JPH02288273A - Light emitting diode - Google Patents

Light emitting diode

Info

Publication number
JPH02288273A
JPH02288273A JP1110225A JP11022589A JPH02288273A JP H02288273 A JPH02288273 A JP H02288273A JP 1110225 A JP1110225 A JP 1110225A JP 11022589 A JP11022589 A JP 11022589A JP H02288273 A JPH02288273 A JP H02288273A
Authority
JP
Japan
Prior art keywords
layer
electrode
light emitting
active layer
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1110225A
Other languages
Japanese (ja)
Inventor
Noboru Iwasaki
登 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1110225A priority Critical patent/JPH02288273A/en
Publication of JPH02288273A publication Critical patent/JPH02288273A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To obtain a light emitting diode having high productivity by electrically isolating between a first electrode in which a current flows to the partial region of an active layer and a second electrode electrically connected to a block layer via layers from the block layer to the depth of the active layer. CONSTITUTION:When a diode is manufactured, an active layer 2 made of P-type GaAs, a second clad layer 3 made of P-type Al0.35Ga0.65As, and a block layer 4 made of a N-type Al0.15Ga0.85As are sequentially laminated on a clad layer made of a N-type Al0.35Ga0.65As, An is diffused at the central region of the layer 4 to form a diffused region 5. Then, when a groove is formed around the diffused region, a groove for isolating at the outside of the groove is also formed, but the depths of the grooves are formed together to reach the layer 1. Further, a P-type side electrode 6 is formed on the region 5, a monitoring electrode 7 is formed outside the groove around the region 5, and a N-type side electrode 8 is formed on the surface of the layer 1. A light emitting window is opened at the electrode 8 to form a reflection preventive film 10, and then isolated by the groove of the outside. Accordingly, its productivity can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は発光ダイオードに関し、特に光フアイバ通信用
の裏面光出射型の高輝度発光ダイオードに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a light emitting diode, and more particularly to a back-emission type high-brightness light emitting diode for optical fiber communication.

〔従来の技術〕[Conventional technology]

第3図に従来の光フアイバ通信用の発光ダイオードの一
例を示す。n型A (l X G a 1−x A s
よりなる第1クラッド層(1)の上にp型GaAsより
なる活性層(2)p型Aβ、Ga+−XA3よりなる第
2のクラッド層(3) 、n型ANyGa+−yAsよ
りなるブロック層(4)が順次積層されており、ブロッ
ク層(4)の一部にZnを拡散することにより拡散領域
(5)の導電型をp型に変え、その拡散領域(5)を通
って活性層の一部領域(拡散領域の下方の部分)に集中
して電流が流され光輝度の発光が得られる。
FIG. 3 shows an example of a conventional light emitting diode for optical fiber communication. n-type A (l
On top of the first cladding layer (1), there are an active layer (2) of p-type GaAs, a second cladding layer (3) of p-type Aβ, Ga+-XA3, and a block layer (3) of n-type ANyGa+-yAs. 4) are sequentially stacked, and by diffusing Zn into a part of the block layer (4), the conductivity type of the diffusion region (5) is changed to p-type, and the conductivity type of the active layer is passed through the diffusion region (5). A current is concentrated in a partial region (a portion below the diffusion region), and luminescence with brightness is obtained.

