JPH0228804B2 - - Google Patents

Info

Publication number
JPH0228804B2
JPH0228804B2 JP56134224A JP13422481A JPH0228804B2 JP H0228804 B2 JPH0228804 B2 JP H0228804B2 JP 56134224 A JP56134224 A JP 56134224A JP 13422481 A JP13422481 A JP 13422481A JP H0228804 B2 JPH0228804 B2 JP H0228804B2
Authority
JP
Japan
Prior art keywords
voltage
measurement mode
counter
terminal
detection section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56134224A
Other languages
Japanese (ja)
Other versions
JPS5835415A (en
Inventor
Takeshi Yasuhara
Eiichi Nabeta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP56134224A priority Critical patent/JPS5835415A/en
Priority to US06/402,377 priority patent/US4531193A/en
Priority to CA000408285A priority patent/CA1220835A/en
Priority to AU86518/82A priority patent/AU549860B2/en
Priority to BR8204472A priority patent/BR8204472A/en
Priority to EP84114777A priority patent/EP0159401B1/en
Priority to DE8282106917T priority patent/DE3274495D1/en
Priority to DE8484114777T priority patent/DE3279510D1/en
Priority to DE19823229010 priority patent/DE3229010A1/en
Priority to EP82106917A priority patent/EP0071912B1/en
Publication of JPS5835415A publication Critical patent/JPS5835415A/en
Publication of JPH0228804B2 publication Critical patent/JPH0228804B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/12Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/248Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains by varying pulse repetition frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/252Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques using analogue/digital converters of the type with conversion of voltage or current into frequency and measuring of this frequency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1071Measuring or testing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/60Analogue/digital converters with intermediate conversion to frequency of pulses

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は物理的な変化を電圧値の変化に変え
て測定する測定装置、特に検出量をデイジタル量
に変換し、該デイジタル量をマイクロプロセツサ
等のデイジタル処理装置によつて演算、処理する
ことにより物理量を測定するようにした測定装置
に関するものである。
This invention relates to a measuring device that converts a physical change into a change in voltage value and measures it, and in particular, a measuring device that converts a detected amount into a digital amount and calculates and processes the digital amount using a digital processing device such as a microprocessor. The present invention relates to a measuring device for measuring physical quantities.

【従来の技術】[Conventional technology]

例えば、二種の金属または半導体を二点で接合
して形成された熱電対を用い、該熱電対の二点を
それぞれ異なる温度に保つことにより発生する起
電力(電圧)からその温度を測定することが行な
われている。かゝる熱電対にて発生した起電力ま
たは電圧を測定する場合は、これを演算増巾器等
によつて増巾し、その出力から起電力または電圧
を求めるのが一般的である。
For example, a thermocouple formed by joining two types of metals or semiconductors at two points is used to measure the temperature from the electromotive force (voltage) generated by keeping the two points of the thermocouple at different temperatures. things are being done. When measuring the electromotive force or voltage generated by such a thermocouple, it is common to amplify this using an operational amplifier or the like and obtain the electromotive force or voltage from the output.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、このような測定装置はアナログ
回路で構成されているため測定誤差が生じ易く、
したがつて検出精度が低下するという欠点があつ
た。 この発明は上記に鑑みなされたもので、高精度
の測定が可能で、しかも各種の補正を容易になし
うる測定装置を提供することを目的とするもので
ある。
However, since such measuring devices are composed of analog circuits, measurement errors are likely to occur.
Therefore, there was a drawback that the detection accuracy decreased. The present invention has been made in view of the above, and an object of the present invention is to provide a measuring device that is capable of highly accurate measurement and that can easily perform various corrections.

【課題を解決するための手段】[Means to solve the problem]

