン999(0.5モル)を加
え,ただちに110℃に昇温し,同温度で20分間保ち
完全に溶解して均一な溶液とした。ついで,約2時間で
200℃K昇温し.同温度で3時間反応させた。
(2) Preparation of fine resin particles Biromellitic dianhydride 2189 (1 mol) and N-methylpyrrolidone ( 16729 (0.03 g) of water was added, the temperature was raised to 50° C. while stirring, and the temperature was kept at the same temperature for 0.5 hours to completely dissolve and form a homogeneous solution. To this, 4.4'-diaminodiphenyl ether 1009 (0.5 mol) and 4.4'
-Diaminodiphenylmethane 999 (0.5 mol) was added, the temperature was immediately raised to 110°C, and the mixture was kept at the same temperature for 20 minutes to completely dissolve and form a homogeneous solution. Then, the temperature was raised to 200°C in about 2 hours. The reaction was allowed to proceed at the same temperature for 3 hours.

途中,約140℃でポリイミド樹脂の微粒子の析出が観
察された。また,反応中.留出する水はすみやかに系外
圧除去した。
During the process, precipitation of polyimide resin particles was observed at about 140°C. Also, the reaction is in progress. The external pressure of the distilled water was immediately removed.

N−メチルピロリドン中に分散した黄褐色のポリイミド
樹脂の微粒子を得たので,これをr過によって回収し,
更Kアセトン煮沸を2回繰り返した後,減圧下.200
℃で5時間乾燥させた。このポリイミド樹脂微粒子の形
状はほぼ球形.多孔性であって.平均粒子径(コールタ
ーエレクトロニクス社製TA−1[型Kよる。以下同じ
)は8μm,最大粒子径は40μm以下でめつ九。この
ポリイミド樹脂微粒子はN−メチルピロリドンに不溶で
,次式のくり返し単位を有するものである。
Fine particles of yellow-brown polyimide resin dispersed in N-methylpyrrolidone were obtained, which were recovered by filtration.
After repeating the acetone boiling process twice, the sample was boiled under reduced pressure. 200
It was dried at ℃ for 5 hours. The shape of these polyimide resin particles is almost spherical. It's porous. The average particle size (according to Coulter Electronics TA-1 [type K; the same applies hereinafter) is 8 μm, and the maximum particle size is 40 μm or less. This polyimide resin fine particle is insoluble in N-methylpyrrolidone and has a repeating unit of the following formula.

{3}ペーストの調製 上記(1)で調製した粉末の可溶性ポリエーテルアミド
イミド樹@1 5 9.上記(2)で調製したポリイミ
ド樹脂微粒子259,N−メチルピロリドン609を加
え.まず.乳鉢で粗混練し.ついで高速三本ロールを用
いて6回通して混練し樹脂微粒子が分散したペーストを
得た。
{3} Preparation of paste Soluble polyetheramide imide tree of powder prepared in (1) above @1 5 9. Add the polyimide resin fine particles 259 and N-methylpyrrolidone 609 prepared in (2) above. first. Roughly knead in a mortar. The mixture was then kneaded six times using a high-speed triple roll to obtain a paste in which fine resin particles were dispersed.

比較例2 {1}非水分散重合法を用いた耐熱樹脂微粒子の調製(
イ)分散安定剤の合成 温度計.かきまぜ機.球営冷却器をつけた四つロフラス
コK,ISOPAR−H(エッソスタンダード石油社製
脂肪族炭化水素,商品名)185.79,ラウリルメタ
クリレート106.89及びメタクリル酸−2−ヒドロ
キシエチル6.19を入れ.100℃に昇温した。窒素
ガスを通しながら.あらかじめ調製したラウリルメタク
リレート106.99,メタクリル酸−2−ヒドロキシ
エチル24.59.過酸化ベンゾイルペースト(過酸化
ベンゾイルの含分50重量%) 2.4 9の混合物を
かくはんしながら2時間かけて滴下した。引き続き10
0℃で1時間保温後140℃に昇温し同温度で4時間反
応させた。この分散安定剤溶液は170℃で2時間乾燥
した時の不揮発分が55重量チであり,分散安定剤の数
平均分子量(分子量既知のポリスチレンを検量線とする
ゲルパーミエーションクロマトグラフイ法によって求め
た。)は6 a8 0 0であった。
Comparative Example 2 {1} Preparation of heat-resistant resin fine particles using non-aqueous dispersion polymerization method (
b) Synthesis thermometer of dispersion stabilizer. Stirring machine. A four-hole flask K equipped with a ball condenser, ISOPAR-H (aliphatic hydrocarbon manufactured by Esso Standard Oil Co., Ltd., trade name) 185.79, lauryl methacrylate 106.89 and 2-hydroxyethyl methacrylate 6.19 were added. Get in. The temperature was raised to 100°C. While passing nitrogen gas. Pre-prepared lauryl methacrylate 106.99, 2-hydroxyethyl methacrylate 24.59. Benzoyl peroxide paste (benzoyl peroxide content: 50% by weight) A mixture of 2.4 and 9 was added dropwise over 2 hours while stirring. Continued 10
After keeping the temperature at 0°C for 1 hour, the temperature was raised to 140°C, and the reaction was carried out at the same temperature for 4 hours. This dispersion stabilizer solution had a nonvolatile content of 55% by weight when dried at 170°C for 2 hours, and the number average molecular weight of the dispersion stabilizer (determined by gel permeation chromatography using polystyrene of known molecular weight as a calibration curve). ) was 6a800.

(口) ポリアミドイミド樹脂粒子の調製温度計,かき
まぜ機,球管冷却器をつけた50〇一の四つロフラスコ
K窒素ガスを通しながら.4,4′−ジフエニルメタン
ジイソシアネート35.1g.M几一100(日本ポリ
ウレタン社製.芳香族ポリイソシアネート)16.39
.上記(イ)で得た分散安定剤溶液(不揮発分4011
jl−1)19g,ISOPAR −H  1 5 0
 g, N−メチルピロリドン9.0gを入れ+380
rpmでかくはんしながらlOO℃に昇温した。
(Note) Preparation of polyamide-imide resin particles While passing nitrogen gas through a 500-1 four-hole flask equipped with a thermometer, a stirrer, and a bulb-tube condenser. 35.1 g of 4,4'-diphenylmethane diisocyanate. M Rinichi 100 (manufactured by Nippon Polyurethane Co., Ltd. Aromatic polyisocyanate) 16.39
.. The dispersion stabilizer solution obtained in (a) above (non-volatile content: 4011
jl-1) 19g, ISOPAR-H 1 5 0
g, add 9.0g of N-methylpyrrolidone +380
The temperature was raised to 100° C. while stirring at rpm.

