JP2002016282A - Nitride semiconductor element - Google Patents

Nitride semiconductor element

Info

Publication number
JP2002016282A
JP2002016282A JP2000194105A JP2000194105A JP2002016282A JP 2002016282 A JP2002016282 A JP 2002016282A JP 2000194105 A JP2000194105 A JP 2000194105A JP 2000194105 A JP2000194105 A JP 2000194105A JP 2002016282 A JP2002016282 A JP 2002016282A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
layer
insulating layer
semiconductor device
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000194105A
Other languages
Japanese (ja)
Other versions
JP4501234B2 (en
Inventor
Takeshi Kususe
健 楠瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2000194105A priority Critical patent/JP4501234B2/en
Publication of JP2002016282A publication Critical patent/JP2002016282A/en
Application granted granted Critical
Publication of JP4501234B2 publication Critical patent/JP4501234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a nitride semiconductor element which can prevent deterioration of sealing material and maintain high luminance of a light-emitting diode. SOLUTION: In this nitride semiconductor element, an N-type nitride semiconductor layer, an active layer and a P-type nitride semiconductor layer are laminated on a substrate, and a trench is formed which penetrates the active layer from the uppermost surface of the P-type nitride semiconductor layer. In the trench, a first insulating layer, in contact with the inner wall surface of the trench, and a second insulating layer, in contact with the first insulating layer are formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発光ダイオード等
に用いられる窒化物半導体素子に係り、特に、封止材料
の劣化を防止し、発光ダイオードの高輝度を維持できる
窒化物半導体素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitride semiconductor device used for a light emitting diode or the like, and more particularly, to a nitride semiconductor device capable of preventing deterioration of a sealing material and maintaining high brightness of the light emitting diode.

【0002】[0002]

【従来技術】窒化物半導体は広いバンドギャップを持
ち、直接遷移型であることから、短波長の発光素子、例
えば発光ダイオード(LED)の材料として利用され
る。特に窒化物半導体素子を用いた高輝度の青色発光L
EDは、LEDディスプレイ、交通信号灯、イメージス
キャナー光源等の各種光源として実用化されている。
2. Description of the Related Art Since a nitride semiconductor has a wide band gap and is a direct transition type, it is used as a material for a light emitting element having a short wavelength, for example, a light emitting diode (LED). In particular, high-luminance blue light emission L using a nitride semiconductor device
EDs have been put to practical use as various light sources such as LED displays, traffic lights, and image scanner light sources.

【0003】LEDは、基本的には半導体素子、電極及
び封止材料から構成されている。半導体素子は、基板上
に形成された少なくとも半導体接合を有するp型及びn
型の半導体と、それぞれの半導体に接したp電極及びn
電極により構成されている。
[0003] The LED is basically composed of a semiconductor element, an electrode and a sealing material. The semiconductor element is a p-type and an n-type having at least a semiconductor junction formed on a substrate.
Type semiconductor, p electrode and n in contact with each semiconductor
It is composed of electrodes.

【0004】半導体素子の具体的な一例として窒化物半
導体素子を挙げると、図5のように透光性絶縁基板であ
るサファイア、スピネル等の基板501の上に窒化物半
導体と格子定数の不整合を緩和させるバッファ層(図示
せず)、n電極508とオーミック接触を得るためのS
iがドープされたGaNよりなるn型コンタクト層50
2、キャリア結合により光を発生させるGaN及びIn
GaNよりなる活性層(発光層)503、キャリアを活
性層に閉じこめるためのMgがドープされたAlGaN
及びMgがドープされたInGaNよりなるp型クラッ
ド層504、p電極507とオーミック接触を得るため
のMgがドープされたGaNよりなるp型コンタクト層
505が順に積層されている窒化物半導体と、この窒化
物半導体をエッチングして形成させたn型窒化物半導体
の露出面に所望の形状に形成させたn電極508と、p
型窒化物半導体層の表面のほぼ全面を覆う全面電極50
6上に所望の形状に形成させたp電極507とを有し、
これら窒化物半導体及び各電極を外部から保護し短絡を
防ぐ目的で形成させた絶縁層509とから構成される。
この窒化物半導体素子をリード電極上にマウントし、電
気的に導通を取り、透光性のエポキシ系樹脂等の封止材
料で封止してLEDとなる。このようなLEDに通電さ
せると、窒化物半導体素子中の活性層から発光した光が
最上面のp型窒化物半導体層の表面及び活性層端面から
放出される。
As a specific example of a semiconductor device, a nitride semiconductor device is exemplified. As shown in FIG. 5, a lattice constant mismatch between a nitride semiconductor and a substrate 501 such as sapphire or spinel which is a light-transmitting insulating substrate. Buffer layer (not shown) for alleviating the resistance, and S for obtaining ohmic contact with n electrode 508
n-type contact layer 50 made of GaN doped with i
2. GaN and In which generate light by carrier coupling
Active layer (light emitting layer) 503 made of GaN, AlGaN doped with Mg to confine carriers in the active layer
A nitride semiconductor in which a p-type cladding layer 504 made of InGaN doped with Mg and a p-type contact layer 505 made of GaN doped with Mg for obtaining ohmic contact with the p-electrode 507 are sequentially stacked; An n-electrode 508 formed in a desired shape on an exposed surface of the n-type nitride semiconductor formed by etching the nitride semiconductor;
Electrode 50 covering almost the entire surface of the p-type nitride semiconductor layer
6, a p-electrode 507 formed in a desired shape on
An insulating layer 509 is formed for the purpose of protecting the nitride semiconductor and each electrode from the outside and preventing a short circuit.
The nitride semiconductor element is mounted on a lead electrode, electrically connected, and sealed with a sealing material such as a translucent epoxy resin to obtain an LED. When such an LED is energized, light emitted from the active layer in the nitride semiconductor device is emitted from the uppermost surface of the p-type nitride semiconductor layer and the end surface of the active layer.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、近年の
LEDの高出力化に伴い、従来には無かったような問題
が発生してきた。その一つに、封止材であるエポキシ系
樹脂が、窒化物半導体素子から発せられる光によって劣
化するという問題がある。
However, with the recent increase in the output of LEDs, problems that have not been encountered in the past have occurred. One of the problems is that the epoxy resin as a sealing material is deteriorated by light emitted from the nitride semiconductor element.