このような目的を達成するために、本発明は、
物理量の変化を電圧の変化として2つの端子間に
出力する電圧検出部と、 電圧検出部の一方の端子電位を測定する零測定
モードと電圧検出部の他方の端子電位を測定する
電圧測定モードとに電圧検出部を選択切換えする
モード選択手段と、 一定電流によつて充電され、零測定モードでは
充電電圧が電圧検出部の一方の端子電位と比較さ
れかつ電圧測定モードでは充電電圧が電圧検出部
の他方の端子電位と比較されるコンデンサと、零
測定モードではコンデンサの充電電圧が電圧検出
部の一方の端子電位に達する毎に、また電圧測定
モードではコンデンサの充電電圧が電圧検出部の
他方の端子電位に達する毎に、一定時間でコンデ
ンサを放電する放電回路とを有し、零測定モード
および電圧測定モードにおいてそれぞれコンデン
サに複数回の充放電を行わせてその複数回の充放
電に要する時間から電圧検出部の一方の端子電位
および他方の端子電位をそれぞれそれに応じた周
波数のパルス信号に変換する電圧−周波数変換回
路と、 零測定モードおよび電圧測定モードにおいてそ
れぞれ電圧−周波数変換回路からのパルス数を計
数し、該計数値が所定の値に達したとき計数出力
を出す第1の計数器と、 零測定モードおよび電圧測定モードにおいてそ
れぞれコンデンサの充電開始と共にクロツク信号
源からのクロツクパルスの計数を開始し、第1の
計数器からの計数出力によつて該クロツクパルス
の計数を停止する第2の計数器と、 零測定モードおよび電圧測定モードにおいてそ
れぞれ第1の計数器からの計数出力を受けて第2
の計数器の計数結果を読取り、零測定モードにお
ける第2の計数器の計数結果との差を演算するデ
イジタル演算回路と、 を備え、デイジタル演算回路の演算結果から物理
量を測定することを特徴とする。
In order to achieve such an objective, the present invention
A voltage detection section that outputs a change in a physical quantity as a voltage change between two terminals, a zero measurement mode that measures the potential of one terminal of the voltage detection section, and a voltage measurement mode that measures the potential of the other terminal of the voltage detection section. a mode selection means for selectively switching the voltage detection section; and a mode selection means for selecting and switching the voltage detection section; In the zero measurement mode, each time the capacitor's charging voltage reaches the potential of one terminal of the voltage detection section, and in the voltage measurement mode, the capacitor's charging voltage is compared with the other terminal potential of the voltage detection section. It has a discharge circuit that discharges the capacitor for a certain period of time each time the terminal potential is reached, and the time required for charging and discharging the capacitor multiple times in zero measurement mode and voltage measurement mode. A voltage-frequency conversion circuit that converts one terminal potential and the other terminal potential of the voltage detection section into pulse signals of corresponding frequencies, and pulses from the voltage-frequency conversion circuit in zero measurement mode and voltage measurement mode, respectively. A first counter that counts the number of clock pulses and outputs a counting output when the counted value reaches a predetermined value; a second counter that starts and stops counting the clock pulses according to the count output from the first counter; and a second counter that receives the count output from the first counter in the zero measurement mode and the voltage measurement mode, respectively. Second
a digital arithmetic circuit that reads the counting result of the second counter and calculates the difference with the counting result of the second counter in the zero measurement mode, and measures a physical quantity from the arithmetic result of the digital arithmetic circuit. do.

【作用】[Effect]

本発明においては、零測定モードにおいて第2
の計数器の計数結果からの電圧検出部の一方の端
子電位が測定され、電圧測定モードにおいて同様
に第2の計数器の計数結果からの電圧検出部の他
方の端子電位が測定され、そして、かかる一方の
端子電位と他方の端子電位との差演算が行われ、
それにより電圧検出部の2つの端子電位つまり電
圧検出部の出力電圧が検出され、その出力電圧に
基づいて物理量の測定が行われる。
In the present invention, the second
The potential at one terminal of the voltage detecting section is measured from the counting result of the second counter, and the potential at the other terminal of the voltage detecting section is similarly measured from the counting result of the second counter in the voltage measurement mode, and, A difference calculation between the one terminal potential and the other terminal potential is performed,
Thereby, the two terminal potentials of the voltage detection section, that is, the output voltage of the voltage detection section are detected, and the physical quantity is measured based on the output voltage.