ついであらかじめ,微粉末化し念トリメリット酸無水物
3&5gを添加し,100℃で1時間,115℃で1時
間.125℃で1時間,140℃で1時間.さらK17
0℃に昇温して2時間反応を進めた。連続相のISOP
AR−H中に分散した褐色のポリアミドイミド樹脂の微
粒子を得たので,これをr過Kよって回収し,更K水及
びメタノールで煮沸後P別したものを減圧下,60℃で
5時間乾燥させた。このポリアミドイミド樹脂微粒子は
溶媒K不溶であシ,形状は球形,非多孔性であった。赤
外吸収スペクトルには1 7 8 0cm″″五にイミ
ド結合,1650an″″魚と1540cm″″!にア
ミド結合の吸収が認められた。このポリアミドイミド樹
脂微粒子の平均粒子径は約3μm,最大粒子径は40μ
m以下であった。
Next, 3 and 5 g of finely powdered trimellitic anhydride were added in advance, and the mixture was heated at 100°C for 1 hour and at 115°C for 1 hour. 1 hour at 125℃, 1 hour at 140℃. Sara K17
The temperature was raised to 0°C and the reaction was allowed to proceed for 2 hours. Continuous phase ISOP
Fine particles of brown polyamideimide resin dispersed in AR-H were obtained, which were recovered by filtration, further boiled with K water and methanol, P separated, and dried at 60°C under reduced pressure for 5 hours. I let it happen. The polyamide-imide resin fine particles were insoluble in solvent K, spherical in shape, and non-porous. The infrared absorption spectrum has 1780cm"" five imide bonds, 1650an""fish and 1540cm""! Absorption of amide bonds was observed. The average particle size of these polyamide-imide resin particles is approximately 3 μm, and the maximum particle size is 40 μm.
m or less.

(2)ペーストの調製 比較例1,(1)で調製した粉末の可溶性ポリエーテル
アミドイミド樹脂1 5 9,上記(1). f口)で
得られたボリアSドイミド樹脂微粒子259,N−メチ
ルビロリドン609を加え,まず,乳鉢で粗混練し.つ
いで鍋速三本ロールを用いて6回通して混練しポリアミ
ドイミド樹脂微粒子が分散したペーストを得た。
(2) Preparation of paste Comparative Example 1, Powdered soluble polyetheramide imide resin 1 5 9 prepared in (1), above (1). Boria S doimide resin fine particles 259 and N-methylpyrrolidone 609 obtained in step (f) were added and first roughly kneaded in a mortar. Then, the mixture was kneaded six times using a pan-speed triple roll to obtain a paste in which polyamide-imide resin fine particles were dispersed.

実施例1 +11  可溶性の耐熱樹脂(Blの調製フラスコK入
れ,かくはん下,窃素ガスを通しなから徐々K205℃
まで昇温した。同温度で約1時間保った後.175℃に
冷却し.同温度でトリメリット酸無水物を約10分間で
添加した。次いで昇温し.205〜210℃の温度範囲
で反応を進め良。トリメリット酸無水物添加後に留出す
る水は反応系外Kすみやかに除去し,同時に,留出する
N−メチルピロリドンを追加補充しながら反応を進め九
。反応終点をガードナー粘度で管理し.還元粘度0.5
0(di!/9)のポリアミドイミド樹脂を得た。この
溶液から粉末の第1表の(A!)および(A2)の混合
溶媒に対して可溶性の次式のくり返トリメリット酸無水
物   192    1.04l4′−ジアミノジフ
エニルメタン  202     1.02N−メチル
ピロリドン   400 トリメリット酸無水物を除く上記成分を,かきまぜ機,
窒素導入管.水分定量器をつけた四つロ(2)耐熱樹脂
微粒子(C)の調製 温度計,かきまぜ機.窒素導入管をつけた四つ口フラス
コK窒素ガスを通しながら,3.3’4.4’−ビフエ
ニルテトラカルボン酸二無水物10.7119(0.0
364モル).44′−ジアミノジフエニルエーテル7
.2899(0.0364モル)とN一メチルピロリド
ン729を仕込んだ。かく拌下,室温で10時間反応を
進めた。反応系の粘度は高分子量のポリアミド酸の生成
によりかく拌が困難な状態Kまで高くなった。分子量を
調製するために少量の水を添加して60℃に加熱した。
Example 1 +11 Preparation of soluble heat-resistant resin (Bl) Place in flask K, stir, and gradually heat to K205°C without passing steal gas.
The temperature rose to . After keeping at the same temperature for about 1 hour. Cool to 175°C. At the same temperature, trimellitic anhydride was added over about 10 minutes. Then increase the temperature. The reaction can proceed in a temperature range of 205-210°C. The water distilled out after addition of trimellitic anhydride is quickly removed from the reaction system, and at the same time, the reaction is proceeded while additionally replenishing the distilled N-methylpyrrolidone.9. The end point of the reaction is controlled by Gardner viscosity. Reduced viscosity 0.5
A polyamideimide resin with a di!/9 ratio of 0 (di!/9) was obtained. From this solution, a powder is obtained: a repeating trimellitic anhydride of the following formula soluble in the mixed solvent of (A!) and (A2) in Table 1 192 1.04l4'-diaminodiphenylmethane 202 1.02N- Methylpyrrolidone 400 Combine the above ingredients except trimellitic anhydride with a stirrer,
Nitrogen introduction pipe. (2) Preparation of heat-resistant resin particles (C) Thermometer and stirrer equipped with a moisture meter. 3.3'4.4'-biphenyltetracarboxylic dianhydride 10.7119 (0.0
364 moles). 44'-diaminodiphenyl ether 7
.. 2899 (0.0364 mol) and 729 N-methylpyrrolidone were charged. The reaction was allowed to proceed for 10 hours at room temperature while stirring. The viscosity of the reaction system increased to a state K where stirring was difficult due to the formation of high molecular weight polyamic acid. A small amount of water was added and heated to 60°C to adjust the molecular weight.

次いで無水酢酸529とピリジン269を添加し.室温
で12時間放置した。得られたペーストをメタノール中
K投入し,沈殿した微粒子状の固形樹脂を回収した。こ
の固形樹脂をメタノールで十分に煮沸洗浄した後,80
℃で10時間減圧乾燥して粉末の下式のくシ返し単位を
有するポリイミド樹脂(還元粘度:0.68d(/s)
を得た。
Next, 529% of acetic anhydride and 269% of pyridine were added. It was left at room temperature for 12 hours. The resulting paste was poured into methanol and the precipitated solid resin in the form of fine particles was recovered. After thoroughly boiling and washing this solid resin with methanol,
After drying under reduced pressure at
I got it.

このポリイミド樹脂を粉砕機で粉末化し,平均粒子径4
.5μm.最大粒子径40μm以下のNーメチルビロリ
ドンに可溶でジエチレングリコールジメチルエーテルに
不溶の次式のくシ返し単位を(3)耐熱樹脂ペーストの
調製 上記+11で調製した粉末の可溶性のポリアミドイミド
樹脂(B)159,上記(2)で調製したポリイミド熱
脂微粒子(C)259,N−メチルピロリドン(A+)
24g,ジエチレングリコールジメチルエーテル(As
)3 6 sを加え,まず乳鉢で粗混練し,ついで高速
三本ロールを用いて6回通して混練しポリイミド樹脂微
粒子が分散した耐熱樹脂ペーストを得た。
This polyimide resin is pulverized using a pulverizer, and the average particle size is 4.
.. 5 μm. (3) Preparation of heat-resistant resin paste The soluble polyamide-imide resin ( B) 159, polyimide thermal fat fine particles prepared in (2) above (C) 259, N-methylpyrrolidone (A+)
24g, diethylene glycol dimethyl ether (As
) 3 6 s was added and first coarsely kneaded in a mortar and then kneaded six times using a high-speed triple roll to obtain a heat-resistant resin paste in which polyimide resin fine particles were dispersed.

