JPS6170205A - Servo valve - Google Patents
Servo valveInfo
- Publication number
- JPS6170205A JPS6170205A JP19372385A JP19372385A JPS6170205A JP S6170205 A JPS6170205 A JP S6170205A JP 19372385 A JP19372385 A JP 19372385A JP 19372385 A JP19372385 A JP 19372385A JP S6170205 A JPS6170205 A JP S6170205A
- Authority
- JP
- Japan
- Prior art keywords
- servo valve
- coil
- magnetic fluid
- magnet
- coil bobbin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B13/00—Details of servomotor systems ; Valves for servomotor systems
- F15B13/02—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
- F15B13/04—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
- F15B13/0401—Valve members; Fluid interconnections therefor
- F15B13/0402—Valve members; Fluid interconnections therefor for linearly sliding valves, e.g. spool valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B13/00—Details of servomotor systems ; Valves for servomotor systems
- F15B13/02—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
- F15B13/04—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
- F15B13/044—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by electrically-controlled means, e.g. solenoids, torque-motors
- F15B13/0446—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by electrically-controlled means, e.g. solenoids, torque-motors with moving coil, e.g. voice coil
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Servomotors (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は冷却構造を備えたサーボ弁に関するものである
。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a servo valve equipped with a cooling structure.
従来、フォースモータ型のサーボ弁は1例えば特開昭5
5−10191S号公報に示すように高応答を特長とし
て、いろいろな分野で使用されているが、フォースモー
タ部のボビンに大電流を流すことが出力向上のために必
要である。しかし、ボビンに大電流を流すために、この
部分の冷却が最も問題であった。Conventionally, force motor type servo valves have been developed as follows:
As shown in Publication No. 5-10191S, it is characterized by high response and is used in various fields, but it is necessary to flow a large current through the bobbin of the force motor section in order to improve the output. However, cooling this part was the most problematic because a large current was passed through the bobbin.
このため、マグネットのエアギャップ中にあるコイルボ
ビン部を空冷するとか、コイルボビン部を油浸するとか
の方法が採用されていた。しかし。For this reason, methods have been adopted in which the coil bobbin portion located in the air gap of the magnet is air-cooled or the coil bobbin portion is immersed in oil. but.
前者は空冷のための空気中に鉄粉等が入っていると、エ
アギャップを閉塞させ、コイルを断線せしめる欠点があ
る。また後者は浦自体が清浄なることを要求することは
当然としてコイルボビンが油中を動くため、それが抵抗
となり、フォースモータの応答性が低下するという欠点
が生じる。The former has the disadvantage that if iron powder or the like is present in the air used for air cooling, the air gap may be blocked and the coil may be disconnected. In addition, the latter naturally requires that the pool itself be clean, and since the coil bobbin moves in oil, this creates resistance and has the disadvantage of reducing the responsiveness of the force motor.
本発明は上述の事柄にもとづいてなされたもので、サー
ボ弁の応答をなんら阻害することなく、きわめて効率良
くフォースモータを冷却し得るサーボ弁に関するもので
ある。The present invention has been made based on the above-mentioned matters, and relates to a servo valve that can extremely efficiently cool a force motor without interfering with the response of the servo valve.
本発明は上記の目的を達成するために発熱体であるコイ
ルボビンの入るマグネットのエアギャップ中に磁性流体
を吸着させ、この流体の熱伝達率により、ボビンの発生
熱を&を極的にマグネットのヨーク部に伝えて、ボビン
の焼損事故を完全に回避するようにしたものである。In order to achieve the above object, the present invention adsorbs a magnetic fluid in the air gap of a magnet in which a coil bobbin, which is a heating element, is inserted, and uses the heat transfer coefficient of this fluid to polarize the heat generated by the bobbin and the magnet. This information is transmitted to the yoke to completely avoid bobbin burnout accidents.
以下本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.
第1図は本発明のサーボ弁の一実施例を示すもので、図
において、サーボ弁はマグネット本体1、ヨーク2.コ
イルボビン5、コイル6からなるフォースモータ部と、
スプール12.スリーブ13゜ボディ15から弁部とを
主要構成としている。FIG. 1 shows an embodiment of the servo valve of the present invention. In the figure, the servo valve includes a magnet main body 1, a yoke 2. A force motor section consisting of a coil bobbin 5 and a coil 6;
Spool 12. The main components are a sleeve 13°, a body 15, and a valve portion.
2′は、コイルボビン5のコイル6が摺動自在に挿入さ
れるエアギャップで、このエアギャップ2′には封入口
4および磁性流体封入部7を介して磁性流体が供給され
、コイル6からの磁気フラックス作用により図示の如く
エアギャップ6に吸着させられる。前記スプール12は
、ばね9゜10により支持されていると共にコイルボビ
ン5と結合されている。Reference numeral 2' denotes an air gap into which the coil 6 of the coil bobbin 5 is slidably inserted. Magnetic fluid is supplied to this air gap 2' through the filling port 4 and the magnetic fluid filling part 7, and the magnetic fluid is supplied from the coil 6. Due to the action of magnetic flux, it is attracted to the air gap 6 as shown in the figure. The spool 12 is supported by springs 9 and 10 and is connected to the coil bobbin 5.
また、スプール12は、給電線16によりコイル6部分
に電流が供給されファラデイ左手の法則により左右動し
、スリーブ13中を摺動する。さらに、スプール12は
スリーブ13との相対運動により油路14を切り換えて
アクチュータ(図示せず)に圧力流体を供給する。8は
フォースモータ部に供給される磁性流体と弁部に供給さ
れる作動流体との接触を防止するために設けたベローズ
などの可とう膜を示す、また、前記封入口4は磁性流体
を封入すると共に内部の状態を監視することも可能であ
る。Further, the spool 12 is moved left and right according to Faraday's left-hand rule when a current is supplied to the coil 6 portion by the power supply line 16, and slides in the sleeve 13. Further, the spool 12 switches the oil passage 14 by moving relative to the sleeve 13 to supply pressure fluid to an actuator (not shown). Reference numeral 8 indicates a flexible film such as a bellows provided to prevent the magnetic fluid supplied to the force motor section from coming into contact with the working fluid supplied to the valve section, and the sealing port 4 seals the magnetic fluid. At the same time, it is also possible to monitor the internal state.
かかる構造によれば、ボビン巻線部6に生じたジュール
熱は熱伝達率の良い磁性流体を通りマグネットのヨーク
2に効率良く伝達される。マグネット本体1はコイルボ
ビン5よりはるかに熱6(itが大きいので、結果とし
て温度上昇速度が著しく小さくなるとともに、マグネッ
ト外側の表面積が大きいことにより熱交換が大きいので
、温度上昇値自体も低く抑えられる。According to this structure, the Joule heat generated in the bobbin winding portion 6 is efficiently transferred to the yoke 2 of the magnet through the magnetic fluid having a high heat transfer coefficient. Since the magnet body 1 has a much larger heat 6 (it) than the coil bobbin 5, as a result, the temperature rise rate is significantly smaller, and the large surface area on the outside of the magnet allows for large heat exchange, so the temperature rise value itself can be kept low. .
したがって短時間の大電流によってコイルボビンが急に
発熱することはなくなり、焼損事故を回避することがで
きる。しかし、長時間フォースモータに大出力を流す場
合には、マグネットのヨーク及びボディ15にフィン3
をつけて空気との接触面績を大きくすることが好ましい
。Therefore, the coil bobbin will not suddenly generate heat due to a short period of large current, and a burnout accident can be avoided. However, when a large output is applied to the force motor for a long period of time, fins 3 are attached to the magnet yoke and body 15.
It is preferable to increase the contact area with air by attaching a .
この場合、フィン3部を積極的に空冷すれば、更にコイ
ルボビン5の温度上昇は小さくなり、フォースモータの
大出力化が容易となる。又同様にフィン3の代りにマグ
ネットのヨーク2及びボディ15に流体導管を巻きつけ
、ここに流体を流して熱交換させてコイルボビン5の温
度上昇を低下せしめることも可能である。In this case, if the fins 3 are actively air-cooled, the temperature rise in the coil bobbin 5 will be further reduced, making it easier to increase the output of the force motor. Similarly, instead of the fins 3, a fluid conduit may be wound around the yoke 2 and body 15 of the magnet, and fluid may be caused to flow therein for heat exchange, thereby reducing the temperature rise of the coil bobbin 5.
第2図は本発明の他の実施例を示すもので、この図にお
いて第1図と同符号のものは同一部分である。この実施
例は更に積極的にコイルボビン5の熱を除去するもので
ある。すなわち、マグネットのヨーク2(ボディでも可
)の一端に孔19゜20をあけ、そこからヒートパイプ
21.22を通し、その先端を磁性流体に接触させたも
のである。FIG. 2 shows another embodiment of the present invention, in which the same reference numerals as in FIG. 1 are the same parts. In this embodiment, heat from the coil bobbin 5 is removed more actively. That is, a hole 19.degree. 20 is formed at one end of the yoke 2 (or the body) of the magnet, through which a heat pipe 21, 22 is passed, and its tip is brought into contact with the magnetic fluid.
このように構成したことにより、磁気流体の熱を直接ヒ
ートパイプ21.22に伝えることが可能となる。また
、ヒートパイプ21.22の他端を冷却せしめることに
より、熱の除去を効率良く行うことができる。With this configuration, it is possible to directly transfer the heat of the magnetic fluid to the heat pipes 21 and 22. Furthermore, by cooling the other ends of the heat pipes 21 and 22, heat can be efficiently removed.
以上述べたように、本発明によれば、冷却媒体に対し特
別な考慮を払う必要なく、コイルボビンの熱上昇を防止
できることが可能となったので、小型フォースモータで
大出力を得ることができるサーボ弁を提供することがで
きるものである。As described above, according to the present invention, it is possible to prevent heat rise in the coil bobbin without having to pay special consideration to the cooling medium, so it is possible to prevent a servo motor that can obtain high output with a small force motor. It is possible to provide a valve.
第1図は本発明のサーボ弁の一実施例を示す縦断面図、
第2図は本発明のサーボ弁の他の実施例を示す縦断面図
である。
1・・・マグネット本体、2・・・ヨーク、2′エアギ
ヤツプ、3・・・フィン、4・・・磁性流体の封入口、
S・・・ボビン、6・・・巻線部、7・・・磁性流体封
入部、21゜22・・・ヒートパイプ。
−91丁〕、′、・FIG. 1 is a longitudinal sectional view showing an embodiment of the servo valve of the present invention;
FIG. 2 is a longitudinal sectional view showing another embodiment of the servo valve of the present invention. 1...Magnet body, 2...Yoke, 2' air gap, 3...Fin, 4...Magnetic fluid sealing port,
S...Bobbin, 6...Winding section, 7...Magnetic fluid enclosing section, 21°22...Heat pipe.
-91],',・
Claims (1)
の駆動源となるコイル、コイルボビン、マグネットから
なるフォースモータ部を備え、スプールを直接フォース
モータにより駆動するサーボ弁において、前記マグネッ
トとスプールに連結するコイルボビンとの間に形成され
るエアギャップに磁性流体を封入したことを特徴とする
サーボ弁。 2、コイルボビン室はスプールが摺動する弁部から可と
う膜により分離され、またマグネット本体の一部に磁気
流体封入口を有することを特徴とする特許請求の範囲第
1項記載のサーボ弁。 3、サーボ弁に冷却手段を設けたことを特徴とする特許
請求の範囲第1項記載のサーボ弁。 4、冷却手段はサーボ弁に設けたフイーンであることを
特徴とする特許請求の範囲第3項記載のサーボ弁。 5、冷却手段はサーボ弁に巻付けた流体導管であること
を特徴とする特許請求の範囲第3項記載のサーボ弁。 6、冷却手段は、ボディの一端からエアギャップの磁性
流体に導入されているヒートパイプであることを特徴と
する特許請求の範囲第3項記載のサーボ弁。[Scope of Claims] 1. A servo valve comprising a valve portion consisting of a spool and a sleeve, and a force motor portion consisting of a coil, coil bobbin, and magnet serving as a driving source for the supool, and in which the spool is directly driven by the force motor, wherein the magnet A servo valve characterized in that a magnetic fluid is sealed in an air gap formed between a coil bobbin connected to a spool and a coil bobbin connected to a spool. 2. The servo valve according to claim 1, wherein the coil bobbin chamber is separated from the valve portion on which the spool slides by a flexible membrane, and has a magnetic fluid sealing port in a part of the magnet body. 3. The servo valve according to claim 1, characterized in that the servo valve is provided with a cooling means. 4. The servo valve according to claim 3, wherein the cooling means is a fin provided on the servo valve. 5. The servo valve according to claim 3, wherein the cooling means is a fluid conduit wrapped around the servo valve. 6. The servo valve according to claim 3, wherein the cooling means is a heat pipe introduced into the magnetic fluid in the air gap from one end of the body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19372385A JPS6170205A (en) | 1985-09-04 | 1985-09-04 | Servo valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19372385A JPS6170205A (en) | 1985-09-04 | 1985-09-04 | Servo valve |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6170205A true JPS6170205A (en) | 1986-04-11 |
JPH0335524B2 JPH0335524B2 (en) | 1991-05-28 |
Family
ID=16312723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19372385A Granted JPS6170205A (en) | 1985-09-04 | 1985-09-04 | Servo valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6170205A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1241359A1 (en) * | 2001-03-16 | 2002-09-18 | Young & Franklin | Heat dissipating voice coil activated valves |
KR20230016726A (en) * | 2021-07-26 | 2023-02-03 | (주)수림테크 | Safety valve for cryogenic liquefied gas |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5318488U (en) * | 1976-07-28 | 1978-02-16 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5318488B2 (en) * | 1972-01-24 | 1978-06-15 |
-
1985
- 1985-09-04 JP JP19372385A patent/JPS6170205A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5318488U (en) * | 1976-07-28 | 1978-02-16 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1241359A1 (en) * | 2001-03-16 | 2002-09-18 | Young & Franklin | Heat dissipating voice coil activated valves |
KR20230016726A (en) * | 2021-07-26 | 2023-02-03 | (주)수림테크 | Safety valve for cryogenic liquefied gas |
Also Published As
Publication number | Publication date |
---|---|
JPH0335524B2 (en) | 1991-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6427970B1 (en) | Heat dissipating voice coil activated valves | |
JPS6170205A (en) | Servo valve | |
JPS58166183A (en) | Servo valve | |
JPS63157643A (en) | Linear motor | |
JP2974148B2 (en) | Magnetostrictive actuator | |
JPH11287352A (en) | Four-way selector valve | |
JPS6350563B2 (en) | ||
JPH0228249Y2 (en) | ||
JPS6352245B2 (en) | ||
GB2124799A (en) | Electro-hydraulic servo valve | |
JPS5931977Y2 (en) | Solenoid valve for fluid control | |
CN110835173A (en) | Water magnetization subassembly and gas heater | |
JPS58121179U (en) | servo valve | |
JP2604320Y2 (en) | Linear servo valve | |
US4194173A (en) | Solenoid construction | |
JPS5930288Y2 (en) | solenoid valve | |
JPH0313576Y2 (en) | ||
JPH01275904A (en) | Force motor servo valve | |
JPS58182077U (en) | Gas flow control valve | |
JPH0118942Y2 (en) | ||
JPH11248023A (en) | Solenoid | |
JPS63259203A (en) | Direct operative servo valve | |
JPS6132310A (en) | Fluid pressure drive device | |
JPS6231785A (en) | Solenoid valve | |
JPS592367Y2 (en) | Electric flow proportional control valve |