【実施例】【Example】

以下、この発明の実施例を図面を参照して説明
する。 第1図はこの発明の実施例の概要を示すブロツ
ク図、第2図はこの発明の実施例を詳細に示す回
路図、第3図は測定動作を説明するためのタイム
チヤートである。 第1図において1は電圧検出部、2は該検出部
1の選択回路、3は周波数変換回路、4はカウン
タ、5はタイマー、6は基準クロツク発生回路、
7はマイクロプロセツサ等のデイジタル処理装置
(以下、μ−COM演算回路ともいう。)、8は光伝
送回路、9はバツテリを用いた電源回路、10は
キーボードである。 これらの各部はさらに第2図に示されるよう
に、検出部1は例えば熱電対によつて構成され、
検出部選択回路2は検出部1の状態を切り替える
ためのスイツチSW2(例えば、相補形MOSのア
ナログスイツチまたはリレー等が使用される。)
より構成される。また、周波数変換回路3は定電
流源COからの一定電流によつて充電されるコン
デンサCと、該充電々圧Ebと演算増巾器OP1に
て増巾された検出電圧Eaとの比較を行ない、充
電々圧Ebが検出電圧Ea以上になつたとき出力を
出す演算増巾器OP2と、該演算増巾器OP2から
の所定レベル(スレツシユホールドレベル)の出
力によつてセツトされ、所定の時定数(抵抗Rf
とコンデンサCfとの積)によつて決まる一定時間
后にリセツトされるフリツプフロツプ(D形)
と、コンデンサCおよびCfの充放電の切り替えを
行なうSW1(SW11,SW12)とから構成さ
れている。なお、従来の一般的なD形フリツプフ
ロツプを使用する場合は、その前段に前述のスレ
ツシユホールドレベルを判別するための特別な回
路、例えばシユミツト回路が必要であるが、C−
MOS(相補形MOS)のフリツプフロツプを使用
する場合はこのような回路は不要で、その切り替
わり電圧をそのままスレツシユホールド電圧とし
て使用することができる。また、スイツチSW1
は前述のスイツチSW2と同様のものである。タ
イマー5は2段のカウンタCT2,CT3から構成
され、μ−COM演算回路7からのリセツト信号
PO3の解除によつて基準クロツク発生回路6か
ら与えられるクロツク信号の計数を開始し、カウ
ンタCT1,4からのカウントアツプ(カウント
UP)信号によつて計数を停止する。μ−COM演
算回路7はバツテリ電源回路9から電源を供給さ
れ、基準クロツク発生回路6からクロツク信号に
より駆動されて種々の演算、制御動作を行なう。
例えば、検出部選択回路2のスイツチSW2にモ
ード選択信号PO1,PO2を送出して検出電圧E1
を印加しない状態の測定モード(以下、零測定モ
ードともいう。)、および検出電圧E1測定モード
(以下、E1測定モードともいう。)の選択を行な
う。また、非測定時にはリセツト信号PO3によ
つてカウンタ4およびタイマー5のリセツトを行
ない、測定時には該リセツト信号PO3を解除し
てこれらに計数動作を行なわせ、カウンタ4のカ
ウントUP信号を割込信号IRQとして受け、タイ
マー5からの計数結果を端子PI0〜PI15を介
して読取り、該読取り情報にもとずいて所定の演
算処理をする。μーCOM演算回路7には、測定
誤差が生じないようにゼロ点およびスパンの調整
を行なうための操作を指示するキーボード10、
また省電力化を図るべく基準クロツク発生回路6
またはμーCOM演算回路7自体を間欠的に動作
させるためのスタンバイモード回路12、さらに
は図示されない管理室側の上位計算機との間で光
による情報の授受を行なう発光素子LED、受光
素子PDを備えた光伝送回路8、および該光伝送
回路8における発光素子LEDの異常(点灯しき
り)検出回路11等が接続されているが、これら
の各部はここでは特に関係がないので、その詳細
は省略する。なお、9は第1図または第2図の所
要の各部へ電源を供給するためのバツテリ電源回
路である。 以下、測定動作について第2,3図を参照して
説明する。 初期状態においては、μ−COM演算回路7か
らはモード選択信号PO1,PO2は与えられず、
リセツト信号PO3によつてカウンタCT1,4お
よびタイマー5はリセツト状態にある。ここで、
第3図イの如き零測定モード信号が与えられ、第
3図ロの如くリセツト信号が解除されると、コン
デンサCが定電流回路COからの一定電流によ
つて第3図ハのEbの如く充電される。この零測
定モードの場合、スイツチSW2は第2図の図示
位置とは反対側に切り替わつていて測定電圧E1
は印加されていないので、演算増巾器OP1の入
力側には電源電圧VDDが抵抗R1,R2によつて分圧
された所定の電圧(K2VDD)が印加され、その出
力側、すなわち演算増巾器OP2の入力側には
K1K2VDD(K1は演算増巾器OP1のゲインであ
る。)なる電圧が印加されている。この電圧
K1K2VDDをEaとし、コンデンサCによる充電々
圧をEbとすると、演算増巾器OP2ではこらの電
圧を比較し、Eb≧Eaになると出力を出してフリ
ツプフロツプQ1をセツトする(なお、電圧Ea
とEbとの関係は第3図ハに示されている。)。フ
リツプフロツプQ1がセツトされると、その出力
はカウンタCT1,4に与えられるとともに、ス
イツチSW1にも与えられる。その結果、スイツ
チSW12が開放されて抵抗RfとコンデンサCf
による充電回路が形成される。なお、このときス
イツチSW11が第2図の図示位置とは反対側に
切り替えられ、コンデンサCの放電が行なわれ
る。コンデンサCfの充電々圧が第3図ホで示され
るように、所定時間tc後に所定の値になると、フ
リツプフロツプQ1はクリアされ、その結果、フ
リツプフロツプQ1からは第3図ニの如き一定時
間巾(tc)の出力パルスが得られることになる。
なお、フリツプフロツプQ1のリセツトによつて
アナログスイツチSW1もオフとなるので、スイ
ツチSW11,12は第2図の図示位置に復帰
し、スイツチSW11によつてコンデンサCの充
電回路が、またスイツチSW12によつてコンデ
ンサCfの放電回路がそれぞれ形成される。充電々
圧が入力測定電圧に達する迄の時間t1(第3図の
ニを参照のこと)は入力測定電圧に比例するか
ら、フリツプフロツプQ1の出力からは測定電圧
に比例した周波数のパルス信号が得られることに
なる。このパルス信号はカウンタ4によつて計数
され、所定値に達すると第3図ヘにされるような
カウントアツプ(カウントUP)出力を発してタ
イマー5を第3図トの如く計数停止させる。タイ
マー5は先のリセツト信号PO3の解除とともに
パルス発生回路6からのクロツクパルスを計数停
止とともにその計数結果がカウンタ4からのカウ
ントUP信号を受けたμ−COM演算回路7により
端子PI0〜PI15を介して読取られる。 こゝで、演算増巾器OP2の+側入力端子へ与
えられる電圧をEa、−側入力端子に与えられる電
圧(コンデンサCの充電々圧)をEbとすると、
電圧EaおよびEbはそれぞれ、 Ea=K1K2VDD Eb=1/C∫Idt=I/Ct として表わされる。ここに、IはコンデンサCに
供給される電流値(一定)であり、K1,K2は前
述の如き定数である。したがつて、Ea=Ebとな
る時間をt1とすると、 I/C・t1=K1K2VDD であるから、したがつてt1は t1=C/IK1K2VDD ………() として求めることができる。 一方、コンデンサCf、抵抗Rfによる放電時間tc
は一定であり、この時間内にコンデンサCの放電
が行なわれるようにしておけば、コンデンサCの
充、放電動作をn回カウントする迄の基準クロツ
ク発生回路6からのクロツクパルスを計数するこ
とによつてコンデンサCによる充放電時間T1
測定することができる(なお、測定されるのは厳
密には充電時間だけである)。この充放電時間T1
は第3図ニからも明らかなように、充電(t1)は
n回であるのに対して放電(tc)はn−1回であ
るから T1=nt1+(n−1)tc ………() として求めることができる。なお、このようにn
回カウントするのは時間測定カウンタCT2,CT