実施例2 実施例1,(1)で調製した粉末の可溶性の耐熱樹脂(
B)159,耐熱樹脂微粒子として微粉末化した平均粒
子径3.5μm.最大粒子径40μm以下の次式のくり
返し単位を有するポリイミド−2080(アップジョン
社製ポリイミド樹脂,商品名)(C)259,N−メチ
ルビロリドン2 4 9 (A2),ジエチレングリコ
ールジメチルエーテル(As) 3 6 gを加え,ま
ず,乳鉢で粗混練し,ついで高速の三本ロールを用いて
6回通して混練し,ポリイミドー2080の微粒子が分
散し念耐熱樹脂ペーストを得た。ポリイミド−2080
は.N−メチルビロリドンに可溶であるがジエチレング
リコールジメチルエーテルには不溶であった。
Example 2 The powdered soluble heat-resistant resin prepared in Example 1, (1)
B) 159, finely powdered heat-resistant resin particles with an average particle diameter of 3.5 μm. Polyimide-2080 (polyimide resin manufactured by Upjohn Co., Ltd., trade name) having repeating units of the following formula with a maximum particle size of 40 μm or less (C) 259, N-methylpyrrolidone 249 (A2), diethylene glycol dimethyl ether (As) 36 g was added, first roughly kneaded in a mortar, and then kneaded six times using a high-speed triple roll to disperse fine particles of polyimide 2080 and obtain a thoroughly heat-resistant resin paste. Polyimide-2080
teeth. It was soluble in N-methylpyrrolidone but insoluble in diethylene glycol dimethyl ether.

実施例3 (1)可溶性の耐熱樹脂(B)の調製 3, 3: 4, 4′−ビ7エニルテトラカルボン酸
二無水物10.7119(0.0364モル)をa, 
3S 4. 4′−ベンゾフエノンテトラカルボン酸二
無水物11.7299(0.0364モル)K変え九以
外は実施例1,(2)と全く同様に操作して下式のくり
返し単位を有する粉末の第1表の(A1)と(A3)の
混合物K可溶であるポリイミド樹脂(還元粘度: 0,
5 0d(/ 9 )を得た。
Example 3 (1) Preparation of soluble heat-resistant resin (B) 3,3: 10.7119 (0.0364 mol) of 4,4'-bi7enyltetracarboxylic dianhydride was added to a,
3S 4. 4'-Benzophenonetetracarboxylic dianhydride 11.7299 (0.0364 mol) A powder having repeating units of the following formula was prepared in exactly the same manner as in Example 1 and (2) except for changing K. Mixture K of (A1) and (A3) in Table 1 is a soluble polyimide resin (reduced viscosity: 0,
50d(/9) was obtained.

(2)耐熱樹脂ペーストの調製 上記(1)の可溶性のポリイミド樹脂(B)12gをN
一メチルピロリドン(A+) 2 4 s.  ジオキ
サン( At)1 2 sトシエチレングリコールジメ
チルエーテル(As)24s′t−(I解した溶液に実
施例1 , (21で調製したポリイミド樹脂微粒子(
C)289を加え,まず,乳鉢で粗混練し.ついで高速
の三本ロールを用いて6回通して混練し,ポリイミド樹
脂微粒子が分散した耐熱樹脂ペーストを得た。
(2) Preparation of heat-resistant resin paste 12 g of the soluble polyimide resin (B) from (1) above was
Monomethylpyrrolidone (A+) 2 4 s. Dioxane (At) 12s to ethylene glycol dimethyl ether (As) 24s't-(I) Polyimide resin fine particles prepared in Examples 1 and (21) were added to the dissolved solution.
C) Add 289 and first roughly knead in a mortar. Then, the mixture was kneaded six times using a high-speed triple roll to obtain a heat-resistant resin paste in which polyimide resin fine particles were dispersed.

実施例4 {1}可溶性の耐熱樹脂(B)の調製 温度計,かきまぜ機,窒素導入管をつけた四つ口フラス
コK¥!1素ガスを通しながら,1.1,1,&3,3
−へキサフルオロ−2.2−ビス(3.4−ジカルボギ
シフエニル)プロパンニ無水物4 4.4 2 4 9
(0.1モル)t 1,1,1,3,鷹3−ヘキサフル
オロー2.2−1:’,*(4−7ミノフエニル)プロ
パン33.426g(0.1モル)とN−メチルビロリ
ドン441gを仕込んだ。かく伴下.室温で6時間反応
を進めた。反応系の粘度は高分子量のポリアミド酸の生
成によりかく伴が困難な状態にまで高くなった。さらに
60℃で4時間反応させた後.冷却し.無水酢酸143
gとビリジン729を添加し,室温で12時間放置した
。得られたペーストを水中に投入し,沈殿し九微粒子状
の固形樹脂を回収した。この固形樹脂をメタノールで十
分κ煮沸洗浄した後.80℃で10時間減圧乾燥して粉
末の第1表の(Ar)と(A2)の混合溶媒に可溶であ
る下式のくり返し単位を有するポリイミド樹脂(還元粘
度:0.62dJ!/Q)を得た。
Example 4 {1} Preparation of soluble heat-resistant resin (B) Four-necked flask K¥ equipped with a thermometer, stirrer, and nitrogen inlet tube! 1.1,1,&3,3 while passing 1 elemental gas
-hexafluoro-2,2-bis(3.4-dicarbogysyphenyl)propanihydride 4 4.4 2 4 9
(0.1 mol) t 1,1,1,3,hawk 3-hexafluoro2.2-1:', *(4-7minophenyl)propane 33.426 g (0.1 mol) and N-methylpyrrolidone 441g was charged. This is my companion. The reaction proceeded for 6 hours at room temperature. The viscosity of the reaction system increased to a level where it was difficult to liquefy due to the formation of high molecular weight polyamic acid. After further reaction at 60°C for 4 hours. Cool. Acetic anhydride 143
g and pyridine 729 were added, and the mixture was left at room temperature for 12 hours. The resulting paste was poured into water and precipitated to collect nine fine particles of solid resin. After thoroughly boiling and washing this solid resin with methanol. A polyimide resin having a repeating unit of the following formula (reduced viscosity: 0.62 dJ!/Q) that is soluble in a mixed solvent of (Ar) and (A2) in Table 1 after drying under reduced pressure at 80°C for 10 hours. I got it.

ビス(4−(4−イソシアネートフエノキシ)フエニル
〕フロパン6119K.N−メチルビロリドン9.0g
をN−メチルビロリドン1009に代えて非水分散重合
法で合成した平均粒子径IOμm.最大粒子径40μm
以下のテトラエチレングリコールジメチルエーテルに可
溶でプチルセロソルブアセテートK不溶の下式の〈シ返
し単位を有するポリアミドイミド樹脂微粒子を得た。
Bis(4-(4-isocyanatophenoxy)phenyl)furopane 6119K.N-methylpyrrolidone 9.0g
was synthesized by a non-aqueous dispersion polymerization method by replacing N-methylpyrrolidone 1009 with an average particle diameter of IO μm. Maximum particle size 40μm
Polyamideimide resin fine particles having the following formula soluble in tetraethylene glycol dimethyl ether and insoluble in butyl cellosolve acetate K were obtained.