【0006】エポキシ系樹脂は一般に、窒化物半導体と
の密着性が良く、機械的強度に優れ、また化学的にも安
定しており、価格が安価である等の理由から、封止材料
として現在最もよく用いられている材料であり、太陽光
等の外部からの弱い光及び熱に対しては耐候性に優れて
いる。しかし、青色を発光可能な窒化物半導体素子を用
いたLEDの場合、他色に比べてエネルギーが高いた
め、エポキシ系樹脂が劣化して黒褐系色に着色し、窒化
物半導体素子からの光を吸収してしまう。そのため、長
時間の使用により、窒化物半導体素子が劣化していない
にもかかわらず、LEDの発光強度が低下してしまうと
いう問題が生じている。
Epoxy resins are generally used as encapsulants because of their good adhesion to nitride semiconductors, excellent mechanical strength, chemical stability, and low cost. It is the most frequently used material and has excellent weather resistance against weak light and heat from the outside such as sunlight. However, in the case of an LED using a nitride semiconductor element capable of emitting blue light, since the energy is higher than that of other colors, the epoxy resin is deteriorated and colored to a black-brown color, and light from the nitride semiconductor element is emitted. Absorbs. For this reason, there is a problem in that the emission intensity of the LED is reduced by long-time use, even though the nitride semiconductor element is not deteriorated.

【0007】従って、本発明は、窒化物半導体素子を封
止しているエポキシ系樹脂の劣化を抑制し、LEDの高
輝度を維持する窒化物半導体素子を提供することを目的
とする。
Accordingly, it is an object of the present invention to provide a nitride semiconductor device which suppresses deterioration of an epoxy resin sealing a nitride semiconductor device and maintains high brightness of an LED.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記目的
を達成するために鋭意検討を行った結果、窒化物半導体
素子を封止しているエポキシ系樹脂のうち、特に劣化が
激しいのは活性層端面周辺であり、窒化物半導体素子の
形状を改良することで上記問題を解決出来ることを見い
だし、本発明を完成させるに至った。
Means for Solving the Problems The inventors of the present invention have made intensive studies to achieve the above object, and as a result, among the epoxy resins sealing the nitride semiconductor element, the deterioration is particularly severe. Is near the end face of the active layer. It has been found that the above problem can be solved by improving the shape of the nitride semiconductor device, and the present invention has been completed.

【0009】すなわち本発明の窒化物半導体素子は、基
板上にn型窒化物半導体層、活性層及びp型窒化物半導
体層が積層された窒化物半導体素子であって、前記窒化
物半導体素子は、p型窒化物半導体層の最上面から前記
活性層を貫通する深さの溝が形成され、溝の内部には内
壁表面に接した第1の絶縁層と、第1の絶縁層に接した
第2の絶縁層とが形成されていることを特徴とする。
That is, a nitride semiconductor device of the present invention is a nitride semiconductor device in which an n-type nitride semiconductor layer, an active layer, and a p-type nitride semiconductor layer are stacked on a substrate. A groove having a depth penetrating the active layer from the uppermost surface of the p-type nitride semiconductor layer, and a first insulating layer in contact with the inner wall surface inside the groove and a first insulating layer in contact with the first insulating layer A second insulating layer is formed.

【0010】また、前記第1の絶縁層及び第2の絶縁層
は、屈折率の異なる材料よりなることを特徴とする。
Further, the first insulating layer and the second insulating layer are made of materials having different refractive indexes.

【0011】さらにまた、前記第2の絶縁層は、第1の
絶縁層よりも屈折率の高い材料よりなることを特徴とす
る。
Further, the second insulating layer is made of a material having a higher refractive index than that of the first insulating layer.

【0012】また、前記溝は、窒化物半導体素子のp型
窒化物半導体層の最上面の外周近傍に沿って形成されて
いることが好ましい。このように構成することで、活性
層を平行に伝搬する光を効率よく拡散させることができ
る。
It is preferable that the groove is formed along the vicinity of the outer periphery of the uppermost surface of the p-type nitride semiconductor layer of the nitride semiconductor device. With such a configuration, light propagating in parallel in the active layer can be efficiently diffused.

【0013】また、前記第1の絶縁層として、SiO2
を好適に用いることができる。
The first insulating layer may be made of SiO 2
Can be suitably used.

【0014】また、前記第2の絶縁層として、ポリイミ
ド系樹脂を好適に用いることができる。
Further, a polyimide resin can be suitably used for the second insulating layer.