3の分解能を上げるためであり、その数nは基準
クロツク発生回路6の出力周波数またはコンデン
サCの容量値等に応じて適宜選択される。 このようにしてコンデンサCの充放電時間T1
を求めた後、μ−COM演算回路7はモード選択
信号PO1,PO2によつてスイツチSW2を切り
替えてE1測定モードとし、上記と同様にしてコ
ンデンサCの充放電時間T2を測定する。この場
合の動作態様は上記と全く同様であり、そのタイ
ムチヤートは第3図の右半分側にE1測定モード
として示されている。この場合、演算増巾器OP
2の入力側電圧Eaには測定電圧E1が印加される
ことになるから、その充電時間t2は上記の()
式と同様に t2=C/IK1(K2VDD+E1) ………() として表わされる。したがつて、その充放電時間
T2も()式と同様に T2=nt2+(n−1)tc ………() となり、上記()、()式で表わされる充放電
時間T2,T1の差をとると、 T2−T1=nC/IK1E1=KE1 となる。つまり、E1測定モードおよび零測定モ
ードにおけるコンデンサCの充放電時間の差T2
−T1からその入力測定電圧を求めうることがわ
かる。μ−COM演算回路7では上記の如き差の
演算を行なうとともに、所定の換算をすることに
よつて電圧値、すなわち物理量を測定する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an overview of an embodiment of the invention, FIG. 2 is a circuit diagram showing the embodiment in detail, and FIG. 3 is a time chart for explaining measurement operations. In FIG. 1, 1 is a voltage detection section, 2 is a selection circuit for the detection section 1, 3 is a frequency conversion circuit, 4 is a counter, 5 is a timer, 6 is a reference clock generation circuit,
7 is a digital processing device such as a microprocessor (hereinafter also referred to as μ-COM arithmetic circuit), 8 is an optical transmission circuit, 9 is a power supply circuit using a battery, and 10 is a keyboard. Further, as shown in FIG. 2, each of these parts includes a detection part 1 composed of, for example, a thermocouple;
The detection section selection circuit 2 includes a switch SW2 (for example, a complementary MOS analog switch or relay is used) for switching the state of the detection section 1.
It consists of In addition, the frequency conversion circuit 3 compares the capacitor C charged with a constant current from the constant current source CO, the charging voltage E b and the detected voltage E a amplified by the operational amplifier OP1. The voltage is set by the operational amplifier OP2 which outputs an output when the charging voltage E b exceeds the detection voltage E a and the output of a predetermined level (threshold level) from the operational amplifier OP2. and a given time constant (resistance R f
Flip-flop ( D type) that is reset after a certain period of time determined by
, and SW1 (SW11, SW12) for switching charging and discharging of capacitors C and Cf. Note that when using a conventional general D-type flip-flop, a special circuit, such as a Schmitt circuit, for determining the threshold level described above is required in the preceding stage.
When using a MOS (complementary MOS) flip-flop, such a circuit is not necessary, and the switching voltage can be used as the threshold voltage as is. Also, switch SW1
is similar to the switch SW2 described above. The timer 5 consists of two-stage counters CT2 and CT3, and receives a reset signal from the μ-COM calculation circuit 7.
When PO3 is released, counting of the clock signal given from the reference clock generation circuit 6 is started, and the count up (counting) from counters CT1 and CT4 is started.
Counting is stopped by the UP) signal. The .mu.-COM calculation circuit 7 is supplied with power from the battery power supply circuit 9, and is driven by a clock signal from the reference clock generation circuit 6 to perform various calculations and control operations.
For example, by sending the mode selection signals PO1 and PO2 to switch SW2 of the detection section selection circuit 2, the detection voltage E 1