(2)耐熱樹脂微粒子(C)の調製 比較例2の(1)(口)に隼じて4.4′−ジフェニル
メタンジイソシアネートおよびMR−100を2.2ー
(3)  耐熱樹脂ペーストの調製 上記(1)の可溶性のポリイミド樹脂(B)15Gをテ
トラエチレンクリコールジメチルエーテル(At)42
9とプチルセロソルプアセテート(2) 1 8 gK
M解した溶液K上記(2)のポリアミドイミド樹脂微粒
子(Cl259を加え,まず.乳鉢で粗混練し,ついで
高速の三本ロールを用いて6回通して混練し.可溶性ポ
リアミドイミド樹脂微粒子が分散した耐熱樹脂ペースト
を得た。
(2) Preparation of heat-resistant resin fine particles (C) Add 4,4'-diphenylmethane diisocyanate and MR-100 to (1) (portion) of Comparative Example 2 and add 2.2-(3) Preparation of heat-resistant resin paste as described above. (1) Soluble polyimide resin (B) 15G was added to tetraethylene glycol dimethyl ether (At) 42
9 and butyl cellosolp acetate (2) 1 8 gK
Add the polyamide-imide resin fine particles (Cl259) from (2) above to the M-dissolved solution K, and first roughly knead in a mortar, then knead by passing 6 times using a high-speed triple roll.The soluble polyamide-imide resin fine particles are dispersed. A heat-resistant resin paste was obtained.

実施例5 (1)可溶性の耐熱樹脂(B)の調製 温度計,かきまぜ機,窒素導入管をつけた四つ口フラス
コK窒素ガスを通しながらマレイン酸無水物175.5
9とア七トン500gを仕込み,還流温度K加熱した。
Example 5 (1) Preparation of soluble heat-resistant resin (B) A four-necked flask equipped with a thermometer, a stirrer, and a nitrogen inlet tube K. While passing nitrogen gas, maleic anhydride (175.5%) was added.
9 and 500 g of A7 were charged and heated to reflux temperature K.

次いで.あらかじめ調裂し次2.2−ビス(4−(4−
アミノフエノキシ)フエニル〕プロパン346.59t
アセトン670gに溶解した溶液を約1時間で滴下した
。還流温度で0.5時間反応させてビスマレインアミド
酸の沈殿を得た。次いで,無水酢酸2509,iJエチ
ルアミン30g,酢酸ニッケル4水和物1.7gの混合
液を還流温度下に添加し,このm度で約3時間反応させ
た後冷却した。この溶液を冷水中K投入し.得られた沈
殿物を十分K水洗した。この沈殿物をろ取し.減圧下,
60℃で10時間乾燥し次。
Next. Crack it in advance and then 2.2-bis (4-(4-
Aminophenoxy)phenyl]propane 346.59t
A solution dissolved in 670 g of acetone was added dropwise over about 1 hour. The reaction was carried out at reflux temperature for 0.5 hours to obtain a precipitate of bismaleamic acid. Next, a mixed solution of 2509 acetic anhydride, 30 g of iJ ethylamine, and 1.7 g of nickel acetate tetrahydrate was added at reflux temperature, and the mixture was allowed to react at this temperature for about 3 hours, and then cooled. Pour this solution into cold water. The obtained precipitate was thoroughly washed with K water. Filter this precipitate. Under reduced pressure,
Next, dry at 60°C for 10 hours.

得られた粉末100gをアセトン2009K50℃で溶
解し,そのまま室温で24時間放置した。
100 g of the obtained powder was dissolved in acetone 2009K at 50°C and left as it was at room temperature for 24 hours.

得られた結晶をろ取し,減圧下.70℃で5時間乾燥し
て次式のくク返し単位を有するN−メチルピロリドンと
プチルセロソルプアセテートの混合溶媒K不溶のビスマ
レイミド(B)を得た。
The obtained crystals were collected by filtration under reduced pressure. After drying at 70° C. for 5 hours, a bismaleimide (B) insoluble in a mixed solvent of N-methylpyrrolidone and butylcellosolp acetate having repeating units of the following formula was obtained.

(2)耐熱樹脂ペーストの調製 上記(1)の可溶性のビスマレイミド(B)37.59
,ポリイミド樹脂微粒子として実施例2で用いたN一メ
チルピロリドンに可溶でプチルセロソルプア4テ− ト
K不1のボリイミ}”− 2 0 8 0(C)2 5
 9,N−メチルビロリドン(Ar) 1 8 g .
プチルセロソルブアセテー} (As) 1 9. 5
 gを加え,まず,乳鉢で粗混線し,ついで高速三本ロ
ールを用いて6回通して混練し可溶性のポリイミド樹脂
微粒子が分散した耐熱樹脂ペーストを得た。
(2) Preparation of heat-resistant resin paste Soluble bismaleimide (B) of (1) above 37.59
, the polyimide resin fine particles used in Example 2 were soluble in N-methylpyrrolidone and made of butyl cellosol 4-tate K-2-2080(C)25
9,N-methylpyrrolidone (Ar) 18 g.
Butyl cellosolve acetate} (As) 1 9. 5
g was added thereto, first mixed roughly in a mortar, and then kneaded six times using a high-speed triple roll to obtain a heat-resistant resin paste in which soluble polyimide resin fine particles were dispersed.

実施例6 (1)  耐熱樹脂(B)の調製 温度計,かきまぜ機,窒素導入管および冷却管をそなえ
た四つ口フラスコ内にa, z 4. 4′−ペンゾ7
エノンテトラカルボン酸二無水物153.0589(0
.475モル),式3’,<4′−ビフェニルテトラカ
ルボン酸二無水物139.9309(0.475−r−
ル),〔1.3−ビスi4−ジカルポキシフェ二” )
 − L II 31 3−テトラメチルジシロキサン
〕二無水物21.3269(0.0500モル),エタ
ノール9Z6019(ZOIモル)と1.3−ジメチル
−2−イミダゾリジノン567gを仕込み.かきまぜ,
ながら加熱し.100℃に昇温した。同温度で4時間反
応させてテトラヵルボン酸二無水物のハーフエステルを
得た。40℃K冷却後,44′−ジアミノジフエニルエ
ーテル200.240s(1,000モル)トトリエチ
レングリコールジメチルエーテル850gを仕込み溶解
させて耐熱樹脂溶液(樹脂濃度:30重量es)を得た
Example 6 (1) Preparation of heat-resistant resin (B) A, Z 4. 4'-penzo7
Enonetetracarboxylic dianhydride 153.0589 (0
.. 475 mol), formula 3', <4'-biphenyltetracarboxylic dianhydride 139.9309 (0.475-r-
), [1,3-bis(i4-dicarpoxyphenylene)]
-L II 31 21.3269 (0.0500 mol) of 3-tetramethyldisiloxane dianhydride, 9Z6019 (ZOI mol) of ethanol, and 567 g of 1,3-dimethyl-2-imidazolidinone were charged. Stir,
Heat while heating. The temperature was raised to 100°C. The mixture was reacted at the same temperature for 4 hours to obtain a half ester of tetracarboxylic dianhydride. After cooling to 40 DEG C., 200.240 g of 44'-diaminodiphenyl ether (1,000 mol) and 850 g of triethylene glycol dimethyl ether were charged and dissolved to obtain a heat-resistant resin solution (resin concentration: 30 es by weight).