また、発光部より発する熱を効率よく逃がすなめに発光
ダイオードをパッケージに組立てる際には、ブロック層
(4)側をパッケージに向けてマウントされる。そのた
め発光部からの光は、第1クラッド層(1)側の電極(
8)に光取り出し窓を開けそこより取だされる。
Furthermore, when assembling the light emitting diode into a package in order to efficiently dissipate heat generated from the light emitting part, the light emitting diode is mounted with the block layer (4) side facing the package. Therefore, the light from the light emitting part is transmitted to the electrode on the first cladding layer (1) side (
8) The light extraction window is opened and the light is extracted from there.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の発光ダイオードを個々に分離する以前、
すなわち発光ダイオードが多数通なったウェハの状態で
特性選別する場合、まず隣のペレットと電気的に分離す
る必要があるが、光取り出し窓がある第1クラッド層(
1)側の電極(8)がらは活性層(2)との距離がはな
れているなめ分離が困難である。分離するとすれば、活
性層(2)に近い側、つまりマウントされる側であるブ
ロック層(4〉側の電極(6)から分離しなければなら
ない。
Before separating the conventional light emitting diodes mentioned above,
In other words, when selecting the characteristics of a wafer with a large number of light emitting diodes, it is first necessary to electrically isolate it from neighboring pellets.
The electrode (8) on the 1) side is far away from the active layer (2) and is difficult to separate. If it is to be separated, it must be separated from the electrode (6) on the side closer to the active layer (2), that is, the side on which it is mounted, the block layer (4>).

ウェハ状態でブロック層(4)側がら電気的に分離され
た発光ダイオードを特性選別する場合には、ステージ上
に第1クラッド層(1)側を下に向けてウェハをセット
し、各発光ダイオードごとに分離されたブロック層(4
)側の電極に測定用の探針を当て、探針とステージの間
に電圧をかけて測定を行なう。この方法では電気的特性
は測定することができるが、光取り出し窓がステージ側
に向いているため発光強度などの光学的特性を選別する
ことができない。
When selecting characteristics of light emitting diodes that are electrically isolated from the block layer (4) side in a wafer state, set the wafer on a stage with the first cladding layer (1) side facing down, and separate each light emitting diode. Block layer (4
) A measuring probe is applied to the electrode on the side of the stage, and a voltage is applied between the probe and the stage to perform measurements. Although electrical characteristics can be measured with this method, optical characteristics such as emission intensity cannot be selected because the light extraction window faces the stage side.

以上説明したように、従来の発光ダイオードは、ウェハ
状態では光学的特性0選別を行なうことができず、光学
的特性選別を行なうには個々に分離した後に1つずつ光
学的特性測定を行なわなければならず、非常に手間がか
かるという欠点がある。
As explained above, conventional light emitting diodes cannot be subjected to optical property zero screening in the wafer state, and in order to perform optical property screening, the optical properties must be measured one by one after being separated. However, it has the disadvantage that it is very time-consuming.

本発明は、このような問題点を解決し、ウェハ状態でも
光学的特性の測定ができ、生産性の高い発光ダイオード
を提供することを目的としている。
An object of the present invention is to solve these problems and provide a highly productive light emitting diode whose optical characteristics can be measured even in a wafer state.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の発光ダイオードは活性層の一部領域に集中的に
電流を流すための第1の電極の他にこの第1の電極が形
成されているのと同じクラッド層にもう1つ以上の電極
を有し、かつそれぞれの電極の間では少なくとも活性層
まで電気的に分離されているという特徴を有している。
The light emitting diode of the present invention has, in addition to the first electrode for causing current to flow concentratedly in a partial region of the active layer, one or more electrodes in the same cladding layer where the first electrode is formed. , and is characterized in that at least the active layer is electrically isolated between the respective electrodes.

すなわち、少なくとも第1の導電型の半導体よりなる第
1のクラッド層、前記第1のクラッド層より禁制帯幅が
小さな半導体よりなる活性層、前記活性層より禁制帯幅
が大きく第2の導電型の半導体よりなる第2のクラッド
層、第1の導電型の半導体よりなるブロック層を順次積
層した多層構造を有し、前記ブロック層上に前記活性層
の一部領域に電流を流すための第1の電極と、ブロック
層に電気的につながる第2の電極を有し、前記第1の電
極と前記第2の電極の間では少なくとも前記ブロック層
から前記活性層の深さまでの各層において電気的に分離
されている構成になっている。
That is, a first cladding layer made of a semiconductor of at least a first conductivity type, an active layer made of a semiconductor whose forbidden band width is smaller than that of the first cladding layer, and a second conductivity type whose forbidden band width is larger than that of the active layer. It has a multilayer structure in which a second cladding layer made of a semiconductor of a first conductivity type and a block layer made of a first conductivity type semiconductor are sequentially laminated, and a second cladding layer made of a semiconductor of a first conductivity type is laminated in order, and a second cladding layer made of a semiconductor of a first conductivity type is laminated in order, and a second cladding layer made of a semiconductor of a first conductivity type is laminated in order. 1 electrode and a second electrode electrically connected to a block layer, and between the first electrode and the second electrode, electrical connection is made in each layer at least from the block layer to the depth of the active layer. It is structured so that it is separated into

