JPH0228692Y2 - - Google Patents

Info

Publication number
JPH0228692Y2
JPH0228692Y2 JP1984020649U JP2064984U JPH0228692Y2 JP H0228692 Y2 JPH0228692 Y2 JP H0228692Y2 JP 1984020649 U JP1984020649 U JP 1984020649U JP 2064984 U JP2064984 U JP 2064984U JP H0228692 Y2 JPH0228692 Y2 JP H0228692Y2
Authority
JP
Japan
Prior art keywords
water
swellable
transparent
meth
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984020649U
Other languages
Japanese (ja)
Other versions
JPS60133776U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984020649U priority Critical patent/JPS60133776U/en
Publication of JPS60133776U publication Critical patent/JPS60133776U/en
Application granted granted Critical
Publication of JPH0228692Y2 publication Critical patent/JPH0228692Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • Y02P60/216

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は、観賞効果に優れ、植物の水耕栽培用
人工土壌として適した性能を有する透明性水膨潤
架橋重合体の円柱状体からなる水耕栽培用人工土
壌に関する。 近年の生活環境の変化に伴ない、団地、マンシ
ヨンなどの集合住宅、喫茶店、レストラン、食
堂、デパート、商店などの生活空間にうるおいを
付与するために鉢植え植物などの観賞用植物を装
飾品の1種として配置する方法が広く採用されて
いる。さらに最近では観賞効果を高めるために、
同目的で透明容器中で植物を水耕栽培する方法も
種々採用されている。 従来、植物の水耕栽培を行う際には肥料成分を
含んだ水中で植物を直接栽培する方法または肥料
成分を溶解した水中に小石、砂利、ガラス片、プ
ラスチツクなどを充填した人工土壌中で栽培を行
う方法などが行われている。前者の方法では、水
耕栽培の際に根の保持が充分になされていないの
で根が浮遊したり、植物の転倒、沈降、通気性の
悪化などの欠点があり、後者の方法では植物の根
の保持はできても保水性が充分ではなく、また美
的観点からも優れておらず、観賞用水耕栽培に適
しているとは言い難い。 本考案者らは、植物の水耕栽培用人工土壌とし
て観賞効果に優れた水膨潤架橋重合体について検
討した結果、透明性の水膨潤架橋重合体からなる
特定の円柱状体が前記目的を達成することを見出
し、本考案に到達した。 すなわち、本考案は、透明性水膨潤架橋重合体
の円柱状体からなり、該円柱の直断面の円の直径
rが2ないし40mmの範囲にあり、かつ該円柱の高
さlが該直径rに対する比l/rとして0.3ない
し15の範囲にあることを特徴とする水耕栽培用人
工土壌である。 本考案における水耕栽培用人工土壌は透明性水
膨潤架橋重合体の円柱状体からなり、その大きさ
は該円柱の直断面の円の直径rが2ないし40mmの
範囲にあり、かつ該円柱の高さlが直径rに対す
る比l/rとして0.3ないし15の範囲にあること
が必要であり、さらには該円柱の直断面の円の直
径rが3ないし20mmの範囲にあり、かつ該円柱の
高さlが直径rに対する比l/rとして0.5ない
し5、とくに0.7ないし2の範囲にあることが好
ましい。ここで、円柱状体とは真円柱状体のみな
らず多少の歪みを有する円柱状体であつても差し
つかえない。ここでさらに、該円柱状体の大きさ
は水膨潤状態における大きさを意味する。該透明
性水膨潤架橋重合体の円柱状体の直断面の円の直
径が40mmより大きくなつても、また2mmより小さ
くなつても観賞効果に劣るようになり、該円柱の
高さの直径に対する比l/rが15より大きくなつ
てもまたは0.3より小さくなつても、観賞効果に
劣るようになる。 本考案において、該透明性水膨潤架橋重合体の
円柱状体の水膨潤率は、乾燥状態の水膨潤性ゲル
状架橋重合体の重量に対する吸収された水の重量
比として通常は10ないし1000、好ましくは20ない
し800の範囲である。 また、本考案において、該円柱状体を構成する
透明性水膨潤架橋重合体は水膨潤性ゲル状架橋重
合体の水膨潤物である。該水膨潤性ゲル状架橋重
合体は水膨潤によつて透明となるゲル状架橋重合
体ならばいずれであつても差しつかえない。具体
的には、(メタ)アクリルアミド類成分単位・架
橋性単量体成分単位からなる水膨潤性ゲル状架橋
重合体、(メタ)アクリルアミド類成分単位・(メ
タ)アクリル酸(塩)成分単位・架橋性単量体成
分単位からなる水膨潤性ゲル状架橋重合体、デン
プン・アクリロニトリルグラフト重合体ケン化
物、デンプン・ポリアクリル酸グラフト共重合
体、デンプン・スチレンスルホン酸グラフト重合
体、デンプン・ビニルスルホン酸グラフト重合
体、セルロース・アクリロニトリルグラフト重合
体、セルロース・スチレンスルホン酸グラフト重
合体、カルボキシメチルセルロースの架橋重合
体、酢酸ビニル・アクリル酸エステル共重合体ケ
ン化物などを例示することができる。該水膨潤性
ゲル状重合体のうちでは、前記アクリルアミド類
成分単位・架橋性単量体成分単位からなる水膨潤
性ゲル状架橋重合体または(メタ)アクリルアミ
ド類成分単位・(メタ)アクリル酸(塩)成分単
位・架橋性単量体成分単位からなる水膨潤性ゲル
状架橋重合体が好ましい。 前述の好適なアクリルアミド類成分単位・架橋
性単量体成分単位からなる水膨潤性ゲル状架橋重
合体または(メタ)アクリルアミド類成分単位・
(メタ)アクリル酸(塩)成分単位・架橋性単量
体成分単位からなる水膨潤性ゲル状架橋重合体を
構成する(メタ)アクリルアミド類成分単位とし
ては、アクリルアミド、メタクリルアミドまたは
これらのN−アルキル置換体であり、具体的には
アクリルアミド、メタクリルアミド、N−メチル
アクリルアミド、N,N−ジメチルアクリルアミ
ド、N−メチルメタクリルアミド、N,N−ジメ
チルメタクリルアミドなどを例示することができ
る。(メタ)アクリル酸(塩)成分単位として具
体的には、アクリル酸、メタクリル酸、、アクリ
ル酸リチウム、メタクリル酸リチウム、アクリル
酸ナトリウム、メタクリル酸ナトリウム、アクリ
ル酸カリウム、メタクリル酸カリウムなどの(メ
タ)アクリル酸のアルカリ金属塩、アクリル酸マ
グネシウム、メタクリル酸マグネシウム、アクリ
ル酸カルシウム、メタクリル酸カルシウムなどの
(メタ)アクリル酸のアルカリ土類金属塩、アク
リル酸アンモニウム、メタクリル酸アンモニウム
などの(メタ)アクリル酸のアンモニウム塩など
を例示することができる。また、架橋性単量体成
分単位として具体的には、N,N′−メチレンビ
ス(メタ)アクリルアミド、N,N′−エチレン
ビス(メタ)アクリルアミド、N,N′−プロピ
レンビス(メタ)アクリルアミド、N,N′−ヘ
キサメチレンビス(メタ)アクリルアミド、N,
N′−フエニレンビス(メタ)アクリルアミドな
どのビス(メタ)アクリルアミド類、エチレンビ
ス(メタ)アクリレート、プロピレンビス(メ
タ)アクリレート、ヘキサメチレンビス(メタ)
アクリレートなどのビス(メタ)アクリレート
類、ジエチレングリコールビス(メタ)アクリレ
ート、トリエチレングリコールビス(メタ)アク
リレート、ポリエチレングリコールビス(メタ)
アクリレートなどを例示することができ、二種以
上の混合成分であつても差しつかえない。 該水膨潤性ゲル状架橋重合体を構成する成分の
組成は、該(メタ)アクリルアミド類成分単位a
が通常は40ないし100モル%、好ましくは60ない
し100モル%の範囲であり、該(メタ)アクリル
酸(塩)成分単位bが通常は0ないし60モル%、
好ましくは0ないし40モル%の範囲であり、該架
橋性単量体成分単位cが前記a成分またはa成分
とb成分の合計100モルに対して通常は0.05ない
し5モル、好ましくは0.5ないし3モルの範囲で
ある。また、該水膨潤性ゲル状架橋重合体の乾繰
状態における密度(60℃で48時間乾燥したものの
密度)は通常は1.1ないし1.8g/cm3、好ましくは
1.2ないし1.6g/cm3の範囲にある。なお、該水膨
潤性ゲル状架橋重合体乾燥物の密度および膨潤度
は次の方法で測定した値である。 (1) 密度;重合体乾燥物の一定重量Wgを25mlの
ピクノメーターに採取した。次いで重
合体を入れたピクノメーターを24℃の
恒温槽に入れ、24℃のトルエンで満し
た。これに要したトルエン重量よりト
ルエン容積Vを求め、次式により算出
した。 重合体密度(g/cm3)=W/25−V (2) 膨潤度;重合体乾燥物の一定重量W1gを採
取し、24度で24時間水中に浸漬し、十
分重合体を膨潤させた。しかるのち余
剰の水を除去して膨潤性ゲル状物の重
量W2gを測定して次式により算出し
た。 膨潤度24℃=W2−W1/W1 本考案の透明性水膨潤架橋重合体には防藻性、
防黴性または着色性を付与するために、防藻剤、
防黴剤または着色剤を配合することもできるし、
該水膨潤性ゲル状重合体の製造時にビニル結合含
有トリアジン系誘導体、ビニル結合含有錫化合物
などの防藻性不飽和単量体成分単位、防黴性不飽
和単量体成分単位、着色性不飽和単量体成分単位
を共重合することもできるし、該水膨潤性ゲル状
重合体に防藻性成分、防黴性成分または着色性成
分を反応させることにより前記機能を持たせるこ
とも可能である。また、本考案の透明性水膨潤架
橋重合体には、肥料成分、植物ホルモン、成長促
進剤を含浸させておいても差しつかえない。 本考案の透明性水膨潤架橋重合体の円柱状体
を、草花、植木、観葉植物などの観賞用植物の水
耕栽培用人工土壌に用いると、室内装飾用、店舗
装飾用などの用途において観賞効果に優れている
ので好適であり、とくにガラス、ポリスチレン、
ポリメチルメタクリレートなどの透明性材料で形
成された植木鉢、ポツト、ワイングラスなどの透
明容器を使用するとその効果に優れているので好
適である。また、本考案の透明性水膨潤架橋重合
体の円柱状体からなる水耕栽培用人工土壌を前記
透明性容器に充填し、これに前記観賞用植物を植
え、該透明容器を光照明用スタンドの上部に載設
し、下部より光を照射すると、該透明性水膨潤架
橋重合体の各側面および各断面における反射が美
しく映えるので観賞効果にとくに優れている。 本考案の透明性水膨潤架橋重合体の円柱状体を
充填した水耕採培用人工土壌には、前記観賞用植
物の種を播くこともできるし、苗を移植すること
もできるし、成長した植物を移植することもでき
る。 本考案の水耕栽培用人工土壌は、透明性水膨潤
架橋重合体の円柱状体からなるため、球状その他