(2)耐熱樹脂ペーストの調製 上記(1)の耐熱樹脂溶液(樹脂濃度:30重量%)5
 0 94Cポリイミド微粒子として実施例2で用いた
ポリイミド−2080(C120Gを加え.まず,乳鉢
で粗混練し,ついで高速三本ロールを用いて6回通して
混練し可溶性のポリイミド樹脂微粒子が分散した耐熱樹
脂ペーストを得た。
(2) Preparation of heat-resistant resin paste Heat-resistant resin solution of (1) above (resin concentration: 30% by weight) 5
Polyimide-2080 (C120G) used in Example 2 was added as 94C polyimide fine particles. First, it was roughly kneaded in a mortar, and then kneaded by passing it through six times using a high-speed triple roll to obtain a heat-resistant material in which soluble polyimide resin fine particles were dispersed. A resin paste was obtained.

実施例7 (1)  可溶性の耐熱樹脂(B)の調製温度計.かき
まぜ機.窒素導入管.水分定量器をつけた四つ口フラス
コK.無水酢酸から再結晶して精製した3, 3S 4
, 4′−ベンゾフエノンテトラカルボン酸二無水物1
1.6029(0.0360モル).トルエンとジエチ
ルエーテルとの重合比で1:1の混合液で再結晶した〔
1.3−ビス(λ4−ジカルボキシフエニル)−1.1
,3.3−テトラメチルジシロキサン〕二無水物0.8
089(0.0019モル),メタノールと水との重合
比で8:2(メタノール:水)の混合液で再結晶した2
.4′−ジアミノジフエニルエーテル7.5899(0
.0379モル)と減圧蒸留Kよって精製したN−メチ
ルピロリドン729を窒素ガスを通しながら仕込んだ。
Example 7 (1) Preparation thermometer of soluble heat-resistant resin (B). Stirring machine. Nitrogen introduction pipe. Four-necked flask K. with a moisture meter attached. 3,3S 4 purified by recrystallization from acetic anhydride
, 4'-benzophenonetetracarboxylic dianhydride 1
1.6029 (0.0360 mol). Recrystallized from a mixture of toluene and diethyl ether at a polymerization ratio of 1:1 [
1.3-bis(λ4-dicarboxyphenyl)-1.1
, 3.3-tetramethyldisiloxane] dianhydride 0.8
089 (0.0019 mol), recrystallized from a mixture of methanol and water at a polymerization ratio of 8:2 (methanol:water) 2
.. 4'-diaminodiphenyl ether 7.5899 (0
.. 0379 mol) and N-methylpyrrolidone 729 purified by vacuum distillation K were charged while passing nitrogen gas.

かく拌下,室温で10時間反応させ次後,200℃に昇
温し,同温度で8時間反応を進めた。途中,留出する水
を反応系外Kすみやかに除去した。得られた溶液を蒸留
Kよって精製したメタノール中K投入し,沈殿した固形
樹脂を回収した。この固形樹脂を蒸留によって精製した
メタノールで十分に煮沸洗浄した後,80℃で10時間
減圧乾燥して粉末のN−メチルビロリドンとジエチレン
グリコールジメチルエーテルの混合溶媒に可溶で次式の
くり返し単位を有するポリイミド樹脂を得た。
The mixture was allowed to react at room temperature for 10 hours with stirring, then the temperature was raised to 200°C, and the reaction was continued at the same temperature for 8 hours. During the reaction, water distilled out was immediately removed from the reaction system. The obtained solution was poured into methanol purified by distillation, and the precipitated solid resin was recovered. This solid resin was sufficiently boiled and washed with methanol purified by distillation, and then dried under reduced pressure at 80°C for 10 hours to produce a polyimide resin that is soluble in a mixed solvent of powdered N-methylpyrrolidone and diethylene glycol dimethyl ether and has a repeating unit of the following formula. I got it.

(2)耐熱樹脂微粒子(C)の調裂 温度計,かきまぜ機,窒素導入管,水分定量器をつけた
四つロフラスコに,無水酢酸から再結晶して精製した3
, 3S 4, 4′−ビフエニルテトラカルボン酸二
無水物11.1569(0.0379モル),トルエン
とジエチルエーテルとの重量比で1=1の混合液を用い
て再結晶した〔1.3−ビス(3.4−ジカルボキシ7
エニル)−1.1.3.3−テトラメチルジシロキサン
〕二無水物0. 8 5 1 s( 0.0020モル
),メタノールと水との重量比で8=2(メタノール:
水)の混合液を用いて再結晶した2.4′一シアミノジ
7エニルエーテル7.993g(0.0399モル)と
減圧蒸留Kよって精製したN−メチルピロリドン809
を窒素ガスを通しながら仕込んだ。かく拌下,室温で1
0時間反応を進め九後.200℃に昇温し,同温度で1
0時間反応を進めた。途中,留出する水を反応系外にす
みやかK除去した。得られた溶液を減圧蒸留によって精
製し7jN−メチルビロリドン644gで希釈して樹脂
分濃度約25重量一の溶液とした。これをアシザワニロ
アトマイザー社製モービルマイナー型スプレードライヤ
ーで噴霧乾燥して微粒子化した後,分級して平均粒子径
4μm,最大粒子径40μm以下のN−メチルビロリド
ンK溶けジエチレングリコールジメチルエーテルκ不溶
の次式のくり返し単位を有するポリイミド樹脂微粒子を
得た。このポリイミド樹脂の還元粘度は0.64ル/g
であった。
(2) Heat-resistant resin fine particles (C) were purified by recrystallization from acetic anhydride in a four-loop flask equipped with a crack thermometer, a stirrer, a nitrogen inlet tube, and a moisture meter.
, 11.1569 (0.0379 mol) of 3S 4,4'-biphenyltetracarboxylic dianhydride was recrystallized using a mixture of toluene and diethyl ether in a weight ratio of 1=1 [1.3 -bis(3,4-dicarboxy7
enyl)-1.1.3.3-tetramethyldisiloxane] dianhydride 0. 8 5 1 s (0.0020 mol), the weight ratio of methanol and water is 8 = 2 (methanol:
7.993 g (0.0399 mol) of 2.4' monocyamino di7enyl ether recrystallized using a mixture of water) and N-methylpyrrolidone 809 purified by vacuum distillation K.
was charged while passing nitrogen gas. 1 at room temperature under stirring.
After 9 hours of reaction. Raise the temperature to 200℃, and at the same temperature
The reaction proceeded for 0 hours. During the process, K was quickly removed from the water distilled out of the reaction system. The resulting solution was purified by vacuum distillation and diluted with 644 g of 7jN-methylpyrrolidone to obtain a solution with a resin concentration of approximately 25% by weight. This was spray-dried using a Mobil Minor type spray dryer manufactured by Ashizawa Waniro Atomizer Co., Ltd. to form fine particles, and then classified, and the average particle size was 4 μm and the maximum particle size was 40 μm or less. Polyimide resin fine particles having units were obtained. The reduced viscosity of this polyimide resin is 0.64 l/g
Met.

