JPH02288278A - Magnetostrictive type actuator - Google Patents

Magnetostrictive type actuator

Info

Publication number
JPH02288278A
JPH02288278A JP1107451A JP10745189A JPH02288278A JP H02288278 A JPH02288278 A JP H02288278A JP 1107451 A JP1107451 A JP 1107451A JP 10745189 A JP10745189 A JP 10745189A JP H02288278 A JPH02288278 A JP H02288278A
Authority
JP
Japan
Prior art keywords
rod
magnetic
generating means
magnetostrictive
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1107451A
Other languages
Japanese (ja)
Other versions
JP2974148B2 (en
Inventor
Tadahiko Kobayashi
忠彦 小林
Masashi Sahashi
政司 佐橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1107451A priority Critical patent/JP2974148B2/en
Publication of JPH02288278A publication Critical patent/JPH02288278A/en
Application granted granted Critical
Publication of JP2974148B2 publication Critical patent/JP2974148B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To obtain a magnetostrictive actuator in which a micro displacement can be stably and desirably driven by providing driving force generating means made of a magnetic unit having magnetostriction, magnetic field generating means disposed around the unit, and means for shielding thermal conduction from an exterior to the unit. CONSTITUTION:An actuator has an air core coil 1, a magnetostrictive rod 3, and a thermally insulating layer 2 disposed around the rod 3 for shielding thermal conduction from the exterior of the rod to the rod. The coil 1 and permanent magnets 4a, 4b disposed oppositely to the longitudinal direction of the rod 3 form a magnetic circuit. A DC magnetic bias is applied in advance to the rod 3 at the magnets 4a, 4b to improve linearity between a control current and the displacement of the rod 3. The layer 2 is composed by spirally winding a water-cooled pipe 2a inside the coil 2, and cooling water managed to a predetermined temperature by a water temperature managing unit is supplied to the pipe 2a. Accordingly, a micro displacement can be stably and desirably driven irrespective of thermal disturbance.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、外部磁場の印加により磁化されると歪むすな
わち磁歪を有する磁性体を具備し、前記外部磁界の印加
により変位量を制御することができる磁歪式アクチュエ
ータに関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention comprises a magnetic material that is distorted when magnetized by the application of an external magnetic field, that is, has magnetostriction, and that is displaced by the application of the external magnetic field. The present invention relates to a magnetostrictive actuator that can control the amount.

(従来の技術) 近年の計測工学の進歩および精密機械分野の発展にとも
ない、ミクロンオーダーの微小変位を発生する変位駆動
器(アクチュエータ)の開発が望まれている。
(Prior Art) With recent advances in measurement engineering and development in the field of precision machinery, there is a desire for the development of displacement drivers (actuators) that generate minute displacements on the micron order.

この種のアクチュエータとして、PZTなどの圧電材料
を変位発生素子とし、この変位発生素子に制御電圧を印
加するものが知られている。この種の変位発生素子に対
しては、絶対駆動変位量。
As this type of actuator, one is known in which a piezoelectric material such as PZT is used as a displacement generating element and a control voltage is applied to the displacement generating element. For this type of displacement generating element, the absolute drive displacement amount.

精密制御性、靭性等が良好であることが必要とされる。Good precision controllability, toughness, etc. are required.

ところで、上述のような要求を満たす前記変位発生素子
として、圧電材料より剛性が大きいことから、磁歪を有
する磁性体(磁歪材料)を用いることが検討されている
。この種の磁性体を用いる場合、アクチュエータとして
、磁性体に制御磁界を印加する手段が具備されるが、こ
の磁界を印加する手段としては、電磁石等の磁気回路が
、制御電流の供給で容易に磁界を制御できるため用いら
れることになる。
By the way, the use of a magnetic material having magnetostriction (magnetostrictive material) is being considered as the displacement generating element that satisfies the above-mentioned requirements because it has greater rigidity than piezoelectric material. When using this type of magnetic material, a means for applying a control magnetic field to the magnetic material is provided as an actuator, but as a means for applying this magnetic field, a magnetic circuit such as an electromagnet is easily supplied with a control current. It is used because the magnetic field can be controlled.