A measurement mode in which no voltage is applied (hereinafter also referred to as zero measurement mode) and a detection voltage E1 measurement mode (hereinafter also referred to as E1 measurement mode) are selected. In addition, when not measuring, the counter 4 and timer 5 are reset by the reset signal PO3, and when measuring, the reset signal PO3 is released to make them perform counting operation, and the count UP signal of the counter 4 is sent to the interrupt signal IRQ. The counting result from the timer 5 is read through terminals PI0 to PI15, and predetermined arithmetic processing is performed based on the read information. The μ-COM calculation circuit 7 includes a keyboard 10 for instructing operations to adjust the zero point and span to avoid measurement errors;
In addition, in order to save power, the reference clock generation circuit 6
Alternatively, a standby mode circuit 12 for intermittently operating the μ-COM arithmetic circuit 7 itself, and a light emitting element LED and a light receiving element PD that exchange information by light with a host computer on the management room side (not shown). The optical transmission circuit 8 equipped with the optical transmission circuit 8 and the abnormality (full lighting) detection circuit 11 of the light emitting element LED in the optical transmission circuit 8 are connected, but these parts are not particularly relevant here, so the details are omitted. do. Note that 9 is a battery power supply circuit for supplying power to each required part in FIG. 1 or 2. The measurement operation will be explained below with reference to FIGS. 2 and 3. In the initial state, the mode selection signals PO1 and PO2 are not given from the μ-COM arithmetic circuit 7,
Counters CT1, 4 and timer 5 are in a reset state by reset signal PO3. here,
When the zero measurement mode signal as shown in Figure 3A is applied and the reset signal is released as shown in Figure 3B, the capacitor C is driven by the constant current from the constant current circuit CO to E b in Figure 3C. It will be charged like this. In this zero measurement mode, switch SW2 is switched to the opposite side from the position shown in Figure 2, and the measurement voltage E 1
is not applied, a predetermined voltage (K 2 V DD ) obtained by dividing the power supply voltage V DD by resistors R 1 and R 2 is applied to the input side of the operational amplifier OP1, and its output side, that is, the input side of operational amplifier OP2.
A voltage of K 1 K 2 V DD (K 1 is the gain of the operational amplifier OP1) is applied. this voltage
If K 1 K 2 V DD is E a and the voltage charged by capacitor C is E b , the operational amplifier OP2 compares these voltages, and when E b ≥ E a , outputs and switches the flip-flop Q1. (Note that the voltage E a
The relationship between E b and E b is shown in Figure 3 C. ). When flip-flop Q1 is set, its output is applied to counters CT1, 4 and also to switch SW1. As a result, switch SW12 is opened and a charging circuit is formed by resistor R f and capacitor C f . At this time, the switch SW11 is switched to the opposite side from the position shown in FIG. 2, and the capacitor C is discharged. When the charging voltage of the capacitor C f reaches a predetermined value after a predetermined time t c as shown in FIG. An output pulse of width (t c ) will be obtained.