(3)耐熱樹脂ペーストの調製 上記(1)の可溶性のポリイミド樹脂iB)6sを減圧
蒸留によって精製したN−メチルピロリドン17g(A
+)と減圧蒸留によって精製したジエチレングリコール
ジメチルエーテル(Ax) 2 5 6 K溶解し九溶
液に上記(2)のポリイミド樹脂微粒子(C) 1 4
 Gを加え,まず,乳鉢で粗混練し,ついで高速の三本
ロールを用いて6回通して混練し,ポリイミド樹脂微粒
子が分散した耐熱樹脂ペーストを得た。このペーストか
ら有機液体(溶剤)を除去し,ウランおよびトリウムの
含量を放射化分析によって調ペたところ.各々検出限界
の0.02ppb以下.及び0.05PPb以下でめっ
た。また,ナトリウム,カリウム.銅,鉄のイオン性不
純物の含量はそれぞれ2 PPm以下であクた。次にこ
のペーストを集積度16KビットのMOS型RAMの表
面K,スクリーン印刷Kよって塗布し,100℃.is
o’C.200℃.250℃及び350℃でそれぞれ0
.5時間熱処理を行ない,約20μmの厚みを有するポ
リイミド保護膜を形成した。ついで得られた半導体素子
を低隙点ガラスを封止接着剤とするセラミックパッケー
ジを用い約450℃で封止した。この半導体装置のソフ
トエラー率は30フィットであった。
(3) Preparation of heat-resistant resin paste 17 g of N-methylpyrrolidone (A
+) and diethylene glycol dimethyl ether (Ax) purified by vacuum distillation 2 5 6 K dissolved in the 9 solution (2) above polyimide resin fine particles (C) 1 4
G was added and first roughly kneaded in a mortar and then kneaded six times using three high-speed rolls to obtain a heat-resistant resin paste in which polyimide resin fine particles were dispersed. The organic liquid (solvent) was removed from this paste, and the uranium and thorium contents were determined by activation analysis. Each is below the detection limit of 0.02ppb. and 0.05PPb or less. Also, sodium and potassium. The ionic impurity contents of copper and iron were each less than 2 PPm. Next, this paste was applied to the surface of a MOS type RAM with a density of 16K bits by screen printing, and heated at 100°C. is
o'C. 200℃. 0 at 250℃ and 350℃ respectively
.. Heat treatment was performed for 5 hours to form a polyimide protective film having a thickness of about 20 μm. The obtained semiconductor element was then sealed at about 450° C. using a ceramic package using low-porosity glass as a sealing adhesive. The soft error rate of this semiconductor device was 30 fit.

比軟例1.2及び実施例1〜6で得たペーストをシリコ
ン単結晶ウエハ上に転写したペーストの膜厚が#1ぼ一
定になるようにスクリーン印刷し.100℃で1時間.
200℃で0.5時間,更に250℃で0.5時間焼付
けて得た皮膜Kついて以下の特性を評価し,#果を表1
に示し次。
The pastes obtained in Ratio Example 1.2 and Examples 1 to 6 were transferred onto a silicon single crystal wafer and screen printed so that the film thickness of the paste was approximately constant #1. 1 hour at 100℃.
The following properties of the film K obtained by baking at 200°C for 0.5 hours and then at 250°C for 0.5 hours were evaluated, and the results were shown in Table 1.
Shown below.

膜の均一性は膜の表面及び断面を拡大撮影(1,000
〜1 0, 0 0 0倍)した走査型電子顕微鏡写真
についてビンホール.空隙の有無を目視観察した。
The uniformity of the film was determined by enlarging the surface and cross section of the film (1,000
Scanning electron micrographs (~10,000x) show bin holes. The presence or absence of voids was visually observed.

耐折曲げ性はウエハからはく離した皮膜Kついて,18
0度折曲げを繰シ返し,皮膜が破断するまでの折シ曲げ
回数で評価した。
The bending resistance is 18 for the film K peeled off from the wafer.
The film was repeatedly bent at 0 degrees and evaluated by the number of times the film was bent until it broke.

膜厚は電磁式膜厚計で測定した。The film thickness was measured using an electromagnetic film thickness meter.

比較例2及び実施例20ペーストから得た皮膜の断面の
走査壓電子顕微鏡写真を第1図.第2図に示した。
Figure 1 shows scanning electron micrographs of cross sections of films obtained from Comparative Example 2 and Example 20 pastes. It is shown in Figure 2.

第1表から,特定の有機液体(As , Ax).可溶
性の耐熱樹脂(Bl及び耐熱樹脂微粒子(Clを組合せ
た実施例1〜4.6の耐熱樹脂ペーストは.皮膜中K配
合したフイラがそのまま残存する比較例1と2のペース
トK比べて膜の均一性.及び可とう性の目安となる耐折
曲げ性に著しく優れることが示される。ま九.可溶性の
耐熱樹脂(B)として低分子量の熱硬化性樹脂を用いた
実施例5は更に厚膜化が達成できることが示される。
From Table 1, specific organic liquids (As, Ax). The heat-resistant resin pastes of Examples 1 to 4.6, in which a soluble heat-resistant resin (Bl) and heat-resistant resin fine particles (Cl) were combined. It is shown that the bending resistance, which is a measure of uniformity and flexibility, is extremely excellent. 9. Example 5 using a low molecular weight thermosetting resin as the soluble heat-resistant resin (B) has an even thicker It is shown that film formation can be achieved.

さらK実施例1〜6の耐熱樹脂ペーストは十分なペース
トのチキソトロピー性を有するものである。
Furthermore, the heat-resistant resin pastes of Examples 1 to 6 have sufficient thixotropic properties.

比較例2で得られた皮膜はその断面の走査型電子顕微鏡
写真(第1図)から,皮膜中に配合した球状の7イラが
そのtま残存し,空隙が多く観察されるのに対して,実
施例2で得られた皮膜は同様の断面写真(第2図)から
,配合したフイラの残存や空隙が観察されず.極めて均
一な皮膜であることが示される。第1図および第2図と
もその上半分は1, 0 0 0倍,その下半分け上半
分の白忰で囲まれ九部分を10,000倍K拡大した走
査型電子顕微鏡写真である。
The scanning electron micrograph of the cross section of the film obtained in Comparative Example 2 (Figure 1) shows that the spherical 7-Illust contained in the film remains for the entirety of the film, and many voids are observed. From the same cross-sectional photograph (Fig. 2) of the film obtained in Example 2, no residual filler or voids were observed. It is shown that the film is extremely uniform. Both Figures 1 and 2 are scanning electron micrographs in which the upper half is magnified by 1,000 times, and the lower half is magnified by 10,000 times, with the nine parts surrounded by a white frame in the upper half.