(発明が解決しようとする課題) しかしながら、このような磁気回路を具備するアクチュ
エータにおいて、必要な変位範囲を確保することを図っ
て、前記磁気回路に制御電流を供給すると、この電流の
影響で磁気回路が発熱し、この熱の影響で磁性体が熱膨
張し、ミクロンオーダーの微小変位駆動においては、安
定性および制御性を低下させる大きな要因になってしま
う。
(Problem to be Solved by the Invention) However, in an actuator equipped with such a magnetic circuit, when a control current is supplied to the magnetic circuit with the aim of securing the necessary displacement range, the magnetic circuit is affected by the influence of this current. The circuit generates heat, and the magnetic material thermally expands due to the influence of this heat, which becomes a major factor in reducing stability and controllability in minute displacement drive on the micron order.

本発明の目的は従来のかかる問題点を解決することであ
り、熱的外乱に左右されることなく、微小変位を安定性
および制御性良好に駆動できる磁歪式アクチュエータを
提供することにある。
An object of the present invention is to solve these conventional problems, and to provide a magnetostrictive actuator that can drive minute displacements with good stability and controllability without being affected by thermal disturbances.

[発明の構成] (課題を解決するための手段) 上記目的を達成するために本発明にがかる磁歪式アクチ
ュエータは、磁歪を有する磁性体からなる駆動力発生手
段と、この磁性体の周囲に配設されこの磁性体に磁界を
印加する磁界発生手段と、前記磁性体の周囲に配設され
、この磁性体外部からこの磁性体への熱伝導を遮蔽する
手段と、を具備することを要旨としている。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, a magnetostrictive actuator according to the present invention includes a driving force generating means made of a magnetic material having magnetostriction, and a driving force generating means disposed around the magnetic material. The gist of the present invention is to include a magnetic field generating means for applying a magnetic field to the magnetic body, and a means for shielding heat conduction from the outside of the magnetic body to the magnetic body, and a means for shielding heat conduction from the outside of the magnetic body to the magnetic body. There is.

また、別の本発明にかかる磁歪式アクチュエータは、磁
歪を有する磁性体からなる駆動力発生手段と、この磁性
体の周囲に配設されこの磁性体に磁界を印加する磁界発
生手段と、前記磁性体を一定温度に保つ温度調節手段と
、を具備することを要旨としている。
A magnetostrictive actuator according to another aspect of the present invention includes a driving force generating means made of a magnetic material having magnetostriction, a magnetic field generating means disposed around the magnetic material and applying a magnetic field to the magnetic material, and a driving force generating means made of a magnetic material having magnetostriction; The gist is that the device is equipped with a temperature control means for keeping the body at a constant temperature.

(作用) 上記構成を有する磁歪式アクチュエータによれば、磁界
発生手段に電磁石が用いられ、この電磁石に供給される
電流により電磁石が発熱するなど、磁性体外部で温度上
昇が生じても、磁性体の周囲に配設された熱伝導を遮蔽
する手段が、この磁性体外部からこの磁性体への熱伝導
を遮蔽するため、熱的外乱に左右されることなく、微小
変位を安定性および制御性良好に駆動できる。
(Function) According to the magnetostrictive actuator having the above configuration, an electromagnet is used as the magnetic field generating means, and even if a temperature rise occurs outside the magnetic material, such as when the electromagnet generates heat due to the current supplied to the electromagnet, the magnetic material The means for shielding heat conduction placed around the magnetic body shields heat conduction from the outside of the magnetic body to the magnetic body, making it possible to control small displacements with stability and controllability without being affected by thermal disturbances. Can be driven well.

また、磁性体内部に冷却水を流す、磁性体を強制空冷す
るなどの機構からなる温度調節手段を用いても同様であ
る (実施例) 以下、本発明にかかる磁歪式アクチュエータについて、
第1図および第2図を参照にしながら説明する。
Further, the same effect can be obtained by using a temperature control means consisting of a mechanism such as flowing cooling water inside the magnetic body or forcing the magnetic body to cool with air (Example).Hereinafter, regarding the magnetostrictive actuator according to the present invention,
This will be explained with reference to FIGS. 1 and 2.