の形状のものに比べてすき間が多く、このため空
気の流通性が良好で、植物の根腐れがなく、また
粒子間の引掛り性が大きいため、層の崩壊性が小
さくて植物の姿勢安定性に優れるとともに、光の
反射性が大きいため反射光による装飾効果が高
い。そして本考案の透明性水膨潤架橋重合体の円
柱状体からなる水耕栽培用人工土壌は、透明性、
空気保持性、保水性および根の保持性に優れてい
るので、観賞栽培に適しており、また根の発育状
況が観察できるので、試験観察栽培または学習用
や研究用の観察栽培にも適している。 次に本考案を実施例によつて具体的に説明す
る。 参考例 1 9.79gのアクリルアミド、0.21gのN,N′−メ
チレンビスアクリルアミドを90gの水に溶解し
た。単量体を完全に溶解した後、0.01gの過硫酸
アンモニウムを添加し、溶解した。得られた均一
溶液を直径4mm、深さ5mmの円柱状のくぼみを多
数有する型の中に流し込み、80℃で1時間反応を
行つた。この反応で生成した透明性水膨潤架橋重
合体を取り出し、流水で洗浄を行い粒状物中に残
存する単量体成分を除去した。洗浄後の粒状物は
60〜80℃の熱風乾燥機中で乾燥させた。得られた
重合体の密度(24℃)は1.276(g/cm3)であり、
24℃の水に浸漬すると透明性水膨潤架橋重合体の
円柱状体(直径7mm、長さ7.5mm)が得られた。
このものの膨潤度は29であつた。 参考例 2 参考例1で用いたアクリルアミド類成分単位
a、架橋性単量体成分b、およびラジカル開始剤
を含む水溶液を80℃、滞留時間が5分になるよう
に内径4mmの円筒状重合器に連続的に供給した。
得られた直径4mmの円柱状の水膨潤物を連続的に
4mmの長さで切断した。得られた水膨潤物は参考
例1に準じて後処理を行い、粒径の均一な粒状物
を得た。この粒状物の密度(24℃)は1.291(g/
cm3)であり、24℃の水に浸漬することにより、透
明な透明性水膨潤架橋重合体の円柱状体(直径7
mm、長さ7mm)を調製した。このものの膨潤度は
31であつた。 また、円筒状重合器の内径を1〜10mmと種々か
えて直径1〜10mmの円柱状の水膨潤物を長さ1〜
30mmで切断して、種々の粒径の均一な粒状物を得
た。この粒状物を同様に水に浸漬することにより
種々の大きさの透明性水膨潤架橋重合体の円柱状
体を調製した。 参考例 3 撹拌棒、温度計、冷却器および窒素吹込み管を
付した500mlの四ツ口セパラブルフラスコに200ml
のトルエンを装入し、続いて9.79gのアクリルア
ミド、0.21gのN,N′−メチレンビスアクリルア
ミドおよび0.045gのゼラチン(分散剤)を85g
の水に溶解し、装入する。系内は室温(25℃)、
100rpmの撹拌下、流速200ml/minの窒素で水
層、トルエン層を15分間窒素置換する。続いて
0.01gの過硫酸アンモニウムを5gの水に溶解し
て添加し、さらに5分間窒素置換する。しかるの
ち窒素吹込み管を取り除き、系内を窒素シール
下、撹拌速度を700rpm(イカリ型羽根を含む3枚
羽根、中心からの距離約4.5cmにおける線速度約
10000cm/min)に調整後、油浴を用いて内容物
を1.5℃/minの昇温速度で80℃まで昇温し、重
合した。700rpmの撹拌下に80℃で15分間、さら
に400rpmの撹拌下に60分間反応を続けて重合を
終了した。得られた球状(および一部まが玉状の
ゲルを含む)の水膨潤ゲル状架橋重合体は室温に
冷却後、濾別してトルエン層から分離し、続いて
スチームストリツピングを行い、さらに流水で洗
浄を行うことによつて、トルエン、ゼラチンおよ
び粒状物中に残存する単量体成分を除去した。洗
浄後の水膨潤ゲル状架橋重合体は60〜80℃の熱風
乾燥機中で乾燥した。 得られた重合体の密度(24℃)は1.260(g/
cm3)であり、24℃の水に浸漬すると透明でかつ3
〜6mmの球状あるいは一部まが玉状を含む水膨潤
架橋重合体が得られた。このものの膨潤度は20で
あつた。 実施例 1〜2 表1に示した組成の(メタ)アクリルアミド成
分単位・架橋性単量体成分単位、あるいは(メ
タ)アクリルアミド成分単位・(メタ)アクリル
酸誘導体成分単位・架橋性単量体成分単位からな
る架橋共重合体のペレツト状物を希釈した液肥
(ホークランド液)および防藻剤(クミアイ化学
工業株式会社製;商品名トルモ)を含む水を浸漬
して肥料および防藻剤を含む透明性水膨潤架橋重
合体の円柱状物(直径7mm、長さ7mm)を得た。
該透明性水膨潤性架橋重合体の円柱状体を透明ガ
ラス容器3個にそれぞれ充填することにより水耕
栽培用人工土壌とした。 該水耕栽培用人工土壌を充填した該容器に木立
性ベコニア「マーガレツト・デコーラ」の7cmの
菌を移植し、明るい半日陰に置き、液肥の希薄溶
液を補充しながら観賞用に栽培した。この人工土
壌で栽培したベコニアは順調に生育し、根の生育
状況もよく、移植1ケ月後には新しい発根が該透
明容器を透して観察され、以後茎、葉および根の
発育状況も良好であつた。さらに茎、葉の生育状
況を表1に示した。
The present invention relates to an artificial soil for hydroponic cultivation made of a cylindrical body of a transparent water-swellable crosslinked polymer, which has excellent ornamental effects and suitable performance as an artificial soil for hydroponic cultivation of plants. With changes in the living environment in recent years, ornamental plants such as potted plants are being used as decorations to add moisture to living spaces such as apartment complexes, condominiums, coffee shops, restaurants, cafeterias, department stores, and shops. The method of placing them as seeds is widely adopted. Furthermore, in order to enhance the ornamental effect,
Various methods have also been adopted for hydroponically cultivating plants in transparent containers for the same purpose. Conventionally, when cultivating plants hydroponically, plants are grown directly in water containing fertilizer components, or in artificial soil filled with pebbles, gravel, glass pieces, plastic, etc. in water containing dissolved fertilizer components. There are methods to do this. The former method does not adequately retain the roots during hydroponic cultivation, so there are drawbacks such as floating roots, overturning of plants, settling, and poor ventilation. Even if it is possible to retain water, the water retention is not sufficient, and it is not excellent from an aesthetic point of view, so it can hardly be said that it is suitable for ornamental hydroponic cultivation. The present inventors investigated water-swellable cross-linked polymers with excellent ornamental effects as artificial soil for hydroponic cultivation of plants, and found that a specific cylindrical body made of transparent water-swellable cross-linked polymers achieved the above objective. We have discovered that this is the case and have come up with this invention. That is, the present invention consists of a cylindrical body made of a transparent water-swellable crosslinked polymer, the diameter r of the straight cross section of the cylinder is in the range of 2 to 40 mm, and the height l of the cylinder is within the range of the diameter r. This artificial soil for hydroponic cultivation is characterized by having a ratio l/r of 0.3 to 15. The artificial soil for hydroponic cultivation in the present invention is made of a cylindrical body made of a transparent water-swellable cross-linked polymer, and the size of the cylindrical body is such that the diameter r of the circle in the right cross section of the cylindrical body is in the range of 2 to 40 mm, and It is necessary that the height l of the cylinder is in the range of 0.3 to 15 as a ratio l/r to the diameter r, and furthermore, the diameter r of the circle in the right cross section of the cylinder is in the range of 3 to 20 mm, and The ratio l/r of the height l to the diameter r is preferably in the range from 0.5 to 5, in particular from 0.7 to 2. Here, the cylindrical body may be not only a perfect cylindrical body but also a cylindrical body with some distortion. Furthermore, the size of the cylindrical body means the size in a water-swollen state. Even if the diameter of the circle on the right cross section of the cylindrical body of the transparent water-swellable crosslinked polymer is larger than 40 mm or smaller than 2 mm, the ornamental effect will be poor, and the height of the cylindrical body will be less than the diameter. Even if the ratio l/r becomes larger than 15 or smaller than 0.3, the ornamental effect becomes inferior. In the present invention, the water swelling ratio of the cylindrical body of the transparent water-swellable cross-linked polymer is usually 10 to 1000 as a weight ratio of absorbed water to the weight of the water-swellable gel-like cross-linked polymer in a dry state; Preferably it is in the range of 20 to 800. Further, in the present invention, the transparent water-swellable crosslinked polymer constituting the cylindrical body is a water-swelled product of a water-swellable gel-like crosslinked polymer. The water-swellable gel-like crosslinked polymer may be any gel-like crosslinked polymer that becomes transparent upon swelling with water. Specifically, water-swellable gel-like crosslinked polymers consisting of (meth)acrylamides component units, crosslinkable monomer component units, (meth)acrylamides component units, (meth)acrylic acid (salt) component units, Water-swellable gel-like crosslinked polymer consisting of crosslinkable monomer component units, saponified starch/acrylonitrile graft polymer, starch/polyacrylic acid graft copolymer, starch/styrene sulfonic acid graft polymer, starch/vinyl sulfone Examples include acid graft polymers, cellulose/acrylonitrile graft polymers, cellulose/styrene sulfonic acid graft polymers, crosslinked carboxymethyl cellulose polymers, and saponified vinyl acetate/acrylic acid ester copolymers. Among the water-swellable gel-like polymers, water-swellable gel-like crosslinked polymers consisting of the acrylamide component units and crosslinkable monomer component units or (meth)acrylamide component units and (meth)acrylic acid ( A water-swellable gel-like crosslinked polymer comprising a salt) component unit and a crosslinkable monomer component unit is preferred. A water-swellable gel-like crosslinked polymer or a (meth)acrylamide component unit consisting of the above-mentioned suitable acrylamide component unit/crosslinkable monomer component unit.
The (meth)acrylamide component units constituting the water-swellable gel-like crosslinked polymer consisting of (meth)acrylic acid (salt) component units and crosslinkable monomer component units include acrylamide, methacrylamide, or their N- It is an alkyl substituted product, and specific examples thereof include acrylamide, methacrylamide, N-methylacrylamide, N,N-dimethylacrylamide, N-methylmethacrylamide, N,N-dimethylmethacrylamide, and the like. Specifically, (meth)acrylic acid (salt) component units include acrylic acid, methacrylic acid, lithium acrylate, lithium methacrylate, sodium acrylate, sodium methacrylate, potassium acrylate, potassium methacrylate, etc. ) alkali metal salts of acrylic acid, alkaline earth metal salts of (meth)acrylic acid such as magnesium acrylate, magnesium methacrylate, calcium acrylate, and calcium methacrylate; (meth)acrylics such as ammonium acrylate and ammonium methacrylate; Examples include ammonium salts of acids. Further, specific examples of the crosslinkable monomer component unit include N,N'-methylenebis(meth)acrylamide, N,N'-ethylenebis(meth)acrylamide, N,N'-propylenebis(meth)acrylamide, N,N'-hexamethylenebis(meth)acrylamide, N,
Bis(meth)acrylamides such as N'-phenylene bis(meth)acrylamide, ethylene bis(meth)acrylate, propylene bis(meth)acrylate, hexamethylene bis(meth)acrylate
Bis(meth)acrylates such as acrylate, diethylene glycol bis(meth)acrylate, triethylene glycol bis(meth)acrylate, polyethylene glycol bis(meth)acrylate
Examples include acrylate, and a mixture of two or more components is also acceptable. The composition of the components constituting the water-swellable gel-like crosslinked polymer is as follows: the (meth)acrylamide component unit a
is usually in the range of 40 to 100 mol%, preferably 60 to 100 mol%, and the (meth)acrylic acid (salt) component unit b is usually 0 to 60 mol%,
It is preferably in the range of 0 to 40 mol%, and the crosslinkable monomer component unit c is usually 0.05 to 5 mol, preferably 0.5 to 3 mol, per 100 mol of component a or the total of components a and b. It is in the molar range. Further, the density of the water-swellable gel-like crosslinked polymer in a dry condition (density after drying at 60°C for 48 hours) is usually 1.1 to 1.8 g/cm 3 , preferably
It is in the range of 1.2 to 1.6 g/cm 3 . The density and swelling degree of the dried water-swellable gel-like crosslinked polymer were measured by the following method. (1) Density: A fixed weight Wg of the dried polymer was collected into a 25 ml pycnometer. The pycnometer containing the polymer was then placed in a constant temperature bath at 24°C and filled with toluene at 24°C. The toluene volume V was determined from the weight of toluene required for this, and calculated using the following formula. Polymer density (g/cm 3 ) = W/25-V (2) Swelling degree: Collect a certain weight W 1 g of dried polymer and immerse it in water for 24 hours at 24 degrees to sufficiently swell the polymer. I let it happen. Thereafter, excess water was removed, and the weight W 2 g of the swellable gel was measured and calculated using the following formula. Swelling degree 24℃ = W 2 - W 1 /W 1 The transparent water-swellable cross-linked polymer of the present invention has anti-algae properties,
In order to impart antifungal or coloring properties, algaecides,
Antifungal agents or coloring agents can also be added,
During the production of the water-swellable gel polymer, algae-proofing unsaturated monomer component units such as vinyl bond-containing triazine derivatives and vinyl bond-containing tin compounds, mold-proofing unsaturated monomer component units, and coloring non-containing monomer units are used. It is also possible to copolymerize saturated monomer component units, or to impart the above functions by reacting the water-swellable gel-like polymer with an anti-algae component, an anti-mold component, or a coloring component. It is. Further, the transparent water-swellable crosslinked polymer of the present invention may be impregnated with fertilizer components, plant hormones, and growth promoters. When the cylindrical body of the transparent water-swellable cross-linked polymer of the present invention is used in artificial soil for hydroponic cultivation of ornamental plants such as flowers, plants, and ornamental plants, it can be used for ornamental purposes such as interior decoration and store decoration. It is suitable for use as it is highly effective, especially for glass, polystyrene,
It is preferable to use transparent containers such as flower pots, pots, and wine glasses made of transparent materials such as polymethyl methacrylate because of their excellent effects. Furthermore, the transparent container is filled with artificial soil for hydroponic cultivation consisting of a cylindrical body of the transparent water-swellable crosslinked polymer of the present invention, the ornamental plants are planted in this, and the transparent container is placed on a light illumination stand. When placed on top of a transparent water-swellable crosslinked polymer and irradiated with light from the bottom, the reflections on each side surface and each cross-section of the transparent water-swellable crosslinked polymer look beautiful, giving an especially excellent ornamental effect. In the artificial soil for hydroponic cultivation filled with the cylindrical bodies of the transparent water-swellable cross-linked polymer of the present invention, seeds of the above-mentioned ornamental plants can be sown, seedlings can be transplanted, and seedlings can be grown. You can also transplant the plants. The artificial soil for hydroponic cultivation of the present invention is made of cylindrical bodies made of transparent water-swellable cross-linked polymers, so it has more gaps than spherical or other shaped soils, which allows for good air circulation and allows plants to grow. There is no root rot, and since there is a high degree of inter-particle catching, the layer is less likely to disintegrate, resulting in excellent plant posture stability, and its high light reflectivity provides a high decorative effect using reflected light. The artificial soil for hydroponic cultivation made of the cylindrical body of the transparent water-swellable crosslinked polymer of the present invention has transparency,
It has excellent air retention, water retention, and root retention, making it suitable for ornamental cultivation.Also, since root development can be observed, it is suitable for experimental observation cultivation or observation cultivation for learning and research purposes. There is. Next, the present invention will be specifically explained using examples. Reference Example 1 9.79g of acrylamide and 0.21g of N,N'-methylenebisacrylamide were dissolved in 90g of water. After the monomer was completely dissolved, 0.01 g of ammonium persulfate was added and dissolved. The obtained homogeneous solution was poured into a mold having many cylindrical depressions with a diameter of 4 mm and a depth of 5 mm, and a reaction was carried out at 80° C. for 1 hour. The transparent water-swellable crosslinked polymer produced in this reaction was taken out and washed with running water to remove the monomer components remaining in the granules. Particulate matter after washing
Dry in a hot air dryer at 60-80°C. The density (24°C) of the obtained polymer was 1.276 (g/cm 3 ),
When immersed in water at 24°C, a cylindrical body (diameter 7 mm, length 7.5 mm) of transparent water-swellable crosslinked polymer was obtained.
The swelling degree of this product was 29. Reference Example 2 An aqueous solution containing the acrylamide component unit a, crosslinkable monomer component b, and radical initiator used in Reference Example 1 was heated to 80°C and placed in a cylindrical polymerization vessel with an inner diameter of 4 mm so that the residence time was 5 minutes. was continuously supplied.
The obtained cylindrical water-swollen product with a diameter of 4 mm was continuously cut into a length of 4 mm. The obtained water-swollen product was post-treated according to Reference Example 1 to obtain granules with uniform particle size. The density of this granule (at 24°C) is 1.291 (g/
cm 3 ), and by immersing it in water at 24°C, a cylindrical body (diameter 7
mm, length 7 mm) was prepared. The degree of swelling of this material is
It was 31. In addition, the inner diameter of the cylindrical polymerization vessel was varied from 1 to 10 mm, and the cylindrical water-swollen material with a diameter of 1 to 10 mm was prepared with a length of 1 to 10 mm.
Uniform granules of various particle sizes were obtained by cutting at 30 mm. By similarly immersing this granular material in water, cylindrical bodies of transparent water-swellable crosslinked polymers of various sizes were prepared. Reference example 3 200ml in a 500ml four-neck separable flask equipped with a stirring bar, thermometer, condenser and nitrogen blowing tube
of toluene, followed by 85 g of 9.79 g acrylamide, 0.21 g N,N'-methylenebisacrylamide and 0.045 g gelatin (dispersant).
Dissolve in water and charge. The inside of the system is at room temperature (25℃),
While stirring at 100 rpm, the aqueous layer and toluene layer are replaced with nitrogen at a flow rate of 200 ml/min for 15 minutes. continue
Add 0.01 g of ammonium persulfate dissolved in 5 g of water, and purify with nitrogen for another 5 minutes. After that, the nitrogen blowing tube was removed, and the system was sealed with nitrogen, and the stirring speed was set to 700 rpm (3 blades including an anchor type blade, linear velocity at a distance of approximately 4.5 cm from the center).
After adjusting the temperature to 10,000 cm/min), the contents were heated to 80°C at a rate of 1.5°C/min using an oil bath for polymerization. The reaction was continued at 80° C. for 15 minutes while stirring at 700 rpm, and further for 60 minutes while stirring at 400 rpm, to complete the polymerization. The resulting spherical (and partially bead-shaped) water-swollen gel-like crosslinked polymer is cooled to room temperature, then filtered to separate it from the toluene layer, followed by steam stripping, and then washed under running water. Toluene, gelatin, and monomer components remaining in the granules were removed by washing with . After washing, the water-swelled gel-like crosslinked polymer was dried in a hot air dryer at 60 to 80°C. The density (24℃) of the obtained polymer was 1.260 (g/
cm 3 ), and when immersed in water at 24°C, it becomes transparent and 3 cm 3 ).
A water-swellable cross-linked polymer containing spherical or partially bead-like shapes of ~6 mm was obtained. The degree of swelling of this product was 20. Examples 1 to 2 (Meth)acrylamide component unit/crosslinkable monomer component unit, or (meth)acrylamide component unit/(meth)acrylic acid derivative component unit/crosslinkable monomer component with the composition shown in Table 1 Fertilizer and algae-preventing agent are prepared by soaking pellets of a cross-linked copolymer consisting of units in water containing diluted liquid fertilizer (Hawkland's solution) and algae-prevention agent (manufactured by Kumiai Chemical Industry Co., Ltd.; trade name: Tormo). A cylindrical object (diameter 7 mm, length 7 mm) of a transparent water-swellable crosslinked polymer was obtained.
Artificial soil for hydroponic cultivation was prepared by filling three transparent glass containers with the cylindrical bodies of the transparent water-swellable crosslinked polymer. 7 cm of grove begonia "Margaret decora" was transplanted into the container filled with the artificial soil for hydroponic cultivation, placed in bright semi-shade, and cultivated for ornamental purposes while supplemented with a dilute solution of liquid fertilizer. The begonias grown in this artificial soil are growing smoothly, with good root growth, and one month after transplanting, new roots can be observed through the transparent container, and the growth of stems, leaves, and roots has been good since then. It was hot. Furthermore, the growth status of stems and leaves is shown in Table 1.

【表】【table】

【表】 実施例 3〜7 表2に示した組成により、実施例1に準じて得
た水耕栽培用土壌を充填した該容器にベコニア、
セントポーリアおよびパイナツプルの約10cmの苗
を移植し、日光の差し込む室内に置き、液肥の希
薄溶液を補充しながら観賞用に栽培した。この人
工土壌で栽培した該植物は6ケ月後も順調に生育
し、特にベコニアおよびセントポーリアの生育状
況は実施例1および2と同等であり、良好な生育
状況が観察された。生育状況を表2に示した。
[Table] Examples 3 to 7 With the composition shown in Table 2, begonia,
Seedlings of Saintpaulia and pineapple, approximately 10 cm in length, were transplanted, placed in a room with sunlight, and cultivated for ornamental purposes while supplemented with a dilute solution of liquid fertilizer. The plants grown in this artificial soil continued to grow smoothly even after 6 months, and in particular, the growth conditions of Begonia and Saintpaulia were the same as those in Examples 1 and 2, and good growth conditions were observed. The growth status is shown in Table 2.

【表】 上記実施例1〜7の該容器を光照明用スタンド
の上部に載設し下部より光を照射すると、該透明
性水膨潤架橋重合体の円柱状体の各側面、各断
面、該人工土壌間の気泡および植物の根における
反射が美しく映えるので、観賞効果にとくに優れ
る。 実施例 8 粒径および長さの異なる架橋共重合体の粒状物
を用いて実施例1に準じて表3に示すような透明
性水膨潤ゲル状重合体の円柱状体を得た。該透明
性水膨潤性架橋重合体の円柱状体を透明なワイン
グラスに充填することにより水耕栽培用人工土壌
とし、これに実施例1と同様に植物を植えた。い
ずれの場合にも、実施例1と同様に観賞効果に優
れ、生育状況も良好でしかも根の生育状況の観察
にも適していた。
[Table] When the containers of Examples 1 to 7 above are placed on the top of a light illumination stand and light is irradiated from the bottom, each side, each cross section, and The air bubbles between the artificial soil and the reflections on the roots of the plants look beautiful, so it has a particularly excellent ornamental effect. Example 8 A cylindrical body of a transparent water-swellable gel polymer as shown in Table 3 was obtained according to Example 1 using crosslinked copolymer granules having different particle sizes and lengths. A transparent wine glass was filled with the cylindrical body of the transparent water-swellable crosslinked polymer to obtain artificial soil for hydroponic cultivation, and plants were planted in this in the same manner as in Example 1. In either case, as in Example 1, the ornamental effects were excellent, the growth conditions were good, and it was also suitable for observation of root growth conditions.