Furthermore, since analog switch SW1 is also turned off by resetting flip-flop Q1, switches SW11 and SW12 return to the positions shown in FIG. Thus, a discharge circuit for capacitor C f is formed. Since the time t 1 for the charging voltage to reach the input measurement voltage (see d in Figure 3) is proportional to the input measurement voltage, the output of flip-flop Q1 generates a pulse signal with a frequency proportional to the measurement voltage. You will get it. This pulse signal is counted by the counter 4, and when it reaches a predetermined value, a count up output (count up) as shown in FIG. 3 is issued, and the timer 5 stops counting as shown in FIG. 3. When the reset signal PO3 is released, the timer 5 stops counting the clock pulses from the pulse generating circuit 6, and the counting result is sent to the μ-COM arithmetic circuit 7 via the terminals PI0 to PI15, which receives the count up signal from the counter 4. be read. Here, if the voltage applied to the + side input terminal of operational amplifier OP2 is E a and the voltage applied to the - side input terminal (charge voltage of capacitor C) is E b ,
The voltages E a and E b are each expressed as E a =K 1 K 2 V DD E b =1/C∫Idt=I/Ct. Here, I is the current value (constant) supplied to the capacitor C, and K 1 and K 2 are constants as described above. Therefore, if t 1 is the time when E a = E b , I/C・t 1 = K 1 K 2 V DD , so t 1 is t 1 = C/IK 1 K 2 It can be obtained as V DD ......(). On the other hand, the discharge time t c due to capacitor C f and resistor R f
is constant, and if the capacitor C is discharged within this time, the clock pulses from the reference clock generation circuit 6 can be counted until the capacitor C is charged and discharged n times. Thus, the charging and discharging time T 1 of the capacitor C can be measured (note, strictly speaking, only the charging time is measured). This charging/discharging time T 1
As is clear from Figure 3D, charging (t 1 ) is n times, while discharging (t c ) is n-1 times, so T 1 = nt 1 + (n-1) It can be obtained as t c ......(). In addition, in this way, n
The time measurement counter CT2, CT counts the times.
The number n is selected as appropriate depending on the output frequency of the reference clock generating circuit 6, the capacitance value of the capacitor C, etc. In this way, the charging and discharging time of capacitor C is T 1
After determining , the μ-COM arithmetic circuit 7 switches the switch SW2 to the E1 measurement mode using the mode selection signals PO1 and PO2, and measures the charging/discharging time T2 of the capacitor C in the same manner as described above. The operating mode in this case is exactly the same as above, and the time chart is shown in the right half of FIG. 3 as E1 measurement mode. In this case, the operational amplifier OP
Since the measurement voltage E 1 will be applied to the input side voltage E a of 2, the charging time t 2 will be as shown in () above.
Similar to the formula, it is expressed as t 2 =C/IK 1 (K 2 V DD +E 1 ) (). Therefore, its charging and discharging time
Similarly to formula (), T 2 becomes T 2 = nt 2 + (n-1) t c ...... (), and the difference between the charging and discharging times T 2 and T 1 expressed by formulas () and () above is Then, T 2 −T 1 =nC/IK 1 E 1 =KE 1 . In other words, the difference in charging and discharging time of capacitor C in E 1 measurement mode and zero measurement mode T 2
It can be seen that the input measurement voltage can be found from −T 1 . The μ-COM arithmetic circuit 7 calculates the difference as described above, and also measures the voltage value, that is, the physical quantity, by performing a predetermined conversion.