〔実施例1〕 次に本発明について図面を参照して説明する。[Example 1] Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の断面図である。FIG. 1 is a sectional view of an embodiment of the present invention.

n型A (10,35G a o、 65A Sよりな
る第1のクラッド層(1)の上に厚さ2μmのp型Ga
Asよりなる活性層(2〉、厚さ1.5μmのp型A−
Ro、35G a [1,65A Sよりなる第2のク
ラッド層(3)、厚さ1.5umのn型A II g、
 15G a 0.85A Sよりなるブロック層(4
)を順次積層し、ブロック層(4)の中央30μmφの
領域に、拡散先端が第2のブロック層(3)中に止まる
ようにZnを拡散して拡散領域(5)を形成する。次に
溝を拡散領域の周囲に形成すると同時にその溝の外側に
、隣の発光ダイオードと分離するための溝も形成する。
A p-type Ga layer with a thickness of 2 μm is deposited on the first cladding layer (1) made of n-type A (10,35G ao, 65A S).
Active layer made of As (2>, p-type A- with a thickness of 1.5 μm
Ro, 35G a [1,65A Second cladding layer (3) consisting of S, 1.5 um thick n-type A II g,
Block layer (4
) are sequentially stacked, and Zn is diffused in a 30 μm diameter region at the center of the block layer (4) so that the diffusion tip remains in the second block layer (3) to form a diffusion region (5). Next, a groove is formed around the diffusion region, and at the same time, a groove is also formed outside the groove to separate the adjacent light emitting diode.

溝の深さは共に第一のクラッド層(1)に達する深さに
形成する。さらに拡散領域(5)の上にp側電極(第1
の電極、(6) ) 、拡散領域(5)の周囲の溝の外
側にモニタ電極(第2の電極、(7))、第1のクラッ
ド層〈1)の表面にn側電極(8)を形成する。
Both grooves are formed to a depth that reaches the first cladding layer (1). Furthermore, a p-side electrode (first
(6)), a monitor electrode (second electrode, (7)) on the outside of the groove around the diffusion region (5), and an n-side electrode (8) on the surface of the first cladding layer (1). form.

n側型i (8)には光取り出し窓を開け、窓部には光
取り出し効率を高めるため反射防止膜(10)を形成す
る。この後、外側の溝で1つ1つに分離して発光ダイオ
ードとする。
A light extraction window is opened in the n-side type i (8), and an anti-reflection film (10) is formed on the window portion in order to increase the light extraction efficiency. Thereafter, the light emitting diodes are separated one by one using an outer groove.