【0015】[0015]

【発明の実施の形態】本発明の発光ダイオードは、基板
上にn型窒化物半導体層、活性層及びp型窒化物半導体
層が積層された窒化物半導体素子であって、特に、活性
層から発光される主発光波長が500nm以下である窒
化物半導体素子である。以下、図面を参照しながら本発
明に係る実施の形態の窒化物半導体について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A light emitting diode according to the present invention is a nitride semiconductor device in which an n-type nitride semiconductor layer, an active layer and a p-type nitride semiconductor layer are laminated on a substrate. A nitride semiconductor device having a main emission wavelength of 500 nm or less. Hereinafter, a nitride semiconductor according to an embodiment of the present invention will be described with reference to the drawings.

【0016】本発明に係る実施の形態の窒化物半導体素
子の正面図を図2に、図2のA−A’面における断面図
を図1に示す。本発明の実施の形態の窒化物半導体素子
は、図1に示すように、サファイア、スピネル等の基板
101上に窒化物半導体層との格子定数の不整合を緩和
させるバッファ層(図示せず)、n電極108とオーミ
ック接触を得るためのSiがドープされたGaNよりな
るn型コンタクト層102、キャリア結合により光を発
生させるGaNおよびInGaNよりなる活性層(発光
層)103、キャリアを活性層に閉じこめるためのMg
がドープされたAlGaN及びMgがドープされたIn
GaNよりなるp型クラッド層104、p電極107及
び全面電極106とオーミック接触を得るためのMgが
ドープされたGaNよりなるp型コンタクト層105が
順に積層されている。
FIG. 2 is a front view of a nitride semiconductor device according to an embodiment of the present invention, and FIG. 1 is a cross-sectional view taken along the line AA 'of FIG. As shown in FIG. 1, the nitride semiconductor device according to the embodiment of the present invention has a buffer layer (not shown) for reducing mismatch of lattice constant with a nitride semiconductor layer on a substrate 101 such as sapphire or spinel. An n-type contact layer 102 made of GaN doped with Si for obtaining ohmic contact with the n-electrode 108; an active layer (light emitting layer) 103 made of GaN and InGaN for generating light by carrier coupling; Mg for confinement
-Doped AlGaN and Mg-doped In
A p-type cladding layer 104 of GaN, a p-electrode 107 and a p-type contact layer 105 of GaN doped with Mg for obtaining ohmic contact with the entire surface electrode 106 are sequentially stacked.

【0017】バッファ層は低温によって結晶成長を行っ
たGaNで、膜厚は10〜500Åが好ましい。n型コ
ンタクト層102は、SiがドープされたGaNから構
成され、膜厚は1〜20μmが好ましく、さらに好まし
くは2〜6μmである。n型コンタクト層102の上に
例えばSiがドープされたAlGaNからなるn型クラ
ッド層を膜厚100〜500Åの厚さで形成させてもよ
い。活性層103は膜厚25〜300ÅのInGaNか
ら構成されてもよいし、あるいは、膜厚50ÅのGaN
及び膜厚30ÅのInGaNを1〜10層形成し、最後
に膜厚50ÅのGaNを形成した単一あるいは多重量子
井戸層として構成されてもよい。
The buffer layer is made of GaN crystal-grown at a low temperature, and preferably has a thickness of 10 to 500 °. The n-type contact layer 102 is composed of GaN doped with Si, and has a thickness of preferably 1 to 20 μm, more preferably 2 to 6 μm. On the n-type contact layer 102, an n-type cladding layer made of, for example, AlGaN doped with Si may be formed with a thickness of 100 to 500 °. The active layer 103 may be made of InGaN having a thickness of 25 to 300 °, or GaN having a thickness of 50 °
A single or multiple quantum well layer may be formed by forming 1 to 10 layers of InGaN having a thickness of 30 ° and finally forming GaN having a thickness of 50 °.

【0018】p型クラッド層104はMgがドープされ
たAlGaN及びMgがドープされたInGaNから構
成され、膜厚は100Åから0.2μmが好ましい、p
型コンタクト層105はMgがドープされたGaNから
構成され、膜厚は0.05〜0.2μmが好ましい。
The p-type cladding layer 104 is made of Mg-doped AlGaN and Mg-doped InGaN, and preferably has a thickness of 100 ° to 0.2 μm.
The mold contact layer 105 is made of GaN doped with Mg, and preferably has a thickness of 0.05 to 0.2 μm.

【0019】その後、窒化物半導体をエッチングする
が、本発明の実施の形態においては、図1に示すよう
に、p型窒化物半導体層(p型コンタクト層)105の
最上面から活性層103を貫通する溝112が形成さ
れ、溝の内部には、内壁に接した第1の絶縁層109
と、第1の絶縁層に接した第2の絶縁層111が形成さ
れている。
After that, the nitride semiconductor is etched. In the embodiment of the present invention, as shown in FIG. 1, the active layer 103 is formed from the uppermost surface of the p-type nitride semiconductor layer (p-type contact layer) 105. A penetrating groove 112 is formed, and a first insulating layer 109 in contact with the inner wall is formed inside the groove.
And a second insulating layer 111 in contact with the first insulating layer.