以゛示黍.自 (発明の効果) 本発明になる耐熱樹脂ペーストはスクリーン印刷による
塗工が可能であク,特Kピンホール,空隙の少ない均一
な皮膜を形成でき,高度な耐熱性.可とう性,耐湿性お
よび耐食性が得られる。また.適度なチキソトロピー性
を付与することが可能であシ,印刷によって優れたパタ
ーン精度が得られる。
Here are the details. (Effects of the Invention) The heat-resistant resin paste of the present invention can be applied by screen printing, can form a uniform film with few pinholes and voids, and has a high degree of heat resistance. Provides flexibility, moisture resistance, and corrosion resistance. Also. It is possible to impart appropriate thixotropy, and excellent pattern accuracy can be obtained by printing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は,比較例2のペーストから得られた皮膜の粒子
構造を示す走査型電子顕微鏡写真.第2図は.実施例2
の耐熱樹脂ペーストから得られた皮膜の粒子構造を示す
走査型電子顕微鏡写真,第3図は,本発明の耐熱樹脂ペ
ーストを用いたモノリシツクICの断面図,第4図は,
本発明の耐熱樹脂ペーストを用いたハイブリッドICの
断面図および第5図は本発明の耐熱樹脂ペーストを用い
たマルチチップ高密度実装基板の断面図である。 符号の説明 1・・・耐熱樹脂皮膜   2・・・LI8チツプ3・
・・ボンデイングワイヤ 4・・・樹脂パッケージ 6・・・支持体 8・・・はんだ 10・・・耐熱樹脂皮膜 12・・・抵抗層 14・・・耐熱樹脂皮膜 16・・・配線層 l8・・・はんだ l9・・・銅/耐熱樹脂多層配線層 20・・・セラミック多層配線板 5・・・リード 7・・・ダイオードチツプ 9・・・第2層配線 11・・・第1層配線 l3・・・アルミナ基板 15・・・配線層 17・・・LSIチップ 第3図 9一第2層配線 第 図 +!−第1層配線 13・−アルミナ基板 l6 第 図
Figure 1 is a scanning electron micrograph showing the particle structure of the film obtained from the paste of Comparative Example 2. Figure 2 is. Example 2
A scanning electron micrograph showing the particle structure of the film obtained from the heat-resistant resin paste of the present invention, FIG. 3 is a cross-sectional view of a monolithic IC using the heat-resistant resin paste of the present invention, and FIG.
A cross-sectional view of a hybrid IC using the heat-resistant resin paste of the present invention and a cross-sectional view of a multi-chip high-density mounting board using the heat-resistant resin paste of the present invention. Explanation of symbols 1...Heat-resistant resin film 2...LI8 chip 3.
...Bonding wire 4...Resin package 6...Support 8...Solder 10...Heat-resistant resin film 12...Resistance layer 14...Heat-resistant resin film 16...Wiring layer l8...・Solder l9...Copper/heat-resistant resin multilayer wiring layer 20...Ceramic multilayer wiring board 5...Lead 7...Diode chip 9...Second layer wiring 11...First layer wiring l3. ...Alumina substrate 15...Wiring layer 17...LSI chip Fig. 3 9-2nd layer wiring diagram +! -First layer wiring 13・-Alumina substrate l6 Fig.

Claims (6)

【特許請求の範囲】[Claims] 1.第一の有機液体(A_1),第二の有機液体(A_
2),(A_1)と(A_2)の混合有機液体に可溶性
の耐熱樹脂(B)及び(A_1)には溶解するが(A_
2)には不溶な耐熱樹脂微粒子(C)を含み,(A_1
),(A_2)及び(B)を含む溶液中に(C)が分散
してなる耐熱樹脂ペースト。
1. First organic liquid (A_1), second organic liquid (A_1)
2) The heat-resistant resin (B) is soluble in the mixed organic liquid of (A_1) and (A_2), and the heat-resistant resin (B) is soluble in (A_1), but (A_
2) contains insoluble heat-resistant resin fine particles (C), and (A_1
), (A_2) and (B) in which (C) is dispersed.
2.第二の有機液体(A_2)は第一の有機液体(A_
1)に比べてペーストから蒸発し易いものである請求項
1記載の耐熱樹脂ペースト。
2. The second organic liquid (A_2) is the first organic liquid (A_
2. The heat-resistant resin paste according to claim 1, which evaporates from the paste more easily than 1).
3.可溶性の耐熱樹脂(B)及び耐熱樹脂微粒子(C)
がポリアミド樹脂,ポリアミドイミド樹脂又はポリイミ
ド樹脂である請求項1又は2記載の耐熱樹脂ペースト。
3. Soluble heat-resistant resin (B) and heat-resistant resin fine particles (C)
The heat-resistant resin paste according to claim 1 or 2, wherein is a polyamide resin, a polyamideimide resin, or a polyimide resin.
4.耐熱樹脂微粒子(C)が非水分散重合法で得られた
平均粒子径が40μm以下であるポリアミド樹脂,ポリ
アミドアミド樹脂又はポリイミド樹脂である請求項1,
2又は3記載の耐熱樹脂ペースト。
4. Claim 1, wherein the heat-resistant resin fine particles (C) are polyamide resin, polyamide amide resin, or polyimide resin obtained by a non-aqueous dispersion polymerization method and having an average particle diameter of 40 μm or less.
Heat-resistant resin paste according to 2 or 3.
5.ペーストのチキソトロピー係数が1.5以上である
請求項1〜4記載の耐熱樹脂ペースト。
5. 5. The heat-resistant resin paste according to claim 1, wherein the paste has a thixotropy coefficient of 1.5 or more.
6.請求項1〜5のいずれかに記載の耐熱樹脂ペースト
より得られる層間絶縁膜及び/又は表面保護膜を有する
IC。
6. An IC having an interlayer insulating film and/or a surface protection film obtained from the heat-resistant resin paste according to any one of claims 1 to 5.
JP1339286A 1988-12-29 1989-12-26 Heat resistant resin paste and IC using the same Expired - Lifetime JP2697215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1339286A JP2697215B2 (en) 1988-12-29 1989-12-26 Heat resistant resin paste and IC using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-333976 1988-12-29
JP33397688 1988-12-29
JP1339286A JP2697215B2 (en) 1988-12-29 1989-12-26 Heat resistant resin paste and IC using the same

Publications (2)

Publication Number Publication Date
JPH02289646A true JPH02289646A (en) 1990-11-29
JP2697215B2 JP2697215B2 (en) 1998-01-14

Family

ID=26574687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1339286A Expired - Lifetime JP2697215B2 (en) 1988-12-29 1989-12-26 Heat resistant resin paste and IC using the same

Country Status (1)