【発明の効果】【Effect of the invention】

以上のように、この発明によれば、物理的な変
化を電圧の変化に変えて測定を行なうものにおい
て、電圧値に応じた周波数信号に変換した後、さ
らに所定のデイジタル信号に変換し、該デイジタ
ル量にもとづいて所定の演算を行なうことにより
物理量を測定するようにしたから、測定精度が向
上するとともに、ゼロ・スパン調による補正はも
とより温度補正等の各種の補正演算を単にプログ
ラムを変更するだけで容易になしうる利点を有す
るものである。 さらに、本発明においては、零測定モードにお
いて第2の計数器の計数結果から電圧検出部の一
方の端子電位が測定され、電圧E1測定モードに
おいて同様に第2の計数器の計数結果から電圧検
出部の他方の端子電位が測定され、そしてかかる
一方の端子電位と他方の端子電位との差演算が行
われ、それにより電圧検出部の2つの端子間電位
つまり電圧検出部の出力電圧が検出される。この
ように差演算を求めることにより、温度の変動に
起因する測定誤差を回避することができる。すな
わち、理論的には、上記()式において充電時
間t2以外は一定であるので、充電時間t2をクロツ
クパルスにより測定すれば、上記()式および
()式から検出電圧E1を測定することができる
筈である。しかしながら、実際にはコンデンサC
の放電時間tcを設定する放電回路の回路定数が温
度変動によつて変動し、そのためにかかる放電時
間tcが変動し、それゆえ()式で表わされる充
放電時間T2は測定に関与する充電時間t2とは関係
なく、放電時間tcの変動に起因して変動する誤差
要因を含んでいる。そこで、本発明においては、
上述の如く、零測定モードにおいて第2の計数器
の計数結果から電圧検出部の一方の端子電位を測
定し、電圧E1測定モードにおいて同様に第2の
計数器の計数結果から電圧検出部の他方の端子電
位を測定し、そしてかかる一方の端子電位と他方
の端子電位との差演算を行い、演算結果から温度
変動の影響を受ける放電時間tcの項を消去してい
る。それにより、温度による影響を極力少なくす
ることができる。
As described above, according to the present invention, in a device that performs measurement by converting a physical change into a voltage change, the voltage value is converted into a frequency signal corresponding to the voltage value, and then further converted into a predetermined digital signal. Since physical quantities are measured by performing predetermined calculations based on digital quantities, measurement accuracy is improved, and various correction calculations such as temperature correction as well as zero/span adjustment can be performed by simply changing the program. This has the advantage that it can be achieved easily by using only one method. Furthermore, in the present invention, in the zero measurement mode, one terminal potential of the voltage detection section is measured from the counting result of the second counter, and in the voltage E1 measurement mode, the voltage is similarly measured from the counting result of the second counter. The potential of the other terminal of the detection section is measured, and the difference between the one terminal potential and the other terminal potential is calculated, thereby detecting the potential between the two terminals of the voltage detection section, that is, the output voltage of the voltage detection section. be done. By calculating the difference in this way, measurement errors caused by temperature fluctuations can be avoided. That is, theoretically, in the above equation (), everything except the charging time t 2 is constant, so if the charging time t 2 is measured by a clock pulse, the detection voltage E 1 can be measured from the above equations () and (). It should be possible. However, in reality the capacitor C
The circuit constant of the discharge circuit that sets the discharge time t c changes due to temperature fluctuations, and therefore the discharge time t c changes, so the charge/discharge time T 2 expressed by equation () is not involved in the measurement. This includes error factors that vary due to variations in the discharging time tc , regardless of the charging time t2 . Therefore, in the present invention,
As mentioned above, in the zero measurement mode, one terminal potential of the voltage detection section is measured from the counting result of the second counter, and in the voltage E1 measurement mode, the potential of the voltage detection section is similarly measured from the counting result of the second counter. The other terminal potential is measured, and the difference between the one terminal potential and the other terminal potential is calculated, and the term of the discharge time t c , which is affected by temperature fluctuation, is eliminated from the calculation result. Thereby, the influence of temperature can be minimized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を概略的に示すブロ
ツク図、第2図はこの発明の実施例を詳細に示す
回路図、第3図は測定動作を説明するためのタイ
ムチヤートである。 符号説明、1……検出部、2……検出部選択回
路、3……周波数変換回路、4,CT1〜CT3…
…カウンタ、5……タイマー、6……基準クロツ
クパルス発生回路、7……μ−COM演算回路、
8……光伝送回路、9……バツテリ電源回路、1
0……キーボード、11……LED異常検出回路、
12……スタンバイモード回路、E1……測定電
圧、SW1,SW2……スイツチ、OP1,OP2
……演算増巾器、CO……定電流回路、R1,R2
Rf……抵抗、C,Cf……コンデンサ、Q1……フ
リツプフロツプ。
FIG. 1 is a block diagram schematically showing an embodiment of the present invention, FIG. 2 is a circuit diagram showing the embodiment in detail, and FIG. 3 is a time chart for explaining the measurement operation. Description of symbols, 1...detection section, 2...detection section selection circuit, 3...frequency conversion circuit, 4, CT1 to CT3...
...Counter, 5...Timer, 6...Reference clock pulse generation circuit, 7...μ-COM calculation circuit,
8... Optical transmission circuit, 9... Battery power supply circuit, 1
0...Keyboard, 11...LED abnormality detection circuit,
12...Standby mode circuit, E 1 ...Measurement voltage, SW1, SW2...Switch, OP1, OP2
...Operation amplifier, CO...Constant current circuit, R 1 , R 2 ,
R f ...Resistor, C, C f ...Capacitor, Q1...Flip-flop.