【0020】溝の深さは、p型窒化物半導体層の最上面
の表面から活性層を貫通する深さに形成されていればよ
い。本実施の形態のように、絶縁性の基板を用いてp電
極とn電極とが同じ側に形成されている場合、電流の経
路を確保するために溝の深さをn型窒化物半導体層まで
とするのが好ましい。あまり深すぎると電流の経路が狭
くなって電流が流れにくくなり、また、溝が基板まで達
すると電流が流れなくなるので好ましくない。また、別
の形態として、基板として導電性の材料、例えばGaN
を用いてその導電性GaN基板側に形成されたn電極
と、p型窒化物半導体層側に形成されたp電極とが、対
面する形態の窒化物半導体素子の場合は、p型窒化物半
導体層の最上面の表面から形成された溝が導電性GaN
基板にまで達していても、電流の流れを阻害するもので
はないので、このような場合は、溝の深さは基板までで
あっても何ら差し支えない。
The depth of the groove may be such that it extends from the uppermost surface of the p-type nitride semiconductor layer through the active layer. When the p-electrode and the n-electrode are formed on the same side using an insulating substrate as in the present embodiment, the depth of the groove is set to the n-type nitride semiconductor layer in order to secure a current path. It is preferable that If the depth is too deep, the current path becomes narrow and the current becomes difficult to flow, and if the groove reaches the substrate, the current does not flow, which is not preferable. In another embodiment, a conductive material such as GaN is used as the substrate.
In the case of a nitride semiconductor device in which an n-electrode formed on the conductive GaN substrate side and a p-electrode formed on the p-type nitride semiconductor layer side face each other, a p-type nitride semiconductor is used. The groove formed from the uppermost surface of the layer is conductive GaN
Even if it reaches the substrate, it does not hinder the flow of current, and in such a case, the depth of the groove does not matter at all even up to the substrate.

【0021】また、本実施の形態の溝は、エッチングに
より形成させることができる。n電極形成面を露出させ
る際のエッチング時に同時に形成させてもよいし、ま
た、n電極形成面を露出させた後に更にエッチングによ
り溝を形成してもよい。前者は工程を増やすことなく、
マスクを変更するだけで溝を形成することができ、後者
はエッチング工程が2回に増えるという問題はあるもの
の、任意の深さの溝を形成させることができる。
Further, the groove of the present embodiment can be formed by etching. The groove may be formed at the same time as the etching when exposing the n-electrode formation surface, or may be further formed by etching after exposing the n-electrode formation surface. The former does not increase the number of processes,
The groove can be formed only by changing the mask, and the latter has a problem that the number of etching steps is increased twice, but a groove having an arbitrary depth can be formed.

【0022】また、本実施の形態の溝は、その溝の内部
に絶縁層を形成させてある。これによって、活性層(発
光層)端面とエポキシ系樹脂とを遠ざけることができ
る。つまり、エポキシ系樹脂が最も劣化し易い活性層端
面とエポキシ系樹脂との間には、絶縁層と溝の外壁(窒
化物半導体の端面と溝との間の部分)が形成されている
ことになる。溝の外壁にはp電極が形成されていないの
で電流が供給されず、活性層が発光しない窒化物半導体
である。従って、溝の外壁とエポキシ系樹脂が近接して
も何ら問題はない。
In the groove of the present embodiment, an insulating layer is formed inside the groove. This makes it possible to keep the end face of the active layer (light emitting layer) away from the epoxy resin. In other words, the outer wall of the insulating layer and the groove (the portion between the end surface of the nitride semiconductor and the groove) is formed between the end surface of the active layer where the epoxy resin is most likely to deteriorate and the epoxy resin. Become. Since no p-electrode is formed on the outer wall of the groove, no current is supplied and the active layer is a nitride semiconductor that does not emit light. Therefore, there is no problem even if the outer wall of the groove is close to the epoxy resin.

【0023】溝の内部には、内壁に接した第1の絶縁層
と、この第1の絶縁層に接した第2の絶縁層とが形成さ
れ、これら2層の絶縁層は屈折率の異なる材料が用いら
れる。ここで、本実施の形態の窒化物半導体素子の活性
層端面周辺の拡大図を図3に示す。第2の絶縁層が、第
1の絶縁層よりも高い屈折率を有する材料であった場
合、活性層から放出された光は、エポキシ系樹脂に達す
るまでに図中の矢印で示すように、主に第2の絶縁層と
他の部材との界面を通過する際に拡散される。大きく分
けると、溝内部の内側壁に接した第1の絶縁層と第2
の絶縁層との界面、溝内部の第2の絶縁層と溝の外壁
に接した第1の絶縁層との界面、溝の外壁の外側壁に
接した第1の絶縁層と第2の絶縁層との界面、の各界面
で広く拡散される。このように、溝の内部に、屈折率の
小さい第1の絶縁層を窒化物半導体の表面に接して形成
させ、その上に屈折率の大きい第2の絶縁層を形成させ
ることで、活性層端面からの光をより効率よく拡散させ
ることができる。
A first insulating layer in contact with the inner wall and a second insulating layer in contact with the first insulating layer are formed inside the groove, and the two insulating layers have different refractive indexes. Materials are used. Here, FIG. 3 is an enlarged view of the periphery of the active layer end face of the nitride semiconductor device of the present embodiment. If the second insulating layer is made of a material having a higher refractive index than the first insulating layer, the light emitted from the active layer will reach the epoxy resin as indicated by the arrow in the drawing, It is mainly diffused when passing through the interface between the second insulating layer and another member. Broadly speaking, the first insulating layer and the second
Between the second insulating layer inside the groove and the first insulating layer in contact with the outer wall of the groove, the first insulating layer and the second insulating layer in contact with the outer wall of the outer wall of the groove. It is widely diffused at each of the interfaces with the layer. As described above, the first insulating layer having a small refractive index is formed in contact with the surface of the nitride semiconductor inside the groove, and the second insulating layer having a large refractive index is formed thereon. Light from the end face can be more efficiently diffused.