Country Link
JP (1) JP2697215B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177469A (en) * 1989-12-05 1991-08-01 Mitsubishi Cable Ind Ltd Varnish
JP2005270846A (en) * 2004-03-25 2005-10-06 Osaka Prefecture Process for producing porous polyimide film
JP2006219621A (en) * 2005-02-14 2006-08-24 Hitachi Chem Co Ltd Resin composition and semiconductor device produced by using the same
JP2007246897A (en) * 2006-02-15 2007-09-27 Hitachi Chem Co Ltd Heat-resistant resin paste, method for producing heat-resistant resin paste and semiconductor device having insulation film or protection film derived from heat-resistant resin paste
WO2008015839A1 (en) * 2006-07-31 2008-02-07 Hitachi Chemical Co., Ltd. Heat-resistant resin paste
JP2008280509A (en) * 2007-04-13 2008-11-20 Hitachi Chem Co Ltd Heat resistant resin paste
DE102011012242A1 (en) 2010-02-26 2011-09-01 Mitsubishi Electric Corporation Polyimide resin composition for semiconductor devices, method of forming film in semiconductor devices using the same and semiconductor devices
WO2012039384A1 (en) 2010-09-21 2012-03-29 株式会社ピーアイ技術研究所 Polyimide resin composition for use in forming insulation film in photovoltaic cell and method of forming insulation film in photovoltaic cell used therewith
JP2013166925A (en) * 2012-01-17 2013-08-29 Hitachi Chemical Co Ltd Resin paste and method of producing solar cell
JP2015049508A (en) * 2014-02-24 2015-03-16 住友ベークライト株式会社 Photosensitive resin material and resin film
WO2019031513A1 (en) * 2017-08-10 2019-02-14 日立化成株式会社 Semiconductor device and method for producing same
JP2020113597A (en) * 2019-01-09 2020-07-27 日立化成株式会社 Circuit board, manufacturing method thereof, and semiconductor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4710831B2 (en) * 2004-09-28 2011-06-29 日立化成工業株式会社 Heat resistant resin paste and manufacturing method thereof
KR100936857B1 (en) * 2006-06-26 2010-01-14 히다치 가세고교 가부시끼가이샤 Heat-resistant resin paste and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182849A (en) * 1983-04-02 1984-10-17 Nitto Electric Ind Co Ltd Paste composition
JPS59182848A (en) * 1983-04-02 1984-10-17 Nitto Electric Ind Co Ltd Paste composition
JPS59184258A (en) * 1983-04-02 1984-10-19 Nitto Electric Ind Co Ltd Paste composition
JPS6040115A (en) * 1983-08-12 1985-03-02 Hitachi Chem Co Ltd Preparation of alcohol modified polyamide-imide resin powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182849A (en) * 1983-04-02 1984-10-17 Nitto Electric Ind Co Ltd Paste composition
JPS59182848A (en) * 1983-04-02 1984-10-17 Nitto Electric Ind Co Ltd Paste composition
JPS59184258A (en) * 1983-04-02 1984-10-19 Nitto Electric Ind Co Ltd Paste composition
JPS6040115A (en) * 1983-08-12 1985-03-02 Hitachi Chem Co Ltd Preparation of alcohol modified polyamide-imide resin powder

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177469A (en) * 1989-12-05 1991-08-01 Mitsubishi Cable Ind Ltd Varnish
JP2005270846A (en) * 2004-03-25 2005-10-06 Osaka Prefecture Process for producing porous polyimide film
JP2006219621A (en) * 2005-02-14 2006-08-24 Hitachi Chem Co Ltd Resin composition and semiconductor device produced by using the same
JP2007246897A (en) * 2006-02-15 2007-09-27 Hitachi Chem Co Ltd Heat-resistant resin paste, method for producing heat-resistant resin paste and semiconductor device having insulation film or protection film derived from heat-resistant resin paste
US8759440B2 (en) 2006-07-31 2014-06-24 Hitachi Chemical Company, Ltd. Heat-resistant resin paste
WO2008015839A1 (en) * 2006-07-31 2008-02-07 Hitachi Chemical Co., Ltd. Heat-resistant resin paste
JP2008280509A (en) * 2007-04-13 2008-11-20 Hitachi Chem Co Ltd Heat resistant resin paste
DE102011012242A1 (en) 2010-02-26 2011-09-01 Mitsubishi Electric Corporation Polyimide resin composition for semiconductor devices, method of forming film in semiconductor devices using the same and semiconductor devices
JP2011178855A (en) * 2010-02-26 2011-09-15 Pi R & D Co Ltd Polyimide resin composition for semiconductor apparatus, method for forming film in semiconductor apparatus and semiconductor apparatus
US8987376B2 (en) 2010-02-26 2015-03-24 Pi R&D Co., Ltd. Polyimide resin composition for semiconductor devices, method of forming film in semiconductor devices using the same and semiconductor devices
WO2012039384A1 (en) 2010-09-21 2012-03-29 株式会社ピーアイ技術研究所 Polyimide resin composition for use in forming insulation film in photovoltaic cell and method of forming insulation film in photovoltaic cell used therewith
JP2012069594A (en) * 2010-09-21 2012-04-05 Pi R & D Co Ltd Polyimide resin composition for forming insulating film in solar cell and method of forming insulating film in solar cell by using the same
JP2013166925A (en) * 2012-01-17 2013-08-29 Hitachi Chemical Co Ltd Resin paste and method of producing solar cell
JP2015049508A (en) * 2014-02-24 2015-03-16 住友ベークライト株式会社 Photosensitive resin material and resin film
WO2019031513A1 (en) * 2017-08-10 2019-02-14 日立化成株式会社 Semiconductor device and method for producing same
JPWO2019031513A1 (en) * 2017-08-10 2020-10-01 日立化成株式会社 Semiconductor devices and their manufacturing methods
JP2020113597A (en) * 2019-01-09 2020-07-27 日立化成株式会社 Circuit board, manufacturing method thereof, and semiconductor device

Also Published As

Publication number Publication date
JP2697215B2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
US7745516B2 (en) Composition of polyimide and sterically-hindered hydrophobic epoxy
EP1553134B1 (en) Polyimide compositions having resistance to water sorption, and methods relating thereto
JPH02289646A (en) Heat-resistant resin paste and ic using same paste
KR930002237B1 (en) Heat-resistant resin paste and ic using same paste
JP2001114893A (en) Polybenzoxazole resin and its precursor
JP2007246897A (en) Heat-resistant resin paste, method for producing heat-resistant resin paste and semiconductor device having insulation film or protection film derived from heat-resistant resin paste
US5164816A (en) Integrated circuit device produced with a resin layer produced from a heat-resistant resin paste
JP2987950B2 (en) Polyimide resin paste and IC using the same
JP2001189109A (en) Resin composition for insulator, and insulator using the same
JP3087290B2 (en) Heat resistant resin paste and IC using the same
JP2007099849A (en) Resin composition, method for producing heat-resistant resin, and electronic component using the same
JPH02252786A (en) Heat-resistant adhesive
JPH04222889A (en) Electrically conductive resin paste
JPH04285662A (en) Heat-resistant resin paste and ic using the same paste
JPH05331445A (en) Production of film adhesive
JPH04285660A (en) Heat-resistant resin paste and ic using the same
US8765867B2 (en) Heat-resistant resin paste and method for producing same
JP4731648B2 (en) Insulating paint and manufacturing method thereof
JPH06172736A (en) Film adhesive and its production
JPH04345682A (en) Adhesive for hermetic sealing
JP3439262B2 (en) Film adhesive having improved properties at high temperature and method for producing the same
JPH06172737A (en) Film adhesive and its production
JPH09272852A (en) Film-type adhesive agent improved in heat resistance, and its production
JPS61241360A (en) Polyimide precursor solution
JPH02222473A (en) Coating composition and resin-sealed semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 13