Claims (1)

【特許請求の範囲】 1 物理量の変化を電圧の変化として2つの端子
間に出力する電圧検出部1と、 前記電圧検出部の一方の端子電位を測定する零
測定モードと前記電圧検出部の他方の端子電位を
測定する電圧測定モードとに前記電圧検出部を選
択切換えするモード選択手段2と、 一定電流によつて充電され、前記零測定モード
では充電電圧が前記電圧検出部の一方の端子電位
と比較されかつ前記電圧測定モードでは充電電圧
が前記電圧検出部の他方の端子電位と比較される
コンデンサと、前記零測定モードでは前記コンデ
ンサの充電電圧が前記電圧検出部の一方の端子電
位に達する毎に、また前記電圧測定モードでは前
記コンデンサの充電電圧が前記電圧検出部の他方
の端子電位に達する毎に、一定時間で前記コンデ
ンサを放電する放電回路とを有し、前記零測定モ
ードおよび電圧測定モードにおいてそれぞれ前記
コンデンサに複数回の充放電を行わせてその複数
回の充放電に要する時間から、前記電圧検出部の
一方の端子電位および他方の端子電位をそれぞれ
それに応じた周波数のパルス信号に変換する電圧
−周波数変換回路3と、 前記零測定モードおよび電圧測定モードにおい
てそれぞれ前記電圧−周波数変換回路からのパル
ス数を計数し、該計数値が所定の値(n)に達し
たとき計数出力を出す第1の計数器4と、 前記零測定モードおよび電圧測定モードにおい
てそれぞれ前記コンデンサの充電開始と共にクロ
ツク信号源からのクロツクパルスの計数を開始
し、前記第1の計数器からの計数出力によつて該
クロツクパルスの計数を停止する第2の計数器5
と、 前記零測定モードおよび電圧測定モードにおい
てそれぞれ前記第1の計数器からの計数出力を受
けて前記第2の計数器の計数結果を読取り、前記
零測定モードにおける第2の計数器の計数結果と
前記電圧測定モードにおける第2の計数器の計数
結果との差を演算するデイジタル演算回路7と、 を備え、前記デイジタル演算回路の演算結果から
前記物理量を測定することを特徴とする測定装
置。
[Scope of Claims] 1. A voltage detection section 1 that outputs a change in a physical quantity as a change in voltage between two terminals, a zero measurement mode that measures the potential of one terminal of the voltage detection section, and the other of the voltage detection section. mode selection means 2 for selectively switching the voltage detection section to a voltage measurement mode in which the terminal potential of the terminal is measured; a capacitor whose charging voltage is compared with the potential of the other terminal of the voltage detecting section in the voltage measurement mode, and a charging voltage of the capacitor reaching the potential of one terminal of the voltage detecting section in the zero measurement mode. and a discharging circuit that discharges the capacitor for a certain period of time each time the charging voltage of the capacitor reaches the other terminal potential of the voltage detection section in the voltage measurement mode; In the measurement mode, each of the capacitors is charged and discharged a plurality of times, and from the time required for the plurality of charges and discharges, one terminal potential and the other terminal potential of the voltage detection section are respectively detected as a pulse signal with a frequency corresponding to the time required for the multiple charging and discharging operations. a voltage-frequency conversion circuit 3 for converting into a voltage-frequency conversion circuit; and counting the number of pulses from the voltage-frequency conversion circuit in each of the zero measurement mode and voltage measurement mode, and counting when the counted value reaches a predetermined value (n). a first counter 4 that outputs an output, and starts counting clock pulses from a clock signal source when charging of the capacitor starts in each of the zero measurement mode and voltage measurement mode, and outputs a count output from the first counter; The second counter 5 thus stops counting the clock pulses.
and, receiving count outputs from the first counter in the zero measurement mode and voltage measurement mode, respectively, and reading the count results of the second counter, and reading the count results of the second counter in the zero measurement mode. and a digital calculation circuit 7 for calculating the difference between the calculation result of the second counter in the voltage measurement mode, and measuring the physical quantity from the calculation result of the digital calculation circuit.
JP56134224A 1981-07-30 1981-08-28 Measuring device Granted JPS5835415A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP56134224A JPS5835415A (en) 1981-08-28 1981-08-28 Measuring device
US06/402,377 US4531193A (en) 1981-07-30 1982-07-27 Measurement apparatus
CA000408285A CA1220835A (en) 1981-07-30 1982-07-28 Measurement apparatus
AU86518/82A AU549860B2 (en) 1981-07-30 1982-07-28 Measurement apparatus
BR8204472A BR8204472A (en) 1981-07-30 1982-07-29 APPLIANCE FOR MEASURING A PHYSICAL QUANTITY AND PROVIDING CORRESPONDING MEDICATION DATA
EP84114777A EP0159401B1 (en) 1981-07-30 1982-07-30 Measurement apparatus
DE8282106917T DE3274495D1 (en) 1981-07-30 1982-07-30 Measurement apparatus
DE8484114777T DE3279510D1 (en) 1981-07-30 1982-07-30 Measurement apparatus
DE19823229010 DE3229010A1 (en) 1981-07-30 1982-07-30 DIGITAL MEASURING DEVICE FOR A PHYSICAL SIZE
EP82106917A EP0071912B1 (en) 1981-07-30 1982-07-30 Measurement apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56134224A JPS5835415A (en) 1981-08-28 1981-08-28 Measuring device

Publications (2)

Publication Number Publication Date
JPS5835415A JPS5835415A (en) 1983-03-02
JPH0228804B2 true JPH0228804B2 (en) 1990-06-26

Family

ID=15123317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56134224A Granted JPS5835415A (en) 1981-07-30 1981-08-28 Measuring device

Country Status (1)

Country Link
JP (1) JPS5835415A (en)

Also Published As

Publication number Publication date
JPS5835415A (en) 1983-03-02

Similar Documents

Publication Publication Date Title
US3256426A (en) Integrating totalizer
JPH08136628A (en) Device for monitoring capacity of battery
JPS5948571B2 (en) analog digital converter
US3747089A (en) Analog to digital converter
EP0144834B1 (en) Load cell type weight-measuring device
US4125023A (en) Temperature-measuring apparatus
JP2998989B2 (en) Voltage-to-digital converter
JPH03501915A (en) analog to digital converter
JPH0228804B2 (en)
JPH0522163B2 (en)
US4484177A (en) Analog-to-digital converter apparatus for condition responsive transducer
JPH0216448B2 (en)
JPS6089149A (en) Time division multiplex transmission system of measured information
JPS62261968A (en) Measuring instrument for physical quantity
US4081801A (en) Electronic measuring system with pulsed transducer
JPS5917770B2 (en) electronic thermometer
JPH0243237B2 (en)
JPH0355070Y2 (en)
JPH0243235B2 (en)
US4939519A (en) Apparatus for method and a high precision analog-to-digital converter
KR100383736B1 (en) Sensor Interface for Resistance and Capacitance using CMOS Gates
JPH0215116B2 (en)
JP3036561B2 (en) A / D converter
JPS6183967A (en) Apparatus for measuring minute current
JPS6122782B2 (en)