【0024】また、上記のように形成させる溝の位置
は、図2に示すように窒化物半導体のp型窒化物半導体
層の最上面の外周近傍に沿って形成させるのが好まし
い。溝の外壁と窒化物半導体の側面との間の活性層は、
電流が供給されず発光しないため、発光面積を広く取る
為には窒化物半導体の側壁近傍に沿って溝を形成させる
ことが好ましい。また、溝の幅については、エッチング
精度により任意に設定することができるが、発光面積を
広く取るためには狭い方が好ましい。あまり広く取りす
ぎると、発光面積が狭くなるので好ましくない。
The position of the groove formed as described above is preferably formed along the vicinity of the outer periphery of the uppermost surface of the nitride semiconductor p-type nitride semiconductor layer as shown in FIG. The active layer between the outer wall of the groove and the side of the nitride semiconductor,
Since no current is supplied and no light is emitted, it is preferable to form a groove along the vicinity of the side wall of the nitride semiconductor in order to increase the light emitting area. Further, the width of the groove can be arbitrarily set depending on the etching accuracy, but is preferably narrow in order to increase the light emitting area. If the width is too large, the light emitting area becomes narrow, which is not preferable.

【0025】第1の絶縁層の材料としてはSiO2が、
また、第2の絶縁層の材料としては、ポリイミド系樹脂
を好適に用いることができる。SiO2とポリイミド系
樹脂は、屈折率等の性質は異なるが、ともにエポキシ系
樹脂と同様の無色透明の材料である。しかし、エポキシ
系樹脂に比べてLED内部の窒化物半導体素子からの波
長の短い光に対して劣化しにくいので、長時間使用して
もLEDの発光強度を低下させにくい。
As a material of the first insulating layer, SiO 2 is used.
Further, as a material of the second insulating layer, a polyimide resin can be suitably used. Although SiO2 and polyimide resin have different properties such as refractive index, both are colorless and transparent materials similar to epoxy resin. However, as compared with the epoxy resin, the LED is hardly deteriorated by light having a short wavelength from the nitride semiconductor element inside the LED, so that it is difficult to lower the light emission intensity of the LED even when used for a long time.

【0026】また、本発明の窒化物半導体素子は、LE
D等に用いることができ、例えば図4のような砲弾型の
LEDに搭載することができるが、この形態にとどまら
ず、エポキシ系樹脂等の封止材料で窒化物半導体素子を
封止するものであれば、外形は任意に選択することがで
きるので、表面実装型等の各種LEDに用いることがで
きるのはいうまでもない。また、封止材料中に、窒化物
半導体素子からの光によって励起されて蛍光を発する蛍
光物質を含んでいる場合にも適用することができ、この
ような場合でもLEDの輝度劣化を抑制する効果は十分
期待できる。
Further, the nitride semiconductor device of the present invention has an LE
D, etc., for example, can be mounted on a bullet-shaped LED as shown in FIG. 4, but is not limited to this form, and a nitride semiconductor element is sealed with a sealing material such as an epoxy resin. If so, the outer shape can be arbitrarily selected, and it goes without saying that the present invention can be used for various LEDs such as a surface mount type. Further, the present invention can also be applied to a case where a sealing material contains a fluorescent substance which emits fluorescence when excited by light from a nitride semiconductor element, and even in such a case, the effect of suppressing luminance degradation of an LED. Can expect enough.

【0027】[0027]

【実施例】[実施例]窒化物半導体として、下記のよう
な構成を有する窒化物半導体を用いる。各半導体層は、
基板上に有機金属気層成長方法(MOCVD法)により
形成される。図1に示すように、サファイア基板上にG
aNからなる膜厚約100Åのバッファ層(図示せ
ず)、SiがドープされたGaNからなる膜厚約4μm
のn型コンタクト層兼クラッド層、GaN及びInGa
Nからなる膜厚約1600Åの多量子井戸構造の活性層
(発光層)、MgがドープされたAlGaN及びMgが
ドープされたInGaNからなる膜厚約400Åのp型
クラッド層、MgがドープされたGaNからなる膜厚約
3000Åのp型コンタクト層の順に積層されている。
[Embodiment] As a nitride semiconductor, a nitride semiconductor having the following configuration is used. Each semiconductor layer is
It is formed on a substrate by a metal organic vapor deposition method (MOCVD method). As shown in FIG. 1, G on a sapphire substrate
a buffer layer (not shown) made of aN and having a thickness of about 100 °, and a film thickness of about 4 μm made of GaN doped with Si
N-type contact layer / cladding layer, GaN and InGa
N-type active layer (light-emitting layer) having a multi-quantum well structure having a thickness of about 1600 °, p-type cladding layer having a thickness of about 400 ° made of AlGaN doped with Mg and InGaN doped with Mg, and doped with Mg. P-type contact layers made of GaN and having a thickness of about 3000 ° are stacked in this order.