上記の発光ダイオードをウェハ状態で特性選別するには
、ブロック層(4)側を上に向けてステージ上に乗せ、
p側電極(6)に探針を当てて逆方向駆動電圧、逆方向
リーク電流等の電気的特性を測定する。また、モニタ電
極(7)にも探針を当てn側電極(8)に対して負の電
圧をかけると、第1のクラッド層(1)と活性層(2)
の間のpn接合に逆方向の電圧がかかるためそのままで
はほとんど電流は流れないが、このときn側電極(6)
より電流を流して発光させると、発光部(拡散領域下の
活性層領域)からの光が拡散領域(5)の周囲の溝を通
ったり、n側電極(8)で反射してモニタ電極(7)を
設けた側の活性層り2)に到達して吸収されるため、発
光強度に応じた電流がモニタ電f!f!(7)に流れる
。これを利用して発光強度の選別を行なうことができる
。また上述した発光ダイオードをパッケージに組立てる
際には、フロック層(4)側をパッケージに向けてマウ
ントされるため、組立後はn側電極(6)とモニタ電極
(7)は常に同じバイアスが印加される。しかし、モニ
タ電極側ではブロック層があるためごく弱い電流しか流
れず、発光強度等にはほとんど影響がない。
To select the characteristics of the above-mentioned light emitting diodes in wafer state, place them on a stage with the block layer (4) side facing up.
A probe is applied to the p-side electrode (6) to measure electrical characteristics such as reverse drive voltage and reverse leakage current. When the probe is also placed on the monitor electrode (7) and a negative voltage is applied to the n-side electrode (8), the first cladding layer (1) and the active layer (2)
Almost no current flows as it is because a reverse voltage is applied to the pn junction between the n-side electrode (6).
When more current is applied to emit light, the light from the light emitting part (the active layer region under the diffusion region) passes through the groove around the diffusion region (5), is reflected by the n-side electrode (8), and reaches the monitor electrode ( Since the current reaches the active layer 2) on the side where 7) is provided and is absorbed, the current corresponding to the emission intensity becomes the monitor voltage f! f! Flows to (7). This can be used to select the emission intensity. Furthermore, when assembling the above-mentioned light emitting diode into a package, it is mounted with the flock layer (4) side facing the package, so the same bias is always applied to the n-side electrode (6) and monitor electrode (7) after assembly. be done. However, since there is a blocking layer on the monitor electrode side, only a very weak current flows, and it has almost no effect on the luminous intensity.

〔実施例2〕 第2図は本発明の実施例2の断面図で、積層構造は実施
例1と同じである。この実施例では中央の30μmφの
円形領域を残してその周囲に第1クラッド層(1)に達
する深さの溝を形成し、その円形領域の表面でのみn側
電極(第1の電極、(6))と接触させることによって
活性層の一部領域に集中して電流を流している。この型
の発光ダイオードの従来のものは上述したような構造で
活性層の一部にのみ電流を流しているため、プロ・ンク
層は必要ない。しかしこの実施例2では溝の外側にモニ
タ電極(第2の電極、(7))を形成するため、組立後
にモニタ部に電流が流れないようにブロック層(4)を
形成し、発光部付近にはZn拡散を行って拡散領域(5
)を形成することによってブロック層(4)の導電型を
p型に変えている。また、n側電極(6)とモニタ電極
(7)の分離は中央の円形領域や溝の中では困難である
ので、溝の外側で分離してあり、拡散領域(5)以外で
半導体結晶と接触しないようSiO2よりなる絶縁膜(
9)が形成されている。実施例2では発光部(溝で囲ま
れな活性層領域)からの光が溝を通ってモニタ電極を形
成した側の活性層(モニタ部)に入射されるということ
はないが、n側電極(8)に反射してモニタ部に入射さ
れ、第1図の実施例1と同じように発光強度を測定する
ことができる。
[Example 2] FIG. 2 is a sectional view of Example 2 of the present invention, and the laminated structure is the same as Example 1. In this example, a groove with a depth reaching the first cladding layer (1) is formed around the central circular region of 30 μmφ, and only on the surface of the circular region is the n-side electrode (first electrode, ( 6))), a current is concentrated in a partial region of the active layer. Conventional light-emitting diodes of this type have the above-described structure and conduct current only through a portion of the active layer, so that no polarization layer is required. However, in this Example 2, since the monitor electrode (second electrode, (7)) is formed outside the groove, a blocking layer (4) is formed to prevent current from flowing to the monitor part after assembly, and the block layer (4) is formed near the light emitting part. Zn is diffused to form a diffusion region (5
), the conductivity type of the block layer (4) is changed to p-type. In addition, since it is difficult to separate the n-side electrode (6) and the monitor electrode (7) in the central circular region or groove, they are separated outside the groove, and the semiconductor crystal is separated outside the diffusion region (5). An insulating film made of SiO2 (
9) is formed. In Example 2, the light from the light emitting part (the active layer region surrounded by the groove) does not pass through the groove and enter the active layer (monitor part) on the side where the monitor electrode is formed, but the n-side electrode (8) and enters the monitor section, and the luminous intensity can be measured in the same manner as in Example 1 shown in FIG.