本発明にかかる磁歪式アクチュエータの一実施例を示す
第1図において、この磁歪式アクチュエータは、磁界発
生手段の一部としての空心コイル1と、磁歪を有する磁
性体としての磁歪棒3(径10■、長さ50■)と、前
記磁歪棒3の周囲に配設されてこの磁歪棒3外部からこ
の磁歪棒3への熱伝導を遮蔽する手段としての熱絶縁層
2と、を具備している。
In FIG. 1 showing an embodiment of the magnetostrictive actuator according to the present invention, the magnetostrictive actuator includes an air-core coil 1 as a part of the magnetic field generating means, and a magnetostrictive rod 3 (diameter 10 (1), length 50■), and a thermal insulating layer 2 disposed around the magnetostrictive rod 3 as a means for shielding heat conduction from the outside of the magnetostrictive rod 3 to the magnetostrictive rod 3. There is.

前記磁歪棒3としては、希土類・鉄系ラーベス型金属間
化合物であるT b O,3D Y O,7F e 1
.9組成の磁性体等が用いられる。この磁歪棒3片端部
にはステー6が取り付けられており、磁歪棒3の変形量
をXYステージ等の被駆動機器と接続する際、ジヨイン
ト部となる。
The magnetostrictive rod 3 is made of rare earth/iron-based Laves type intermetallic compound T b O, 3D Y O, 7F e 1
.. 9 compositions of magnetic materials are used. A stay 6 is attached to one end of the magnetostrictive rod 3, and serves as a joint when connecting the deformation amount of the magnetostrictive rod 3 to a driven device such as an XY stage.

また、前記空心コイル1には、この空心コイル1へ制御
電流を供給するための図示しない電源等が接続されてい
る。この空心コイル1と、磁歪棒3の長手方向に対峙し
て配設される永久磁石4a。
Further, the air-core coil 1 is connected to a power source (not shown) for supplying a control current to the air-core coil 1. A permanent magnet 4a is arranged to face the air-core coil 1 and the magnetostrictive rod 3 in the longitudinal direction.

4bとは磁気回路を構成している。この永久磁石4a、
4bは、磁歪棒3に予め直流磁気バイアスを加えており
、前記制御電流と磁歪棒3の変位量との関係の直線性良
好化を図るとともに、前記変位を矢印7方向で適宜設定
される基準値に対して±で行うことを図っている。
4b constitutes a magnetic circuit. This permanent magnet 4a,
4b, a direct current magnetic bias is applied to the magnetostrictive rod 3 in advance to improve the linearity of the relationship between the control current and the amount of displacement of the magnetostrictive rod 3, and to adjust the displacement to a standard appropriately set in the direction of the arrow 7. It is intended to be done within ± of the value.

また、前記熱絶縁層2は、前記空心コイル1の内側に水
冷バイブ2aをスパイラル状に巻回した構成をとってお
り、この水冷バイブ2aには図示しない恒温槽等の水温
管理装置から一定温度に温度管理された冷却水が供給さ
れる。
The thermal insulation layer 2 has a structure in which a water-cooled vibrator 2a is spirally wound inside the air-core coil 1, and the water-cooled vibrator 2a is heated to a constant temperature by a water temperature control device such as a constant temperature bath (not shown). Temperature-controlled cooling water is supplied to the

したがって本実施例においては、水冷バイブ2a内に、
温度管理された冷却水を供給することにより、空心コイ
ル1に供給された制御電流により空心コイル1に発生す
る熱の磁歪棒3への伝導が遮断されるとともに、磁歪棒
3の温度管理もなされるため、熱的外乱に左右されるこ
となく、微小変位を安定性および制御性良好に駆動でき
ることになる。
Therefore, in this embodiment, in the water-cooled vibrator 2a,
By supplying temperature-controlled cooling water, conduction of heat generated in the air-core coil 1 to the magnetostrictive rod 3 by the control current supplied to the air-core coil 1 is interrupted, and the temperature of the magnetostrictive rod 3 is also controlled. Therefore, minute displacements can be driven with good stability and controllability without being affected by thermal disturbances.

このため、冷却水を例えば±1℃以下に温度管理しなが
ら、ステップ制御を行ったところ、第2図に示すような
安定した良好な微少変位制御を行うことができ、ミクロ
ンオーダーからサブミクロンオーダーの位置決め等の微
小変位制御に適用できることが明らかとなった。
Therefore, by performing step control while controlling the temperature of the cooling water to, for example, ±1°C or less, it is possible to perform stable and good minute displacement control as shown in Figure 2, and it is possible to perform fine displacement control from micron order to submicron order. It has become clear that this method can be applied to minute displacement control such as positioning.

なお、上記実施例においては、磁歪棒3の周囲に水冷パ
イプ2aを配設し、磁歪棒3外部からの熱伝導を遮蔽し
ているが、水冷パイプ2a内の冷却水の代わりに、空気
、窒素、酸素、アルゴン等の気体を用いたり、あるいは
これらの気体をパイプ内に挿入せずに雰囲気として用い
たりしてもよい。また、一般に知られている断熱材層を
形成しても良いことはいうまでもない [発明の効果] 以上、説明したように、本発明にかかる磁歪式アクチュ
エータにおいては、磁界発生手段に電磁石が用いられ、
この電磁石に供給される電流により電磁石が発熱するな
ど、磁性体外部で温度上昇が生じることがあっても、磁
性体の周囲に配設された熱伝導を遮蔽する手段が、この
磁性体外部からこの磁性体への熱伝導を遮蔽するため、
また温度調節手段により一定温度に保たれるため、熱的
外乱に左右されることなく、微小変位を安定性良好に駆
動できる。
In the above embodiment, the water cooling pipe 2a is arranged around the magnetostrictive rod 3 to shield heat conduction from the outside of the magnetostrictive rod 3, but instead of the cooling water in the water cooling pipe 2a, air, Gases such as nitrogen, oxygen, argon, etc. may be used, or these gases may be used as an atmosphere without being inserted into the pipe. It goes without saying that a generally known heat insulating layer may be formed. [Effects of the Invention] As explained above, in the magnetostrictive actuator according to the present invention, the electromagnet is used as the magnetic field generating means. used,
Even if a temperature rise occurs outside the magnetic material, such as when the electromagnet generates heat due to the current supplied to the electromagnet, there is a means to shield heat conduction placed around the magnetic material. In order to shield this heat conduction to the magnetic material,
Furthermore, since the temperature is maintained at a constant temperature by the temperature control means, minute displacements can be driven with good stability without being affected by thermal disturbances.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にがかる磁歪式アクチュエータの一実施
例を示す要部断面図、第2図は微少変位制御を駆動して
得られた本発明にかかるアクチュエータの特性図である
。 1・・・空心コイル   2・・・熱絶縁層3・・・磁
歪棒
FIG. 1 is a sectional view of a main part showing an embodiment of a magnetostrictive actuator according to the present invention, and FIG. 2 is a characteristic diagram of the actuator according to the present invention obtained by driving minute displacement control. 1... Air core coil 2... Thermal insulation layer 3... Magnetostrictive rod

Claims (2)

【特許請求の範囲】[Claims] (1)磁歪を有する磁性体からなる駆動力発生手段と、
この磁性体の周囲に配設されこの磁性体に磁界を印加す
る磁界発生手段と、前記磁性体の周囲に配設され、この
磁性体外部からこの磁性体への熱伝導を遮蔽する手段と
、を具備することを特徴とする磁歪式アクチュエータ。
(1) A driving force generating means made of a magnetic material having magnetostriction;
a magnetic field generating means disposed around the magnetic body to apply a magnetic field to the magnetic body; a means disposed around the magnetic body for shielding heat conduction from the outside of the magnetic body to the magnetic body; A magnetostrictive actuator comprising:
(2)磁歪を有する磁性体からなる駆動力発生手段と、
この磁性体の周囲に配設されこの磁性体に磁界を印加す
る磁界発生手段と、前記磁性体を一定温度に保つ温度調
節手段と、を具備することを特徴とする磁歪式アクチュ
エータ。
(2) a driving force generating means made of a magnetic material having magnetostriction;
A magnetostrictive actuator comprising: magnetic field generating means disposed around the magnetic body and applying a magnetic field to the magnetic body; and temperature adjusting means keeping the magnetic body at a constant temperature.
JP1107451A 1989-04-28 1989-04-28 Magnetostrictive actuator Expired - Lifetime JP2974148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1107451A JP2974148B2 (en) 1989-04-28 1989-04-28 Magnetostrictive actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1107451A JP2974148B2 (en) 1989-04-28 1989-04-28 Magnetostrictive actuator