【0028】この窒化物半導体に正極及び負極の電極を
形成させる。まず、n電極をn型コンタクト層に形成さ
せるために窒化物半導体の端部をエッチング除去する。
エッチングはp型コンタクト層側から行い、n型コンタ
クト層が露出する深さまで約1μm程度とする。このと
き、p型コンタクト層の最上面の周辺近傍に沿って溝が
形成できるようなマスクを用いることで、図1のような
p型窒化物半導体層の表面から約1μmの深さの溝を有
する窒化物半導体が得られる。
A positive electrode and a negative electrode are formed on the nitride semiconductor. First, in order to form an n-electrode in an n-type contact layer, an end of the nitride semiconductor is removed by etching.
The etching is performed from the p-type contact layer side, and is set to about 1 μm to a depth where the n-type contact layer is exposed. At this time, a groove having a depth of about 1 μm from the surface of the p-type nitride semiconductor layer as shown in FIG. 1 is formed by using a mask capable of forming a groove along the periphery of the uppermost surface of the p-type contact layer. Is obtained.

【0029】上記で得られた窒化物半導体のp型コンタ
クト層(最上面)と接し、全面を被覆する電極として金
をスパッタリング法を用いて成膜する。この全面電極の
上にはp電極として金を、エッチングにより露出させた
n型コンタクト層の上にはn電極としてタングステン/
アルミニウムをそれぞれ形成させる。その後、蒸着法に
よって全面にSiO2層を形成させる。
Gold is formed by sputtering as an electrode which is in contact with the p-type contact layer (uppermost surface) of the nitride semiconductor obtained above and covers the entire surface. Gold is applied as a p-electrode on the whole surface electrode, and tungsten / tungsten is applied as an n-electrode on the n-type contact layer exposed by etching.
Aluminum is formed respectively. Thereafter, an SiO2 layer is formed on the entire surface by an evaporation method.

【0030】次いで、レジストマスクを利用してドライ
エッチングさせることによりp電極及びn電極の表面を
露出させる。レジストマスクを除去して窒化物半導体上
にSiO2層を露出させる。次いで、全面にポリイミド
系樹脂層を形成し、ウェットエッチングによりp電極及
びn電極を露出させることにより、本発明の窒化物半導
体素子を得る。
Then, the surfaces of the p-electrode and the n-electrode are exposed by dry etching using a resist mask. The resist mask is removed to expose the SiO2 layer on the nitride semiconductor. Next, a polyimide resin layer is formed on the entire surface, and the p-electrode and the n-electrode are exposed by wet etching to obtain the nitride semiconductor device of the present invention.

【0031】[比較例]比較のために、n型コンタクト
層形成時にに溝を形成させない以外は、実施例と同様に
行って窒化物半導体素子を得た。
Comparative Example For comparison, a nitride semiconductor device was obtained in the same manner as in the example except that no groove was formed when forming the n-type contact layer.

【0032】上記の実施例及び比較例で得られた窒化物
半導体素子の端面周辺の発光強度のプロファイルを図6
に示す。図6は、窒化物半導体素子の端面からの距離を
横軸とし、溝の形成されていないp型窒化物半導体層の
最上面の発光強度を基準発光強度(100%)とした相
対発光強度を縦軸としたプロファイルである。比較例で
得られた溝の形成されていない窒化物半導体素子は、図
6中の破線で示されるように、活性層端面(距離=0μ
m)での発光強度が極端に強く、基準発光強度の約2.
5倍もの値を示している。これに対し、実施例で得られ
た溝を有する窒化物半導体素子は、図6中の実線で示さ
れるように、活性層端面周辺の発光強度は溝に由来する
3つのピークを有し、そのうちの最も発光強度の強いも
のでも、基準発光強度の約1.5倍である。このよう
に、活性層端面からの強い発光強度の光は、溝を形成さ
せることで拡散され、エポキシ系樹脂の1点に集中しな
いことがわかる。強い光を1点に集中させないで拡散さ
せることで、エポキシ系樹脂の劣化を抑制することがで
きる。
FIG. 6 shows the emission intensity profiles around the end faces of the nitride semiconductor devices obtained in the above Examples and Comparative Examples.
Shown in FIG. 6 shows the relative luminous intensity, where the horizontal axis represents the distance from the end face of the nitride semiconductor element and the luminous intensity of the uppermost surface of the p-type nitride semiconductor layer where no groove is formed is the reference luminous intensity (100%). This is the profile on the vertical axis. The nitride semiconductor element without a groove obtained in the comparative example has an active layer end face (distance = 0 μm) as shown by a broken line in FIG.
m) is extremely strong, which is about 2.
The value is five times as large. On the other hand, in the nitride semiconductor device having the groove obtained in the example, as shown by the solid line in FIG. 6, the emission intensity around the end face of the active layer has three peaks derived from the groove. Is about 1.5 times the reference light emission intensity. As described above, it can be seen that the light having a high emission intensity from the end face of the active layer is diffused by forming the groove, and is not concentrated at one point of the epoxy resin. By diffusing strong light without concentrating it at one point, deterioration of the epoxy resin can be suppressed.

【0033】上記の実施例及び比較例で得られた窒化物
半導体を、リード電極上にダイボンディング機器を用い
てマウントさせる。窒化物半導体の各電極とリード電極
とを金線を用いてワイヤボンディングさせ、電気的に導
通を取る。次いで、エポキシ系樹脂により封止すること
によりLEDを得る。このLEDに電流を供給し、発光
強度を測定した結果を図7に示す。比較例で得られたL
EDは、約1000時間経過した頃より強度が劣化し始
め、約10000時間経過した頃には、発光強度は初強
度の約60%程度にまでの低下しているのがわかる。
The nitride semiconductors obtained in the above Examples and Comparative Examples are mounted on lead electrodes using a die bonding device. Each electrode of the nitride semiconductor and the lead electrode are wire-bonded using a gold wire to establish electrical continuity. Next, an LED is obtained by sealing with an epoxy resin. FIG. 7 shows the result of measuring the emission intensity by supplying a current to the LED. L obtained in the comparative example
It can be seen that the intensity of the ED starts to deteriorate after about 1000 hours, and after about 10000 hours, the emission intensity is reduced to about 60% of the initial intensity.