上述した実施例では、いずれもG a A s / A
ρGaAs系の半導体材料が使われているが、InP/
InGaAsP系など他の半導体材料の組合せでも作る
ことができる。
In the above embodiments, G a A s / A
ρGaAs-based semiconductor materials are used, but InP/
It can also be made in combination with other semiconductor materials such as InGaAsP.

〔発明の効果〕 以上説明したように本発明は、活性層の一部領域に集中
的に電流するための電極と別に、ブロック層上に電極を
持ち、2つの電極の間が活性層の深さまで電気的に分離
されていたために、発光ダイオードの活性層に近い面を
パッケージに向けてマウントする光フアイバ通信用の高
輝度発光ダイオードでも、組立後の特性に影響を与えず
に、多数の発光ダイオードが連なって形成されているウ
ェハ状態での発光強度を含めた特性選別が可能になり、
選別の手間を大幅に低減することができて生産性が大幅
に向上した。
[Effects of the Invention] As explained above, the present invention has an electrode on the block layer in addition to an electrode for supplying a concentrated current to a partial region of the active layer, and the space between the two electrodes is located deep in the active layer. Because they were previously electrically isolated, even high-brightness light-emitting diodes for optical fiber communication, in which the surface close to the active layer of the light-emitting diode is mounted toward the package, can produce a large number of light-emitting lights without affecting the characteristics after assembly. It is now possible to select characteristics including light emission intensity in a wafer state where diodes are formed in a row.
The labor involved in sorting can be significantly reduced, resulting in a significant improvement in productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の発光ダイオードの断面図、第
3図は従来の発光ダイオードの断面図である。 1・・・第1クラッド層、2・・・活性層、3・・・第
2クラッド層、4・・・ブロック層、5・・・拡散領域
、6・・・第1電極(n側電極)、7・・・第2電極(
モニタ電極)、8・・・n側電極、9・・・SiO2膜
、10・・・反射防止膜。
1 and 2 are cross-sectional views of a light emitting diode of the present invention, and FIG. 3 is a cross-sectional view of a conventional light emitting diode. DESCRIPTION OF SYMBOLS 1... First cladding layer, 2... Active layer, 3... Second cladding layer, 4... Block layer, 5... Diffusion region, 6... First electrode (n-side electrode ), 7... second electrode (
monitor electrode), 8... n-side electrode, 9... SiO2 film, 10... antireflection film.

Claims (1)

【特許請求の範囲】[Claims] 少なくとも第1の導電型の半導体よりなる第1のクラッ
ド層、前記第1のクラッド層より禁制帯幅が小さな半導
体よりなる活性層、前記活性層より禁制帯幅が大きく第
2の導電型の半導体よりなる第2のクラッド層、第1の
導電型の半導体よりなるブロック層を順次積層した多層
構造と、前記活性層の一部領域に集中的に電流を流すこ
とができる電流注入手段とを持った発光ダイオードにお
いて、前記ブロック層上に前記活性層の一部領域に電流
を流すための第1の電極と、ブロック層に電気的につな
がる第2の電極を持ち、前記第1の電極と前記第2の電
極の間では少なくとも前記ブロック層から前記活性層の
深さまでの各層において電気的に分離されていることを
特徴とする発光ダイオード。
a first cladding layer made of a semiconductor of at least a first conductivity type; an active layer made of a semiconductor having a narrower bandgap width than the first cladding layer; and a semiconductor of a second conductivity type having a larger bandgap width than the active layer. The active layer has a multilayer structure in which a second cladding layer made of a semiconductor and a block layer made of a first conductivity type semiconductor are sequentially laminated, and a current injection means that allows current to flow intensively into a partial region of the active layer. The light emitting diode has a first electrode on the block layer for flowing a current to a partial region of the active layer, and a second electrode electrically connected to the block layer, and the first electrode and the A light emitting diode, wherein the second electrodes are electrically isolated from each other at least in each layer from the blocking layer to the depth of the active layer.
JP1110225A 1989-04-27 1989-04-27 Light emitting diode Pending JPH02288273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1110225A JPH02288273A (en) 1989-04-27 1989-04-27 Light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1110225A JPH02288273A (en) 1989-04-27 1989-04-27 Light emitting diode

Publications (1)

Publication Number Publication Date
JPH02288273A true JPH02288273A (en) 1990-11-28

Family

ID=14530261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1110225A Pending JPH02288273A (en) 1989-04-27 1989-04-27 Light emitting diode

Country Status (1)

Country Link
JP (1) JPH02288273A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009260246A (en) * 2008-03-26 2009-11-05 Oki Data Corp Semiconductor light-emitting device, optical print head, and image forming appparatus
JP2009290232A (en) * 2009-09-03 2009-12-10 Oki Data Corp Method for manufacturing semiconductor composite device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009260246A (en) * 2008-03-26 2009-11-05 Oki Data Corp Semiconductor light-emitting device, optical print head, and image forming appparatus
EP2106003A3 (en) * 2008-03-26 2010-06-02 Oki Data Corporation Semiconductor light emitting apparatus, optical print head and image forming apparatus
JP4595012B2 (en) * 2008-03-26 2010-12-08 株式会社沖データ Semiconductor light emitting device, optical print head, and image forming apparatus
US8304792B2 (en) 2008-03-26 2012-11-06 Oki Data Corporation Semiconductor light emitting apparatus and optical print head
JP2009290232A (en) * 2009-09-03 2009-12-10 Oki Data Corp Method for manufacturing semiconductor composite device

Similar Documents

Publication Publication Date Title
US5744828A (en) Semiconductor light emitting device with blocking layer
US10461230B2 (en) Light emitting diode component
JP4718492B2 (en) Semiconductor structure with active region
US20030181122A1 (en) Producing self-aligned and self-exposed photoresist patterns on light emitting devices
JP2006253298A (en) Semiconductor light emitting element and device therefor
JP2006066518A (en) Semiconductor light-emitting element and method of manufacturing the same
JP2005136443A (en) Light emitting diode
KR102101356B1 (en) Light emitting device, and lighting system
JP4058937B2 (en) Semiconductor light emitting device and manufacturing method thereof
US9935423B2 (en) Semiconductor laser device
US20050139842A1 (en) Semiconductor light emitting element and fabrication method thereof
JPH02288273A (en) Light emitting diode
CA1161148A (en) Dual-wavelength light-emitting diode
JP2000150961A (en) Led element with light emitting substrate
JP3087743B2 (en) Intermediate color LED
JP3400110B2 (en) Light emitting diode
KR100329054B1 (en) Semiconductor light emitting element and method for fabricating the same
JPH09307140A (en) Semiconductor light emitting device
JP3571477B2 (en) Semiconductor light emitting device
JP2002016282A (en) Nitride semiconductor element
US11367997B2 (en) Semiconductor integrated optics element and production method therefor
US6351481B1 (en) Diode laser with screening window and method of fabrication
JP2003101065A (en) Light-emitting diode and manufacturing method therefor
JP2004241462A (en) Light emitting element and epitaxial wafer therefor
KR20050106426A (en) Light-emitting diode device and production method thereof