【表】 比較例 1〜4 実施例1に準じて、表4に示すような透明性水
膨潤架橋重合体の円柱状体を得た。該透明性水膨
潤架橋重合体の円柱状体を透明ガラス容器に充填
することにより水耕栽培用人工土壌とした。 該容器に実施例1に準じて各種植物を移植し、
観賞用に栽培した。 比較例1および比較例2に示した該水耕栽培用
人工土壌は透明性、保水性は実施例1〜7に示す
ものと変らなかつたが、空気保持性、根の保持性
に劣り、苗の移植栽培には充分ではなかつた。ま
た、該透明性水膨潤架橋重合体の円柱状体は各側
面および各断面における光の反射の点でも劣り、
かつ該人工土壌間への気泡の取り込みも充分でな
いため、気泡での反射もなく、したがつて観賞効
果が充分でない。一方、比較例3および比較例4
に示した透明水膨潤架橋重合体についても、透明
性、保水性は実施例1〜7に示したものと変らな
かつたが、植物移植時および繁殖時における根の
均一分散性が悪く、さらに水膨潤架橋重合体自体
が大きいため、不釣合いの点で観賞効果は実施例
1〜7に示す重合体に比較して劣つていた。
[Table] Comparative Examples 1 to 4 According to Example 1, cylindrical bodies of transparent water-swellable crosslinked polymers as shown in Table 4 were obtained. Artificial soil for hydroponic cultivation was prepared by filling a transparent glass container with the cylindrical body of the transparent water-swellable crosslinked polymer. Various plants were transplanted into the container according to Example 1,
Cultivated for ornamental purposes. The artificial soils for hydroponic cultivation shown in Comparative Examples 1 and 2 had the same transparency and water retention as those shown in Examples 1 to 7, but were inferior in air retention and root retention, and did not support seedlings. It was not sufficient for transplant cultivation. In addition, the cylindrical body of the transparent water-swellable crosslinked polymer is inferior in terms of light reflection on each side surface and each cross section,
In addition, since the air bubbles are not sufficiently captured between the artificial soils, there is no reflection from the air bubbles, and therefore the ornamental effect is not sufficient. On the other hand, Comparative Example 3 and Comparative Example 4
Regarding the transparent water-swellable crosslinked polymer shown in Example 1, the transparency and water retention properties were the same as those shown in Examples 1 to 7, but the uniform dispersion of roots during plant transplantation and propagation was poor, and water retention was also poor. Since the swollen crosslinked polymer itself was large, the ornamental effect was inferior to that of the polymers shown in Examples 1 to 7 in terms of imbalance.

【表】 比較例 5〜7 比較例5として参考例3で得た球状透明性水膨
潤架橋重合体、ならびに比較例6および7として
市販の無定形状吸水ポリマー(日本合成化学社
製;商品名 みずもち1番)を実施例1で用いた
のと同じ水中に浸漬して表5に示すような球状お
よび無定形状水膨潤重合体を得た。 比較例6および7の無定形状水膨潤重合体は、
実施例1〜7および比較例1〜5のものに比べ5
〜6倍の高い膨潤度を示したが、いずれも透明な
水膨潤重合体であつた。該透明性水膨潤重合体を
透明ガラス容器に充填することにより水耕栽培用
人工土壌とした。 該容器に実施例1に準じて各種植物の約5〜7
cm高さの苗を移植し、観賞用に栽培した。 その結果比較例5に示した該水耕栽培用人工土
壌は透明性、保水性の点で特に問題はなかつた
が、空気保持性および根の保持性に劣つていた。
すなわち空気保持性の点では該人工土壌を用いた
場合、移植苗の40%は移植後20〜50日で根あるい
は葉が変色した状態であり、また他の60%につい
ても移植1ケ月後、2ケ月後の茎丈はいずれも約
7cm、葉の最大長径はいずれも約5cmで、移植時
からほとんど生育は認められなかつた。また該人
工土壌にテーブルヤシあるいはドラセナコンキナ
ートリカラーなどの単子葉植物を移植した場合、
植物自体が沈降、横転するなど、観賞効果の点で
実施例1〜7に劣つていた。 比較例5,6に示した透明水膨潤重合体につい
ては、不均一形状であるため、土壌全体に均一な
空気保持性がなく、一部に根ぐされする部分も生
じた。さらに土壌内部の光反射度合が安定して得
られないことから、実施例1〜7に比べて土壌と
して、観賞効果の点でも劣つていた。
[Table] Comparative Examples 5 to 7 As Comparative Example 5, the spherical transparent water-swellable crosslinked polymer obtained in Reference Example 3, and as Comparative Examples 6 and 7, a commercially available amorphous water-absorbing polymer (manufactured by Nippon Gosei Kagaku Co., Ltd.; trade name Mizumochi No. 1) was immersed in the same water as used in Example 1 to obtain spherical and amorphous water-swollen polymers as shown in Table 5. The amorphous water-swellable polymers of Comparative Examples 6 and 7 were
5 compared to those of Examples 1 to 7 and Comparative Examples 1 to 5.
They exhibited a swelling degree as high as ~6 times, but all were transparent water-swellable polymers. An artificial soil for hydroponic cultivation was prepared by filling a transparent glass container with the transparent water-swellable polymer. Approximately 5 to 7 of various plants were placed in the container according to Example 1.
Seedlings with a height of cm were transplanted and cultivated for ornamental purposes. As a result, the artificial soil for hydroponic cultivation shown in Comparative Example 5 had no particular problems in terms of transparency and water retention, but was poor in air retention and root retention.
In other words, in terms of air retention, when using this artificial soil, 40% of transplanted seedlings had discolored roots or leaves 20 to 50 days after transplanting, and the other 60% had discolored roots or leaves one month after transplanting. Two months later, the stem height was approximately 7 cm, and the maximum length of the leaves was approximately 5 cm, and almost no growth was observed from the time of transplantation. In addition, when monocotyledonous plants such as table palm or Dracaena conquina tricolor are transplanted into the artificial soil,
The plants themselves were inferior to Examples 1 to 7 in terms of ornamental effects, such as settling and rolling over. The transparent water-swellable polymers shown in Comparative Examples 5 and 6 had non-uniform shapes, so they did not have uniform air retention properties throughout the soil, and some areas were rooted. Furthermore, since the degree of light reflection inside the soil could not be stably obtained, the soil was inferior in terms of ornamental effect compared to Examples 1 to 7.

【表】 次に前記実施例1〜8および比較例1〜7の人
工土壌について、植物の姿勢安定性試験を行つ
た。試験方法は、500mlのビーカ(直径9cm)に
被検人工土壌の所定量(Xmm高さ)を充填し、こ
れに新しく削つた鉛筆(鉛筆引つかき値試験用
4B、高さ17.5cm、重さ4.8±0.05g)をビーカの
中央部に角度70゜で、先端が底に達するように挿
入した。この時この鉛筆の転倒防止に必要な被検
人工土壌の最少量Xを比較した。結果を表6に示
した。
[Table] Next, a plant posture stability test was conducted on the artificial soils of Examples 1 to 8 and Comparative Examples 1 to 7. The test method is to fill a 500 ml beaker (diameter 9 cm) with a specified amount (X mm height) of the artificial soil to be tested, and add a freshly sharpened pencil (for pencil tack test) to the beaker (diameter 9 cm).
4B, height 17.5 cm, weight 4.8 ± 0.05 g) was inserted into the center of the beaker at an angle of 70° so that the tip reached the bottom. At this time, the minimum amount X of the test artificial soil required to prevent this pencil from tipping over was compared. The results are shown in Table 6.

【表】 表6の結果より、比較例1,2および5のもの
は、転倒防止のために他の人工土壌に比べ、1.2
〜2.6倍量の土壌が必要であつた。これにより該
人工土壌が土壌間で滑り易く、実施例1〜8およ
び比較例3,4,6および7に比べ、土壌として
の安定性に劣つていることが示された。
[Table] From the results in Table 6, Comparative Examples 1, 2, and 5 have a 1.2
~2.6 times the amount of soil was required. This showed that the artificial soil was slippery between soils and was inferior in stability as soil compared to Examples 1 to 8 and Comparative Examples 3, 4, 6, and 7.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の透明性水膨潤架橋重合体の円
柱状体の斜視図を示し、第2図は該円柱状体を充
填したワイングラスにパイナツプルを移植したも
のの図面を示す。
FIG. 1 shows a perspective view of a cylindrical body of the transparent water-swellable cross-linked polymer of the present invention, and FIG. 2 shows a drawing of a wine glass filled with the cylindrical body in which pineapple is grafted.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 透明性水膨潤架橋重合体の円柱状体からなり、
該円柱の直断面の円の直径rが2ないし40mmの範
囲にあり、かつ該円柱の高さlが該直径rに対す
る比l/rとして0.3ないし15の範囲にあること
を特徴とする水耕栽培用人工土壌。
Consisting of a cylindrical body of transparent water-swellable crosslinked polymer,
A hydroponic system characterized in that the diameter r of the circle in the right cross section of the cylinder is in the range of 2 to 40 mm, and the height l of the cylinder is in the range of 0.3 to 15 as a ratio l/r to the diameter r. Artificial soil for cultivation.
JP1984020649U 1984-02-17 1984-02-17 Artificial soil for hydroponic cultivation Granted JPS60133776U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1984020649U JPS60133776U (en) 1984-02-17 1984-02-17 Artificial soil for hydroponic cultivation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984020649U JPS60133776U (en) 1984-02-17 1984-02-17 Artificial soil for hydroponic cultivation

Publications (2)

Publication Number Publication Date
JPS60133776U JPS60133776U (en) 1985-09-06
JPH0228692Y2 true JPH0228692Y2 (en) 1990-08-01

Family

ID=30511335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984020649U Granted JPS60133776U (en) 1984-02-17 1984-02-17 Artificial soil for hydroponic cultivation

Country Status (1)

Country Link
JP (1) JPS60133776U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126715A (en) * 1982-01-20 1983-07-28 大日精化工業株式会社 Support for growing plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126715A (en) * 1982-01-20 1983-07-28 大日精化工業株式会社 Support for growing plant

Also Published As

Publication number Publication date
JPS60133776U (en) 1985-09-06

Similar Documents

Publication Publication Date Title
CA2261910C (en) Water-retaining carrier for plants
JP3425594B2 (en) Support for plant cultivation and method for growing plant
JP2986362B2 (en) Support for plant cultivation, soil modifier and method for cultivating plant
JPH0228692Y2 (en)
EP0122797B1 (en) Process for producing granular, water-swellable crosslinked acrylic copolymer, and its use
JPS5934822A (en) Water holding agent for growing plant
JP6120202B2 (en) Culture medium for seedlings for hydroponics
JPS59192026A (en) Artificial soil for hydroponic culture
JPH038736B2 (en)
JP5205627B2 (en) How to observe plant growth using teaching materials
JPH03290112A (en) Culture medium for planting
JPS61227715A (en) Polymer composition
JPH11113387A (en) Water absorbing resin for plant culture and plant culturing method using the same
JP2000053965A (en) Carboxymethylcellulose gel composition for growing plant, its production and use thereof
JPH11155363A (en) Culture soil having seed fixed thereto and plant product
JP3493228B2 (en) Horticultural rehydration agent
CA1239000A (en) Process for producing granular, water-swellable crosslinked acrylic copolymer, and its use
JPS6098910A (en) Base material for culturing plant
JP2002051638A (en) Biodegradable support for plant
JP2002291331A (en) Container for raising plant, carrier for raising plant and method for raising plant
JPH1175532A (en) Greening material and its production
JPH04264191A (en) Soil conditioner
JP2000032843A (en) Bonding culture soil for transplantation
JPS6034114A (en) Artificial soil for hydroponics
JPH01287193A (en) Agricultural and horticultural soil and production thereof