【0034】[0034]

【発明の効果】以上説明したように、本発明によれば、
最表面から活性層を貫通する深さの溝を窒化物半導体素
子の最上面外周近傍に沿って形成し、この溝に屈折率の
異なる2層の絶縁層を形成させることにより、活性層端
面に集中していた光を拡散させることができる。そのた
め活性層を平行に進む光による活性層端面周辺のエポキ
シ系樹脂の劣化を抑制することができるので、発光ダイ
オードの劣化も抑制することができる。
As described above, according to the present invention,
A groove having a depth penetrating the active layer from the outermost surface is formed near the outer periphery of the uppermost surface of the nitride semiconductor device, and two insulating layers having different refractive indices are formed in the groove, so that the end surface of the active layer is formed. The concentrated light can be diffused. Therefore, the deterioration of the epoxy resin around the end face of the active layer due to the light traveling parallel to the active layer can be suppressed, and the deterioration of the light emitting diode can also be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の窒化物半導体素子の構成を示す図。FIG. 1 is a diagram showing a configuration of a nitride semiconductor device of the present invention.

【図2】 本発明の窒化物半導体素子の構成を示す正面
FIG. 2 is a front view showing the configuration of the nitride semiconductor device of the present invention.

【図3】 本発明の窒化物半導体の活性層端面周辺を示
す拡大図。
FIG. 3 is an enlarged view showing the periphery of an active layer end face of the nitride semiconductor of the present invention.

【図4】 本発明の窒化物半導体素子を用いたLEDの
一例を示す図。
FIG. 4 is a diagram showing an example of an LED using the nitride semiconductor device of the present invention.

【図5】 従来の窒化物半導体素子の構成を示す図。FIG. 5 is a diagram showing a configuration of a conventional nitride semiconductor device.

【図6】 本発明の実施例及び比較例の窒化物半導体素
子の発光強度のプロファイルを示す図。
FIG. 6 is a graph showing emission intensity profiles of nitride semiconductor devices according to an example of the present invention and a comparative example.

【図7】 本発明の実施例及び比較例の窒化物半導体素
子を用いたLEDの発光輝度の経時変化を示す図。
FIG. 7 is a graph showing a change over time in light emission luminance of an LED using the nitride semiconductor device of the example of the present invention and the comparative example.

【符号の説明】[Explanation of symbols]

101、501・・・基板 102、502・・・n型コンタクト層 103、503・・・活性層(発光層) 104、504・・・p型クラッド層 105、505・・・p型コンタクト層 106、506・・・全面電極 107、507・・・p電極 108、508・・・n電極 109、509・・・第1の絶縁層 111・・・第2の絶縁層 112・・・溝 410・・・エポキシ系樹脂 421・・・リード電極 422・・・窒化物半導体素子 423・・・ワイヤ 101, 501: substrate 102, 502: n-type contact layer 103, 503: active layer (light-emitting layer) 104, 504: p-type cladding layer 105, 505: p-type contact layer 106 , 506... Overall electrode 107, 507... P-electrode 108, 508... N-electrode 109, 509... First insulating layer 111. ..Epoxy resin 421 Lead electrode 422 Nitride semiconductor element 423 Wire

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 基板上にn型窒化物半導体層、活性層及
びp型窒化物半導体層が積層された窒化物半導体素子で
あって、 前記窒化物半導体素子は、p型窒化物半導体層の最上面
から前記活性層を貫通する深さの溝が形成され、 前記溝は、その内部に内壁表面に接した第1の絶縁層
と、第1の絶縁層に接した第2の絶縁層とが形成されて
いることを特徴とする窒化物半導体素子。
1. A nitride semiconductor device in which an n-type nitride semiconductor layer, an active layer, and a p-type nitride semiconductor layer are stacked on a substrate, wherein the nitride semiconductor device is a p-type nitride semiconductor layer. A groove having a depth penetrating the active layer from an uppermost surface is formed, wherein the groove has a first insulating layer in contact with an inner wall surface and a second insulating layer in contact with the first insulating layer. A nitride semiconductor device, characterized in that:
【請求項2】 前記第1の絶縁層と第2の絶縁層は、屈
折率の異なる材料よりなる請求項1記載の窒化物半導体
素子。
2. The nitride semiconductor device according to claim 1, wherein the first insulating layer and the second insulating layer are made of materials having different refractive indexes.
【請求項3】 前記第2の絶縁層は、前記第1の絶縁層
よりも屈折率が高い材料よりなる請求項2記載の窒化物
半導体素子。
3. The nitride semiconductor device according to claim 2, wherein said second insulating layer is made of a material having a higher refractive index than said first insulating layer.
【請求項4】 前記溝は、前記窒化物半導体素子のp型
窒化物半導体層の最上面の外周近傍に沿って形成されて
いる請求項1乃至請求項3記載の窒化物半導体素子。
4. The nitride semiconductor device according to claim 1, wherein the groove is formed along the vicinity of the outer periphery of the uppermost surface of the p-type nitride semiconductor layer of the nitride semiconductor device.
【請求項5】 前記第1の絶縁層は、SiO2からなる
請求項1乃至請求項4記載の窒化物半導体素子。
5. The nitride semiconductor device according to claim 1, wherein said first insulating layer is made of SiO 2.
【請求項6】 前記第2の絶縁層は、ポリイミド系樹脂
からなる請求項1乃至請求項5記載の窒化物半導体素
子。
6. The nitride semiconductor device according to claim 1, wherein said second insulating layer is made of a polyimide resin.
JP2000194105A 2000-06-28 2000-06-28 Nitride semiconductor device Expired - Fee Related JP4501234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000194105A JP4501234B2 (en) 2000-06-28 2000-06-28 Nitride semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000194105A JP4501234B2 (en) 2000-06-28 2000-06-28 Nitride semiconductor device

