JP2003143879A - Actuator - Google Patents

Actuator

Info

Publication number
JP2003143879A
JP2003143879A JP2001331483A JP2001331483A JP2003143879A JP 2003143879 A JP2003143879 A JP 2003143879A JP 2001331483 A JP2001331483 A JP 2001331483A JP 2001331483 A JP2001331483 A JP 2001331483A JP 2003143879 A JP2003143879 A JP 2003143879A
Authority
JP
Japan
Prior art keywords
magnetostrictive member
drive rod
magnetostrictive
actuator
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001331483A
Other languages
Japanese (ja)
Inventor
Tokuaki Ida
徳昭 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001331483A priority Critical patent/JP2003143879A/en
Publication of JP2003143879A publication Critical patent/JP2003143879A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low cost actuator capable of attaining a simple structure of which control position accuracy is not affected by temperature. SOLUTION: This actuator includes a coil for generating a magnetic field, a magnetostrictive member for generating magnetostriction with the generated magnetic field, and a driving rod for taking out variances in the length of the magnetostrictive member by the magnetostriction. One end of the magnetostrictive member is supported by a hole side of an actuator casing into which the driving rod pierces, a flange lower surface of the driving rod is brought into contact with the other end of the magnetostrictive member, an upper surface of the flange is energized by an elastic member in a hole direction in which the driving rod of the actuator casing pierces, and a ratio of a length ranging from the driving rod flange lower surface to an end surface of the driving rod in which the hole pierces to a length of the magnetostrictive member is made equal to the ratio of the linear expansion coefficient of the magnetostrictive member to a linear expansion coefficient of the driving rod material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、微小な移動量の制
御を行うアクチュエータに関し、特に磁歪材(特に超磁
歪材)を用いたアクチュエータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an actuator for controlling a minute movement amount, and more particularly to an actuator using a magnetostrictive material (particularly a giant magnetostrictive material).

【0002】[0002]

【従来の技術】微小な移動量を制御するアクチュエータ
として、超磁歪材が外部磁界の変化により歪を生じて伸
長する現象を利用してアクチュエータ駆動ロッドを駆動
するリニアアクチュエータがあるが、使用時の温度が変
動する場合に駆動ロッドの制御位置精度を確保すること
ができないものである。
2. Description of the Related Art As an actuator for controlling a minute movement amount, there is a linear actuator which drives an actuator driving rod by utilizing a phenomenon in which a giant magnetostrictive material is distorted by a change in an external magnetic field and expands. When the temperature fluctuates, the control position accuracy of the drive rod cannot be ensured.

【0003】また、特開平9−144706号に、2個
の磁歪材を磁歪材ホルダーの両端面から装着して該磁歪
材ホルダーを介してタンデム連結とすることによって前
記磁歪材の実質長を2倍にし、前記磁歪材ホルダー材と
を熱膨張係数が前記磁歪材の熱膨張係数の2倍である材
質で形成することによって、使用時の温度変動をキャン
セルするアクチュエータが開示されている。
Further, in Japanese Patent Laid-Open No. 9-144706, two magnetostrictive materials are attached from both end surfaces of a magnetostrictive material holder and tandem connection is performed through the magnetostrictive material holders, whereby the substantial length of the magnetostrictive material is 2 mm. There is disclosed an actuator that cancels temperature fluctuation during use by doubling and forming the magnetostrictive material holder material with a material having a thermal expansion coefficient that is twice the thermal expansion coefficient of the magnetostrictive material.

【0004】[0004]

【発明が解決しようとする課題】従来の超磁歪材を用い
たアクチュエータの駆動ロッドの移動量は小さいので、
温度が変動する雰囲気で使用する場合、超磁歪材の熱膨
張が駆動ロッドの制御位置に及ぼす影響が大きく位置決
め精度を確保することができなかった。また、特開平9
−144706号に開示されたアクチュエータは、同じ
駆動ロッド制御量を得るのに必要なアクチュエータの長
さが短縮できる利点を有するが、磁歪材を嵌入する基体
への深穴加工を要し、構造も複雑となり、製作コストが
嵩むことは免れない。
Since the movement amount of the drive rod of the actuator using the conventional giant magnetostrictive material is small,
When used in an atmosphere in which the temperature fluctuates, the thermal expansion of the giant magnetostrictive material had a large effect on the control position of the drive rod, and the positioning accuracy could not be ensured. In addition, JP-A-9
The actuator disclosed in Japanese Patent No. 144706 has the advantage that the length of the actuator required to obtain the same drive rod control amount can be shortened, but it requires deep hole drilling in the base body into which the magnetostrictive material is fitted, and the structure is also It is inevitable that it becomes complicated and the manufacturing cost increases.

【0005】本発明は、上記問題点に鑑みなされたもの
で、加工容易でシンプルな構造の、駆動ロッドの制御位
置精度が使用中の温度変動に影響されないアクチュエー
タを提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide an actuator which is easy to process and has a simple structure, and in which the control position accuracy of the drive rod is not affected by temperature fluctuation during use.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、磁界を発生させるコイルと発生された磁
界により磁歪が発生する磁歪部材と磁歪による該磁歪部
材の長さ変化を取出す駆動ロッドとを備えたアクチュエ
ータであって、前記磁歪部材の一端側を前記駆動ロッド
が貫通するアクチュエータケーシングの穴側で支え、前
記磁歪部材の他端側に前記駆動ロッドのフランジ下面を
当接し、該フランジの上面を前記アクチュエータケーシ
ングの前記駆動ロッドが貫通する穴方向に弾性部材で付
勢し、前記駆動ロッドフランジ下面から前記穴を貫通し
た前記駆動ロッドの端面までの長さと前記磁歪部材の長
さとの比を該磁歪部材の熱膨張率と前記駆動ロッド材の
熱膨張率との比に等しくしたことを特徴とする。
In order to achieve the above object, the present invention provides a coil for generating a magnetic field, a magnetostrictive member in which magnetostriction is generated by the generated magnetic field, and a drive for extracting a change in length of the magnetostrictive member due to magnetostriction. An actuator comprising a rod, wherein one end side of the magnetostrictive member is supported by a hole side of an actuator casing through which the drive rod passes, and the other end side of the magnetostrictive member is brought into contact with a lower surface of the flange of the drive rod, The upper surface of the flange is biased by an elastic member in the direction of the hole through which the drive rod of the actuator casing penetrates, and the length from the lower surface of the drive rod flange to the end surface of the drive rod that penetrates the hole and the length of the magnetostrictive member. Is equal to the ratio of the coefficient of thermal expansion of the magnetostrictive member and the coefficient of thermal expansion of the drive rod material.

【0007】かかる発明によれば、アクチュエータが作
動中に温度が変動する場所に配設された場合でも、磁歪
部材の熱膨張量と駆動ロッドの熱膨張量とが常に等しく
膨張方向は反対方向となるので、温度変動により駆動ロ
ッドの制御位置が変化することがなく、温度にかかわら
ず駆動ロッドの制御位置を維持することができる。
According to this invention, even when the actuator is arranged in a place where the temperature fluctuates during operation, the thermal expansion amount of the magnetostrictive member and the thermal expansion amount of the drive rod are always equal and the expansion directions are opposite. Therefore, the control position of the drive rod does not change due to temperature fluctuation, and the control position of the drive rod can be maintained regardless of the temperature.

【0008】請求項2に記載の発明は、前記磁歪部材の
両端側にマグネットの双極を配置して該マグネットの磁
界により前記磁歪部材に初期磁歪が発生されていること
を特徴とするもので、例えば磁歪部材の一端側にN磁極
を、他端側にS磁極を配置して磁歪部材の軸方向に磁力
線を通して予め磁歪を発生させておくものである。これ
により、コイルに電流を流した際に発生する磁界の方向
を前記マグネットによる磁界の方向と一致させるか反対
にするかで駆動ロッドの初期位置からの駆動方向を変え
ることができる。
The invention according to claim 2 is characterized in that a dipole of a magnet is arranged at both ends of the magnetostrictive member, and an initial magnetostriction is generated in the magnetostrictive member by a magnetic field of the magnet. For example, an N magnetic pole is arranged on one end side of the magnetostrictive member, and an S magnetic pole is arranged on the other end side of the magnetostrictive member so that magnetostriction is generated in advance through magnetic force lines in the axial direction of the magnetostrictive member. This makes it possible to change the drive direction of the drive rod from the initial position depending on whether the direction of the magnetic field generated when a current is applied to the coil is made to coincide with or opposite to the direction of the magnetic field generated by the magnet.

【0009】本発明の構成では駆動ロッドの長さが磁歪
部材の長さよりも長いので、駆動ロッドの線膨張係数を
磁歪部材の線膨張係数よりも小さい材料とすることによ
り、駆動ロッドの長さと磁歪部材の長さとの比が磁歪部
材の線膨張係数と駆動ロッドの線膨張係数との比に等し
くなるように設定することができる。
In the structure of the present invention, since the length of the drive rod is longer than the length of the magnetostrictive member, the length of the drive rod can be reduced by using a material whose linear expansion coefficient is smaller than that of the magnetostrictive member. The ratio with the length of the magnetostrictive member can be set to be equal to the ratio between the linear expansion coefficient of the magnetostrictive member and the linear expansion coefficient of the drive rod.

【0010】前記磁歪部材は中心部に出力部材が貫通す
る穴を有する中空筒形状、例えば中空円筒とするのがよ
い。また、複数の磁歪部材を駆動ロッドの周囲に配設す
るようにしてもよい。さらに、中空筒状の磁歪部材の中
空部を貫通する駆動ロッドあるいは駆動ロッドの周囲に
複数の磁歪部材が配設された場合の駆動ロッドは、コイ
ル(電磁石)による磁力線が効率よく磁歪部材を通るよ
うに、その比透磁率が磁歪部材の比透磁率よりもできる
だけ小さい材質とするのがよい。
It is preferable that the magnetostrictive member has a hollow cylindrical shape, for example, a hollow cylinder, having a hole through which the output member penetrates in the central portion. Also, a plurality of magnetostrictive members may be arranged around the drive rod. Further, in the drive rod that penetrates the hollow portion of the hollow cylindrical magnetostrictive member or when a plurality of magnetostrictive members are arranged around the drive rod, the magnetic force lines of the coil (electromagnet) efficiently pass through the magnetostrictive member in the drive rod. As described above, it is preferable to use a material whose relative magnetic permeability is as small as possible than the relative magnetic permeability of the magnetostrictive member.

【0011】[0011]

【発明の実施の形態】以下、本発明を図に示した実施例
を用いて詳細に説明する。但し、この実施例に記載され
る寸法、材質、形状、その相対位置などは特に特定的な
記載がない限り、この発明の範囲をそれのみに限定する
趣旨ではなく単なる説明例に過ぎない。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to the embodiments shown in the drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative positions, etc. described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely illustrative examples.

【0012】図1は本発明の実施形態に係わる第1実施
例の概略構成を示し、駆動ロッドは中空円筒形状の磁歪
部材を貫通している。図2は本発明の実施形態に係わる
第2実施例の概略構成を示し、駆動ロッドの周囲に複数
の磁歪部材が配設されている。図3は駆動ロッドの制御
位置がアクチュエータの温度に影響されないことを説明
する図であり、図4は本発明の実施形態に係わる第3実
施例の概略構成を示す。
FIG. 1 shows a schematic configuration of a first example according to the embodiment of the present invention, in which a drive rod penetrates a hollow cylindrical magnetostrictive member. FIG. 2 shows a schematic configuration of a second example according to the embodiment of the present invention, in which a plurality of magnetostrictive members are arranged around the drive rod. FIG. 3 is a diagram for explaining that the control position of the drive rod is not affected by the temperature of the actuator, and FIG. 4 shows a schematic configuration of a third example according to the embodiment of the present invention.

【0013】図1において、1はアクチュエータのケー
シング、2は磁歪部材、3は駆動ロッド、4は駆動ロッ
ドのフランジ、6はコイルである。磁歪部材2は中空円
筒状に形成されていてその一端側がケーシング1の穴1
a側で支えられており、その他端側には該磁歪部材2の
中空部を貫通する駆動ロッド3のフランジ4の下面が当
接する。該フランジ4の上面はスプリング5により前記
ケーシング1の穴1a方向に付勢されている。前記磁歪
部材2の中空穴と駆動ロッド3の外周との間には適当な
間隙が設けられ、磁歪部材2と駆動ロッド3との相対移
動が可能にされている。前記ケーシング1の穴1aと駆
動ロッド3との隙間には図示しないシール部材を設けて
もよい。前記磁歪部材2周囲にはコイル6が配設されて
いる。前記駆動ロッド3の下端面3aがアクチュエータ
10の制御位置である。
In FIG. 1, 1 is a casing of an actuator, 2 is a magnetostrictive member, 3 is a drive rod, 4 is a flange of the drive rod, and 6 is a coil. The magnetostrictive member 2 is formed in a hollow cylindrical shape, and one end of the magnetostrictive member 2 has a hole 1 in the casing 1.
The lower surface of the flange 4 of the drive rod 3 penetrating the hollow portion of the magnetostrictive member 2 abuts on the other end of the magnetostrictive member 2. The upper surface of the flange 4 is biased by a spring 5 in the direction of the hole 1a of the casing 1. An appropriate gap is provided between the hollow hole of the magnetostrictive member 2 and the outer circumference of the drive rod 3 so that the magnetostrictive member 2 and the drive rod 3 can move relative to each other. A seal member (not shown) may be provided in the gap between the hole 1a of the casing 1 and the drive rod 3. A coil 6 is arranged around the magnetostrictive member 2. The lower end surface 3a of the drive rod 3 is the control position of the actuator 10.

【0014】磁歪部材2は磁歪定数(飽和状態の歪量)
が大きい超磁歪材が用いられる。コイル6に電流を流す
と磁界が発生し磁束が磁歪部材2を通って該磁歪部材2
に電流の大きさに応じた歪が生じて該該磁歪部材2は伸
長し、駆動ロッド3をスプリング5の付勢力に抗して持
ち上げるので下端面3aが上方に移動する。超磁歪材は
予め適当な軸方向圧縮応力(プレストレス)を与えてお
くと大きな磁歪定数を示す特性があり、前記スプリング
5は駆動ロッド3のフランジ4下面が常に磁歪部材2の
上面に当接するように付勢するとともに前記プレストレ
スを磁歪部材2に与える役目をする。
The magnetostrictive member 2 has a magnetostrictive constant (saturated amount of strain).
A large magnetostrictive material is used. When an electric current is applied to the coil 6, a magnetic field is generated, and the magnetic flux passes through the magnetostrictive member 2 and the magnetostrictive member 2
Then, a strain corresponding to the magnitude of the current is generated, the magnetostrictive member 2 expands, and the drive rod 3 is lifted against the biasing force of the spring 5, so that the lower end surface 3a moves upward. The giant magnetostrictive material has a characteristic of exhibiting a large magnetostriction constant when an appropriate axial compressive stress (prestress) is applied in advance, and the lower surface of the flange 4 of the drive rod 3 of the spring 5 is always in contact with the upper surface of the magnetostrictive member 2. Thus, the pre-stress is given to the magnetostrictive member 2 as well.

【0015】図2は本発明の第2の実施例を示し、図1
との相違点は磁歪部材が複数の磁歪部材2′よりなり駆
動ロッド3の周囲に配設されていることである。本実施
例では図1における中空筒状の磁歪部材に替えて、磁歪
特性が揃った複数の同じ高さ(長さ)の磁歪部材2′が
駆動ロッド3の囲んで配設されている。磁歪部材2′の
形状は円柱でもよいし、その他の形状でもよく、磁歪部
材への中空穴加工を要しない。
FIG. 2 shows a second embodiment of the present invention, and FIG.
Is that the magnetostrictive member is composed of a plurality of magnetostrictive members 2 ′ and is arranged around the drive rod 3. In the present embodiment, a plurality of magnetostrictive members 2'having the same magnetostrictive characteristics and having the same height (length) are arranged so as to surround the drive rod 3 instead of the hollow cylindrical magnetostrictive member in FIG. The shape of the magnetostrictive member 2'may be a cylinder or any other shape, and it is not necessary to form a hollow hole in the magnetostrictive member.

【0016】図3は駆動ロッドの制御位置がアクチュエ
ータの温度に影響されないことを説明する図で、(A)
はある温度における状態を示し、(B)は(A)よりも
ΔT℃だけ高い温度における状態を示す。同図(A)に
おいて、磁歪部材2の長さをLm、駆動ロッド3の長さ
をLrとする。同図(B)では(A)よりも、熱膨張に
より、磁歪部材2はΔLmだけ上方に伸び、駆動ロッド
3はΔLrだけ下方に伸びている。
FIG. 3 is a diagram for explaining that the control position of the drive rod is not affected by the temperature of the actuator.
Shows a state at a certain temperature, and (B) shows a state at a temperature higher by ΔT ° C. than (A). In FIG. 3A, the length of the magnetostrictive member 2 is Lm and the length of the drive rod 3 is Lr. In FIG. 6B, the magnetostrictive member 2 extends upward by ΔLm and the drive rod 3 extends downward by ΔLr due to thermal expansion, as compared with FIG.

【0017】したがって、磁歪部材2の線膨張係数をα
m、駆動ロッドの線膨張係数をαrとすると、 ΔLm=αm・Lm・ΔT ΔLr=αr・Lr・ΔT ΔLm−ΔLr=(αm・Lm−αr・Lr)・ΔT である。故に、αm・Lm−αr・Lr=0、即ち,L
r/Lm=αm/αrとなるようにすれば、ΔLm−Δ
LrはΔTにかかわらず常に0となる。したがって、磁
歪部材2の熱膨張による延びと駆動ロッド3の熱膨張に
よる伸びは常に相殺され、制御位置である駆動ロッド3
の下端面3aの位置は温度の影響を受けない。なお、温
度による磁歪特性(磁歪部材に加えられる磁界の強さと
発生する磁歪の大きさの関係)の変化については、コイ
ル6に通じる電流により補正することができる。
Therefore, the linear expansion coefficient of the magnetostrictive member 2 is set to α
m, and the linear expansion coefficient of the drive rod is αr, ΔLm = αm · Lm · ΔT ΔLr = αr · Lr · ΔT ΔLm-ΔLr = (αm · Lm-αr · Lr) · ΔT. Therefore, αm · Lm−αr · Lr = 0, that is, L
By setting r / Lm = αm / αr, ΔLm−Δ
Lr is always 0 regardless of ΔT. Therefore, the extension due to the thermal expansion of the magnetostrictive member 2 and the extension due to the thermal expansion of the drive rod 3 are always canceled out, and the drive rod 3 at the control position is set.
The position of the lower end surface 3a of is not affected by temperature. The change in the magnetostrictive characteristic (relationship between the strength of the magnetic field applied to the magnetostrictive member and the magnitude of the magnetostriction generated) with temperature can be corrected by the current flowing through the coil 6.

【0018】駆動ロッド3のフランジ4は磁歪部材2の
上端面に当接しており、コイル6に電流を通じることに
よって生じる磁束が通り易くするために透磁率が大きい
強磁性体とするのがよい。また、ケーシング1の穴1a
側も同様に強磁性体とするか、強磁性体部材を配設する
のがよい。ケーシングのその他の部分は磁束の漏洩を防
ぐために非磁性材とするのがよい。駆動ロッド3は、前
記磁束が駆動ロッドに漏れるのを少なくし磁束を効率よ
く磁歪部材2に通すために、磁歪部材2よりも透磁率の
小さい材質とするのがよい。
The flange 4 of the drive rod 3 is in contact with the upper end surface of the magnetostrictive member 2 and is preferably made of a ferromagnetic material having a high magnetic permeability so that the magnetic flux generated by passing a current through the coil 6 can easily pass therethrough. . Also, the hole 1a of the casing 1
Similarly, the side should be made of a ferromagnetic material or a ferromagnetic material member should be provided. The other parts of the casing are preferably made of non-magnetic material to prevent leakage of magnetic flux. The drive rod 3 is preferably made of a material having a smaller magnetic permeability than that of the magnetostrictive member 2 in order to reduce the leakage of the magnetic flux into the drive rod and to efficiently pass the magnetic flux through the magnetostrictive member 2.

【0019】例えば、磁歪部材2の線膨張係数αmが1
2ppm/℃、駆動ロッド3の材質を純チタンとして線
膨張係数αrが8.4ppm/℃とすると、駆動ロッド
3の長さLrと磁歪部材2の長さLmとの比を、 Lr/Lm=αm/αr=12/8.4=1.428… 即ち駆動ロッド3の長さを磁歪部材2の長さの約1.4
3倍とすればよい。
For example, the linear expansion coefficient αm of the magnetostrictive member 2 is 1
If the linear expansion coefficient αr is 8.4 ppm / ° C. and the material of the driving rod 3 is pure titanium, the ratio of the length Lr of the driving rod 3 to the length Lm of the magnetostrictive member 2 is Lr / Lm = αm / αr = 12 / 8.4 = 1.428 ... That is, the length of the drive rod 3 is about 1.4 times the length of the magnetostrictive member 2.
It may be tripled.

【0020】磁歪部材2の比透磁率は4〜10程度であ
るのに対して純チタンの比透磁率は1前後と小さく、本
発明の駆動ロッド材料に適する材質である。チタン合金
Ti−6Al−4V等も同様に適する材質である。
The magnetostrictive member 2 has a relative magnetic permeability of about 4 to 10, whereas pure titanium has a small relative magnetic permeability of about 1 and is a material suitable for the drive rod material of the present invention. Titanium alloy Ti-6Al-4V and the like are also suitable materials.

【0021】図4は本発明の実施形態に係わる第3実施
例の概略構成を示す。図1との相違点は磁歪部材2を両
端側から挟むマグネット7(永久磁石)が配設されてい
ることである。図1と同じ構成には同じ符号が付してあ
る。該マグネットにより磁歪部材2に初期磁歪を発生さ
せ、コイルに電流を流した際に発生する磁界の方向を前
記マグネットによる磁界の方向と一致させるか反対にす
るかで、即ち電流の方向を変えることにより、駆動ロッ
ドの初期位置からの駆動方向を変えることができる。コ
イル外周にバイアス・マグネットを設ける従来方式でも
よいことは勿論である。なお、図4において、スプリン
グ5とマグネット7の1極が重なっているのは、スプリ
ング5がマグネット7の1極に埋設される意ではなく、
マグネット7の1極はスプリング5に無関係に配設して
よいことを示すに過ぎない。
FIG. 4 shows a schematic configuration of a third example according to the embodiment of the present invention. The difference from FIG. 1 is that magnets 7 (permanent magnets) sandwiching the magnetostrictive member 2 from both ends are provided. The same components as those in FIG. 1 are designated by the same reference numerals. An initial magnetostriction is generated in the magnetostrictive member 2 by the magnet, and the direction of the magnetic field generated when a current is applied to the coil is matched with or opposite to the direction of the magnetic field by the magnet, that is, the direction of the current is changed. Thus, the drive direction of the drive rod from the initial position can be changed. Of course, a conventional method in which a bias magnet is provided on the outer circumference of the coil may be used. In FIG. 4, the fact that the spring 5 and one pole of the magnet 7 overlap does not mean that the spring 5 is embedded in one pole of the magnet 7,
It only indicates that one pole of the magnet 7 may be arranged independently of the spring 5.

【0022】[0022]

【発明の効果】本発明は、以上説明したような形態で実
施され、以下に記述されるような効果を奏する。
The present invention is carried out in the form as described above and has the following effects.

【0023】磁歪部材の長さLm,線膨張係数αmと駆
動ロッドの長さLr,線膨張係数αrとした場合に、L
r/Lm=αm/αrとなるように磁歪部材の長さと線
膨張係数及び駆動ロッドの長さと線膨張係数を選定する
ことにより、熱膨張による影響を完全になくしたアクチ
ュエータを得ることができる。
When the length Lm and linear expansion coefficient αm of the magnetostrictive member and the length Lr and linear expansion coefficient αr of the driving rod are L,
By selecting the length and linear expansion coefficient of the magnetostrictive member and the length and linear expansion coefficient of the drive rod so that r / Lm = αm / αr, it is possible to obtain an actuator in which the influence of thermal expansion is completely eliminated.

【0024】駆動ロッドの周囲に複数の磁歪部材を配設
することにより、磁歪部材への細長い貫通穴の加工をな
くすることができ、磁歪部材の製作が容易になる。
By disposing a plurality of magnetostrictive members around the drive rod, it is possible to eliminate the processing of the elongated through holes in the magnetostrictive member, and the manufacture of the magnetostrictive member is facilitated.

【0025】磁歪部材の両端側にマグネットの双極を配
置することにより、磁歪部材に効果的に初期磁歪を発生
させることができる。
By disposing the dipoles of the magnet on both ends of the magnetostrictive member, the initial magnetostriction can be effectively generated in the magnetostrictive member.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施形態に係わる第1実施例の概略
構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of a first example according to an embodiment of the present invention.

【図2】 本発明の実施形態に係わる第2実施例の概略
構成を示す図である。
FIG. 2 is a diagram showing a schematic configuration of a second example according to the embodiment of the present invention.

【図3】 駆動ロッドの制御位置がアクチュエータの温
度に影響されないことを説明する図である。
FIG. 3 is a diagram illustrating that the control position of the drive rod is not affected by the temperature of the actuator.

【図4】 本発明の実施形態に係わる第3実施例の概略
構成を示す図である。
FIG. 4 is a diagram showing a schematic configuration of a third example according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ケーシング 2 磁歪部材 3 駆動ロッド 4 フランジ 5 スプリング 6 コイル 7 マグネット 10 アクチュエータ 1 casing 2 Magnetostrictive member 3 drive rod 4 flange 5 springs 6 coils 7 magnet 10 actuators

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 磁界を発生させるコイルと発生された磁
界により磁歪が発生する磁歪部材と磁歪による該磁歪部
材の長さ変化を取出す駆動ロッドとを備えたアクチュエ
ータであって、前記磁歪部材の一端側を前記駆動ロッド
が貫通するアクチュエータケーシングの穴側で支え、前
記磁歪部材の他端側に前記駆動ロッドのフランジ下面を
当接し、該フランジの上面を前記アクチュエータケーシ
ングの前記駆動ロッドが貫通する穴方向に弾性部材で付
勢し、前記駆動ロッドフランジ下面から前記穴を貫通し
た前記駆動ロッドの端面までの長さと前記磁歪部材の長
さとの比を該磁歪部材の線膨張係数と前記駆動ロッド材
の線膨張係数との比に等しくしたことを特徴とするアク
チュエータ。
1. An actuator comprising a coil for generating a magnetic field, a magnetostrictive member for causing magnetostriction due to the generated magnetic field, and a drive rod for taking out a length change of the magnetostrictive member due to the magnetostriction, wherein one end of the magnetostrictive member. Side is supported by the hole side of the actuator casing through which the drive rod penetrates, the lower surface of the flange of the drive rod is abutted on the other end side of the magnetostrictive member, and the upper surface of the flange is penetrated by the drive rod of the actuator casing. Direction is urged by an elastic member, and the ratio of the length from the lower surface of the drive rod flange to the end surface of the drive rod penetrating the hole to the length of the magnetostrictive member is defined as the linear expansion coefficient of the magnetostrictive member and the drive rod material. An actuator characterized by being made equal to the linear expansion coefficient.
【請求項2】 前記磁歪部材の両端側にマグネットの双
極を配置して該マグネットの磁界により前記磁歪部材に
初期磁歪が発生されていることを特徴とする請求項1記
載のアクチュエータ。
2. The actuator according to claim 1, wherein dipoles of a magnet are arranged at both ends of the magnetostrictive member, and an initial magnetostriction is generated in the magnetostrictive member by a magnetic field of the magnet.
【請求項3】 前記駆動ロッドの線膨張係数が前記磁歪
部材の線膨張係数よりも小さいことを特徴とする請求項
1或は2に記載のアクチュエータ。
3. The actuator according to claim 1, wherein the linear expansion coefficient of the drive rod is smaller than the linear expansion coefficient of the magnetostrictive member.
【請求項4】 前記駆動ロッドの比透磁率が前記磁歪部
材の比透磁率よりも小さいことを特徴とする請求項1乃
至3のいずれか1項に記載のアクチュエータ。
4. The actuator according to claim 1, wherein a relative magnetic permeability of the drive rod is smaller than a relative magnetic permeability of the magnetostrictive member.
【請求項5】 前記磁歪部材が中心部に前記駆動ロッド
が貫通する穴を有する中空筒形状に形成されていること
を特徴とする請求項1乃至4のいずれか1項に記載のア
クチュエータ。
5. The actuator according to claim 1, wherein the magnetostrictive member is formed in a hollow cylindrical shape having a hole through which the drive rod penetrates in a central portion thereof.
【請求項6】 前記磁歪部材が前記駆動ロッドの回りに
配置された複数の磁歪部材からなることを特徴とする請
求項1乃至4のいずれか1項に記載のアクチュエータ。
6. The actuator according to claim 1, wherein the magnetostrictive member comprises a plurality of magnetostrictive members arranged around the drive rod.
JP2001331483A 2001-10-29 2001-10-29 Actuator Withdrawn JP2003143879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001331483A JP2003143879A (en) 2001-10-29 2001-10-29 Actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001331483A JP2003143879A (en) 2001-10-29 2001-10-29 Actuator

Publications (1)

Publication Number Publication Date
JP2003143879A true JP2003143879A (en) 2003-05-16

Family

ID=19147054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001331483A Withdrawn JP2003143879A (en) 2001-10-29 2001-10-29 Actuator

Country Status (1)

Country Link
JP (1) JP2003143879A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931871A (en) * 2012-11-02 2013-02-13 南京航空航天大学 Paraboloid-shaped linear ultrasonic motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931871A (en) * 2012-11-02 2013-02-13 南京航空航天大学 Paraboloid-shaped linear ultrasonic motor

Similar Documents

Publication Publication Date Title
JP4007333B2 (en) Magnetostrictive actuator
JP2018026568A (en) Solenoid actuator
JP2008536304A (en) Magnetic actuator with high intensity radial magnetic field
KR20020008021A (en) Magnet movable electromagnetic actuator
JP2009519000A (en) Linear voice coil actuator as a bidirectional electromagnetic spring
JP2558387B2 (en) Voice coil motor and magnetic disk device
JP5055505B2 (en) Magnetostrictive multi-axis drive actuator
JP2018098984A (en) Electromagnetic actuator
US6803846B2 (en) Actuator
JP6349909B2 (en) Power generator
JP2003143879A (en) Actuator
JP2004519981A (en) Long stroke linear voice coil actuator with proportional solenoid characteristics
JP2005243929A (en) Super-magnetostrictive unit
JP3332125B2 (en) Magnetostrictive actuator
JPH04229085A (en) Magnetostrictive actuator
JPWO2006098500A1 (en) Magnetic device
US20040027221A1 (en) Linear voice coil actuator as a controllable electromagnetic compression spring
JPH07240547A (en) Actuator
JPH02288278A (en) Magnetostrictive type actuator
JP4272085B2 (en) Giant magnetostrictive actuator
JPH03112354A (en) Linear actuator
JP2007159242A (en) Super-magnetic strain actuator and table with angular function
JP2673661B2 (en) Giant magnetostriction displacement magnifying mechanism
JP5430986B2 (en) Electromagnetic actuator
JP4284898B2 (en) Giant magnetostrictive linear actuator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104