Publications (2)

Publication Number Publication Date
JPH02288278A true JPH02288278A (en) 1990-11-28
JP2974148B2 JP2974148B2 (en) 1999-11-08

Family

ID=14459495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1107451A Expired - Lifetime JP2974148B2 (en) 1989-04-28 1989-04-28 Magnetostrictive actuator

Country Status (1)

Country Link
JP (1) JP2974148B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05243634A (en) * 1992-02-29 1993-09-21 Ibaraki Pref Gov Method and apparatus for compensating temperature effect of magnetostrictive actuator
US5982054A (en) * 1995-09-26 1999-11-09 Tdk Corporation Magnetostrictive device
US7339291B2 (en) * 2003-03-31 2008-03-04 Tdk Corporation Ultrasonic transducer and ultrasonic vibration device using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103192287B (en) * 2013-03-18 2015-05-20 浙江大学 Spiral water cooling excitation mechanism of intelligent boring bar driven by embedded giant magnetostrictive material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59158574A (en) * 1983-03-01 1984-09-08 Toshiba Corp Control element for minute displacement

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59158574A (en) * 1983-03-01 1984-09-08 Toshiba Corp Control element for minute displacement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05243634A (en) * 1992-02-29 1993-09-21 Ibaraki Pref Gov Method and apparatus for compensating temperature effect of magnetostrictive actuator
US5982054A (en) * 1995-09-26 1999-11-09 Tdk Corporation Magnetostrictive device
US7339291B2 (en) * 2003-03-31 2008-03-04 Tdk Corporation Ultrasonic transducer and ultrasonic vibration device using the same

Also Published As

Publication number Publication date
JP2974148B2 (en) 1999-11-08

Similar Documents

Publication Publication Date Title
EP0976957A3 (en) Servo pressure controller with stepped magnet armature
US6246132B1 (en) Magnetostrictive actuator
WO2001071823A3 (en) Method of control for a self-sensing magnetostrictive actuator
Xue et al. Design and experimental study of a novel giant magnetostrictive actuator
JP5127309B2 (en) Temperature control method for magnetic resonance apparatus
JPH02288278A (en) Magnetostrictive type actuator
US5270595A (en) Dynamic thermal compensation for a magnetostrictive actuator
US4959567A (en) Magnetodistortive actuator with adjustable magnetic bias
JP4739635B2 (en) Linear voice coil actuator with compensation coil
JPH0236504A (en) Superconducting magnet device
Yu et al. Design of Coaxial Integrated Macro–Micro Composite Actuator With Long-Stroke and High-Precision
WO2022179201A1 (en) Voice coil electric motor, and control method and control apparatus therefor
JP3057107B2 (en) Magnetostrictive actuator
Tan et al. Large stroke and high precision positioning using iron–gallium alloy (Galfenol) based multi-DOF impact drive mechanism
JPH0236043B2 (en)
JPH03245779A (en) Magnetostrictive actuator
Joyce et al. Micro-step motor
JP3504637B2 (en) Linear drive
JP4219761B2 (en) Magnetic field generator and driving method thereof
JPH05283762A (en) Magnetostrictive actuator
JPH08228032A (en) Magnetostriction type actuator
JP2003143879A (en) Actuator
JP3267662B2 (en) Direct drive servo valve
JPS6170205A (en) Servo valve
JPH08138565A (en) Electron tube

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 10