Publications (2)

Publication Number Publication Date
JP2002016282A true JP2002016282A (en) 2002-01-18
JP4501234B2 JP4501234B2 (en) 2010-07-14

Family

ID=18692986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000194105A Expired - Fee Related JP4501234B2 (en) 2000-06-28 2000-06-28 Nitride semiconductor device

Country Status (1)

Country Link
JP (1) JP4501234B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165515A (en) * 2005-12-13 2007-06-28 Showa Denko Kk Gallium-nitride compound semiconductor light-emitting element
JP2007294885A (en) * 2006-03-31 2007-11-08 Nichia Chem Ind Ltd Light emitting device and method for fabrication thereby
JP2010530628A (en) * 2007-06-20 2010-09-09 オプトガン オイ Light emitting diode
US7947996B2 (en) 2006-06-28 2011-05-24 Nichia Corporation Semiconductor light emitting element
KR101186682B1 (en) * 2005-12-16 2012-09-28 서울옵토디바이스주식회사 Light emitting chips arrayed and method for manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE48774E1 (en) 2008-11-14 2021-10-12 Suzhou Lekin Semiconductor Co., Ltd. Semiconductor light emitting device
KR102554702B1 (en) 2015-08-25 2023-07-13 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emittimng device and light emitting device including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252440A (en) * 1993-02-26 1994-09-09 Kyocera Corp Semiconductor light emitting device
JPH11204832A (en) * 1998-01-14 1999-07-30 Toshiba Electronic Engineering Corp Gallium nitride type compd. semiconductor light emitting element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252440A (en) * 1993-02-26 1994-09-09 Kyocera Corp Semiconductor light emitting device
JPH11204832A (en) * 1998-01-14 1999-07-30 Toshiba Electronic Engineering Corp Gallium nitride type compd. semiconductor light emitting element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165515A (en) * 2005-12-13 2007-06-28 Showa Denko Kk Gallium-nitride compound semiconductor light-emitting element
US8258541B2 (en) 2005-12-13 2012-09-04 Showa Denko K.K. Gallium nitride-based compound semiconductor light-emitting device
KR101186682B1 (en) * 2005-12-16 2012-09-28 서울옵토디바이스주식회사 Light emitting chips arrayed and method for manufacturing the same
JP2007294885A (en) * 2006-03-31 2007-11-08 Nichia Chem Ind Ltd Light emitting device and method for fabrication thereby
US7777242B2 (en) 2006-03-31 2010-08-17 Nichia Corporation Light emitting device and fabrication method thereof
US7947996B2 (en) 2006-06-28 2011-05-24 Nichia Corporation Semiconductor light emitting element
JP2010530628A (en) * 2007-06-20 2010-09-09 オプトガン オイ Light emitting diode

Also Published As

Publication number Publication date
JP4501234B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
KR100503907B1 (en) Semiconductor light emitting element
JP5531575B2 (en) Group III nitride compound semiconductor light emitting device
US20110037049A1 (en) Nitride semiconductor light-emitting device
TW201306305A (en) Semiconductor light emitting element
JP2009530803A (en) Monolithic white light emitting diode
JP2016092411A (en) Light emitting element
JP5276680B2 (en) Light emitting device package, lighting system
TWI495152B (en) Light emitting diode and method for producing the same
TW201519466A (en) Semiconductor light emitting device
KR20110075834A (en) Light emitting device, method for fabricating the same and light emitting device package
JP2007157969A (en) Semiconductor light-emitting element
US20070082418A1 (en) Method for manufacturing a light emitting device and light emitting device made therefrom
JP5150367B2 (en) Light emitting device and manufacturing method thereof
KR20190042092A (en) Semiconductor device
US20130126829A1 (en) High efficiency light emitting diode
JP5933075B2 (en) Semiconductor light emitting device
JP4501234B2 (en) Nitride semiconductor device
KR101055003B1 (en) Light emitting device, light emitting device package, lighting system, and method for fabricating the light emitting device
JP2004311677A (en) Semiconductor light emitting device
JP4902040B2 (en) Nitride semiconductor device
KR20040005270A (en) Light emitting diode and method for fabricating thereof
KR101513947B1 (en) Nitride semiconductor light emitting device and producing method of the same
JPH0818097A (en) Light emitting diode
US20070096120A1 (en) Lateral current GaN flip chip LED with shaped transparent substrate
KR101381984B1 (en) Method for manufacturing light emitting diode chip and light emitting diode manufactured using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

R150 Certificate of patent or registration of utility model

Ref document number: 4501234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees