JPH02286924A - Rotation difference responding type joint - Google Patents

Rotation difference responding type joint

Info

Publication number
JPH02286924A
JPH02286924A JP10635689A JP10635689A JPH02286924A JP H02286924 A JPH02286924 A JP H02286924A JP 10635689 A JP10635689 A JP 10635689A JP 10635689 A JP10635689 A JP 10635689A JP H02286924 A JPH02286924 A JP H02286924A
Authority
JP
Japan
Prior art keywords
fluid
rotor
axial width
oil passage
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10635689A
Other languages
Japanese (ja)
Other versions
JP2748538B2 (en
Inventor
Tomoyuki Hara
智之 原
Takashi Okubo
孝 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP10635689A priority Critical patent/JP2748538B2/en
Publication of JPH02286924A publication Critical patent/JPH02286924A/en
Application granted granted Critical
Publication of JP2748538B2 publication Critical patent/JP2748538B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Retarders (AREA)

Abstract

PURPOSE:To miniaturize a device by forming at a rotor member inclination fluid passages which have fluid opening portions at positions where inclination fluid passages cross two surfaces A.B respectively which meet at right angles with a rotary shaft, within the range of the axial width of a fluid chamber provided with a cam body. CONSTITUTION:An inclination balance oil passage 60 is connected with cylinder chambers 50, 50 which make volume change in phase, and cylinder chamber opening portions 60a, 60b are provided at positions where the inclination balance oil passage 60 crosses two surfaces A, B which meet at right angles with a rotary shaft. A plurality of inclination balance oil passages 60 are housed so as not to interfere with each other, in the axial width of a rotor 30. As a result, the miniaturization of a device can be accomplished as the width of the inside portion where oil passages are formed, out of the rotor 30 becomes such a rotor axial width whose degree is that of an axial width which forms two parallel oil passages. Also, the enlargement of the rotor axial width by means of a regulator oil passage 80 is prevented as the regulator oil passage 80 has such a constitution that there is no rotary shaft direction overlap with the inclination balance oil passage 60.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、車両のエンジン駆動系に差動制限装置や駆動
力配分装置として適応され、左右輪や前後輪の回転差に
応じて発生する流体圧を差動制限トルクや駆動力配分ト
ルクに変換して駆動力配分比を変更する回転差感応型継
手に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is applied to the engine drive system of a vehicle as a differential limiting device or a driving force distribution device, and the present invention is applied to a vehicle engine drive system as a differential limiting device or a driving force distribution device. The present invention relates to a rotation difference sensitive joint that changes the driving force distribution ratio by converting fluid pressure into differential limiting torque or driving force distribution torque.

(従来の技術) 従来、回転差感応型継手としては、例えば、特開昭63
−62635号公報に記載されているような装置が知ら
れている。
(Prior art) Conventionally, as a rotation difference sensitive type joint, for example, JP-A-63
A device as described in Japanese Patent No.-62635 is known.

この従来出典には、内面にカム面を有するハウジング部
材と、相対回転によりカム面に周接しながら径方向に往
復動する放射状配置のカム体を有するロータ部材と、該
ロータ部材に形成され、カム体の往復動に伴ない同相で
体積変化する対向配置の流体室を連通ずるべく形成され
た流体路と、該流体路に設けられ、吐出流体の流通抑制
により流体圧に変換するオリフィスとを備えた回転差感
応型継手が示されている。
This conventional source includes a housing member having a cam surface on its inner surface, a rotor member having a radially arranged cam body that reciprocates in the radial direction while circumferentially contacting the cam surface by relative rotation, and a cam body formed on the rotor member. It includes a fluid path formed to communicate fluid chambers arranged opposite to each other whose volume changes in the same phase as the body reciprocates, and an orifice provided in the fluid path that converts the discharged fluid into fluid pressure by suppressing its flow. A differential rotation sensitive joint is shown.

(発明が解決しようとする課題) しかしながら、このような従来の回転差感応型継手にあ
っては、対向配置の流体室を連通する流体路が回転軸に
直交する平行流体路となっていた為、流体室の数が増せ
ば増すほど、互いの干渉を避けるべく所定の間隔をおい
て配置される複数の平行流体路のために必要とするロー
タ部材の軸方向幅を拡大しなければならず、ロータ部材
が大型化してしまい継手としてのコンパクト性に欠けて
しまうという問題があった。
(Problem to be Solved by the Invention) However, in such conventional rotation difference sensitive joints, the fluid passages that communicate the fluid chambers arranged opposite to each other are parallel fluid passages perpendicular to the rotation axis. As the number of fluid chambers increases, the axial width of the rotor member must increase due to the plurality of parallel fluid passages arranged at predetermined intervals to avoid interference with each other. However, there was a problem in that the rotor member became large and lacked compactness as a joint.

例えば、伝達トルク容量増大や特性安定化等のためにカ
ム体の数を6個、8個、10個、12個・・・と多くし
ていった場合、平行流体路も3本、4本、5本、6本・
・・と増大し、この増大に伴なって平行流体路のために
必要とするロータ部材の軸方向幅も拡大してしまう。
For example, if the number of cam bodies is increased to 6, 8, 10, 12, etc. in order to increase the transmission torque capacity or stabilize the characteristics, the number of parallel fluid paths will also be 3 or 4. , 5 pieces, 6 pieces・
..., and along with this increase, the axial width of the rotor member required for the parallel fluid path also increases.

本発明は、上記のような問題に着目してなされたもので
、カム体の数の増大にかかわらず小型コンパクト化を達
成出来る回転差感応型継手の開発を課題とする。
The present invention was made in view of the above-mentioned problems, and an object of the present invention is to develop a rotation differential sensitive joint that can be made smaller and more compact despite an increase in the number of cam bodies.

(課題を解決するための手段) 上記課題を解決するために本発明の回転差感応型継手で
は、同軸上に配置された相対回転する第1回転軸及び第
2回転軸と、前記第1回転軸の軸端部に設けられ、内面
にカム面を有するハウジング部材と、前記第2回転軸の
軸端部に設けられ、相対回転により前記カム面に周接し
ながら径方向に往復動する放射状配置のカム体を有する
ロータ部材と、前記カム体の往復動に伴ない同相で体積
変化する流体室を連通ずるべくロータ部材に形成された
流体路であって、カム体が設けられる流体室の軸方向幅
の範囲内で回転軸に直交する2つの面に対し、それぞれ
交差する位置を流体室開口部とする傾斜流体路と、前記
傾斜流体路に設けられ、吐出流体の流通抑制により流体
圧に変換するオリフィス部材とを備えている事を特徴と
する手段とした。
(Means for Solving the Problems) In order to solve the above problems, in the rotation difference sensitive joint of the present invention, a first rotation shaft and a second rotation shaft that are coaxially arranged and rotate relative to each other, and the first rotation shaft a housing member provided at the shaft end of the shaft and having a cam surface on its inner surface; and a radial arrangement provided at the shaft end of the second rotating shaft, which reciprocates in the radial direction while circumferentially contacting the cam surface due to relative rotation. A fluid passage formed in the rotor member to communicate a rotor member having a cam body with a fluid chamber whose volume changes in the same phase as the cam body reciprocates, the fluid chamber having an axis in which the cam body is provided. An inclined fluid path is provided in the inclined fluid path, and the fluid chamber opening is at the intersection of two planes perpendicular to the rotation axis within the range of the direction width. The means is characterized by comprising an orifice member for conversion.

(作 用) 回転差感応型継手の製造時において、ロータ部材には、
カム体が設けられる流体室の軸方向幅の範囲内で回転軸
に直交する2つの面に対し、それぞれ交差する位置を流
体室開口部とする傾斜流体路が形成される。
(Function) When manufacturing differential rotation sensitive joints, the rotor members are
An inclined fluid path is formed between two planes orthogonal to the rotating shaft within the axial width of the fluid chamber in which the cam body is provided, with the fluid chamber openings at the intersections of the two planes.

従って、カム体の数か増大に伴ないカム体の往復動に伴
ない同相で体積変化する流体室を連通する流体路の数の
増大があっても、回転軸に直交する2つの面の範囲内、
即ち、2本の平行流体路を形成する軸方向幅程度の範囲
内に、互いに流路干渉することなく複数の傾斜流体路が
形成されることになる。
Therefore, even if there is an increase in the number of fluid passages communicating fluid chambers whose volume changes in the same phase as the cam bodies reciprocate as the number of cam bodies increases, the range of two planes perpendicular to the rotation axis Inside,
In other words, a plurality of inclined fluid passages are formed within a range approximately equal to the axial width of two parallel fluid passages, without interference with each other.

また、回転差感応型継手の使用時において、1回転軸及
び第2回転軸に相対回転がない時には、カム体の往復動
が無く流体室の体積変化も生じない為、原則として、ト
ルク伝達作用を示さない。
In addition, when using a rotation difference sensitive joint, when there is no relative rotation between the first rotation axis and the second rotation axis, there is no reciprocating movement of the cam body and no change in volume of the fluid chamber occurs, so in principle, the torque transmission effect is reduced. does not indicate.

しかし、1回転軸及び第2回転軸に相対回転が発生する
時には、この相対回転によりカム面に周接するカム体は
径方向に往復動じ、この往復動のうち回転軸中心に向か
うことで流体室の容積を縮小させる時にオリフィス部材
による流動抵抗で流体室内の圧力が高まり、この発生流
体圧とカム体の受圧面積とを掛は合せた流体圧力がカム
体をカム面に押し付ける力となり、この押し付は力が伝
達トルクとなってトルク伝達作用を示す。
However, when relative rotation occurs between the first rotation axis and the second rotation axis, the cam body that is in contact with the cam surface reciprocates in the radial direction due to this relative rotation. When the volume of the cam is reduced, the pressure inside the fluid chamber increases due to the flow resistance caused by the orifice member, and the fluid pressure obtained by multiplying this generated fluid pressure and the pressure-receiving area of the cam body becomes a force that presses the cam body against the cam surface, and this pressure The asterisk indicates a torque transmission effect in which the force becomes a transmitted torque.

そして、この伝達トルク特性は、相対回転速度差の増大
に応じて高まる特性で、しかも、オリフィス部材による
流通抑制の程度が高いほど相対回転速度差に対するゲイ
ンの高い特性となる。
This transmission torque characteristic is a characteristic that increases as the relative rotational speed difference increases, and the higher the degree of flow suppression by the orifice member, the higher the gain with respect to the relative rotational speed difference becomes.

(実施例) 以下、本考案を図面に示す実施例に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on embodiments shown in the drawings.

まず、実施例の構成を説明する。First, the configuration of the embodiment will be explained.

実施例は本考案の回転差感応型継手を差動制限装置とし
て適応した例であり、第1図に示すように、差動機能を
発揮する差動装置1内に差動制限機能を発揮する回転差
感応型差動制限装置2が内蔵状態で組み合わされている
The embodiment is an example in which the rotational difference sensitive joint of the present invention is applied as a differential limiting device, and as shown in FIG. A rotational difference-sensitive differential limiting device 2 is combined in a built-in state.

前記差動装置1としては、ドライブピオニオン3及びリ
ングギヤ4を介して駆動力が入力されるディファレンシ
ャルケース10と、ビニオンシャフト11を介して回転
自在に支持されたビニオン12と、該ビニオン12に噛
合する一対のサイドギヤ13.14と、該サイドギヤ1
3,14に連結される2つの出力軸15.16(第1回
転軸及び第2回転軸)とを備えている。
The differential device 1 includes a differential case 10 into which driving force is input via a drive pionion 3 and a ring gear 4, a binion 12 rotatably supported via a binion shaft 11, and a binion 12 that is rotatably supported via a binion shaft 11. A pair of side gears 13 and 14 that mesh with each other, and the side gear 1
3 and 14, two output shafts 15 and 16 (a first rotation shaft and a second rotation shaft) are provided.

そして、前記出力軸15.16には、相対回転の発生が
無い時には等配分に駆動力が伝達され、相対回転の発生
時には回転差感応型差動制限装置2による差動制限トル
ク分だけ駆動力が高回転側から低回転側へ伝達される。
The driving force is equally distributed to the output shafts 15 and 16 when no relative rotation occurs, and when relative rotation occurs, the driving force is transmitted by the differential limiting torque by the rotation difference sensitive differential limiting device 2. is transmitted from the high rotation side to the low rotation side.

前記回転差感応型差動制限装置2は、第1図及び第2図
に示すように、出力軸15.16のうち方の出力軸15
にスプライン結合されたカムハウジング20(ハウジン
グ部材)の内面に形成されたカム面21と、他方の出力
軸16にスプライン結合されるロータ30(ロータ部材
)に設けられ、相対回転によりカム面21に周接しなが
ら径方向に往復動する放射配置のドライビングピストン
40(カム体)と、該ドライビングピストン40の往復
動に伴なって体積変化するシリンダー室50(流体室)
と、同相で体積変化する対向配置のシリンダ室50.5
0を連通ずる傾斜バランス油路60(傾斜流体路)と、
アキュムレータ室70と各シリンダ室50とをそれぞれ
ワンウェイバルブ81を介して連通ずるレギュレータ油
路80と、前記傾斜バランス油路60からアキュムレー
タ室70に向かう軸方向分岐油路61に設けられたオリ
フィス90(オリフィス部材)とを備えている。
As shown in FIGS. 1 and 2, the rotational difference sensitive differential limiting device 2 is connected to one of the output shafts 15 and 16.
The cam surface 21 formed on the inner surface of the cam housing 20 (housing member) spline-coupled to the rotor 30 (rotor member) spline-coupled to the other output shaft 16, and the cam surface 21 formed on the rotor 30 (rotor member) spline-coupled to the A radially arranged driving piston 40 (cam body) that reciprocates in the radial direction while surrounding the circumference, and a cylinder chamber 50 (fluid chamber) that changes in volume as the driving piston 40 reciprocates.
and a cylinder chamber 50.5 arranged oppositely and whose volume changes in the same phase.
an inclined balance oil passage 60 (inclined fluid passage) that communicates with
An orifice 90 ( orifice member).

前記カムハウジング20は、出力軸15に対しスプライ
ン結合されるカムハウジングカバー22を介して設けら
れていて、内面にカム面21が形成されると共に、側面
にはサイドギヤ14が形成されている。即ち、出力軸1
5とカムハウジングカバー22とカムハウジング20と
サイドギヤ14とは一体回転部材となっている。
The cam housing 20 is provided via a cam housing cover 22 spline-coupled to the output shaft 15, and has a cam surface 21 formed on its inner surface and a side gear 14 formed on its side surface. That is, output shaft 1
5, the cam housing cover 22, the cam housing 20, and the side gear 14 are integrally rotating members.

前記ロータ30は、出力軸16にスプライン結合される
と共に、カムハウジング20のカム面21内に挿入状態
で配置されていて、前記カム面21に対向する位置で放
射半径方向に等間隔で6個所にシリンダ穴31が形成さ
れている。
The rotor 30 is spline-coupled to the output shaft 16 and inserted into the cam surface 21 of the cam housing 20, and is arranged at six positions facing the cam surface 21 at equal intervals in the radial direction. A cylinder hole 31 is formed in.

前記ドライビングピストン40は、前記シリンダ穴31
に対しシールリング41により油密状態で6個設けられ
たカム部材で、カム面21との周接面は滑らかな接触移
動と高いヘルツの接触応力を確保する為に球面に形成さ
れている。
The driving piston 40 is connected to the cylinder hole 31.
On the other hand, six cam members are provided in an oil-tight state by a seal ring 41, and the circumferential surface with the cam surface 21 is formed into a spherical surface to ensure smooth contact movement and high Hertzian contact stress.

前記シリンダ室50は、前記シリンダ穴31と前記ドラ
イビングピストン40との間に、該ピストン40のスト
ローク位置によって室容積が変化するように形成されて
いる。
The cylinder chamber 50 is formed between the cylinder hole 31 and the driving piston 40 so that the chamber volume changes depending on the stroke position of the piston 40.

前記傾斜バランス油路60は、ドライビングピストン4
0が設けられるシリンダ穴31の穴径りの範囲内であっ
て、この穴径しよりも狭いロータ軸方向間隔Mに設定さ
れた回転軸に直交する2つの面A、Bに対し、対向する
シリンダ室50の一方の室底面と面Aが交差する位置を
シリンダ室開口部60aとし、他方の室底面と面Bが交
差する位置をシリンダ室開口部60bとして1本の傾斜
バランス油路60が形成され、且つ、ロータ軸方向幅N
に3本の傾斜バランス油路60が互いに干渉しないで収
まるように形成されている。
The inclined balance oil passage 60 is connected to the driving piston 4.
0 is within the range of the diameter of the cylinder hole 31 in which the diameter of the rotor is provided, and is opposed to two surfaces A and B perpendicular to the rotary axis, which are set at an interval M in the rotor axial direction that is narrower than the diameter of this hole. The position where one chamber bottom surface of the cylinder chamber 50 intersects surface A is defined as a cylinder chamber opening 60a, and the position where the other chamber bottom surface and surface B intersect is defined as a cylinder chamber opening 60b, and one inclined balance oil passage 60 is formed. and the rotor axial width N
The three inclined balance oil passages 60 are formed so as to fit therein without interfering with each other.

前記アキュムレータ室70は、作動油の一時的貯留及び
放出により油量の増減吸収を行なう室で、ロータ30に
往復動可能に油密状態で設けられたアキュムレータピス
トン71と、該ピストン71とスプリングリテーナ72
との間に介装されたスプリング73とを有する。
The accumulator chamber 70 is a chamber that temporarily stores and releases hydraulic oil to absorb an increase or decrease in the amount of oil. 72
and a spring 73 interposed between.

尚、前記アキュムレータピストン71には、ピストンシ
ール74が設けられ、このピストンシール74が設けら
れる位置のロータ30には、径方向にリリーフ穴75が
開穴され、アキュムレータ室70が設定圧を越え、アキ
ュムレータピストン71が図面右方向に移動した時にリ
リーフ穴75がアキュムレータ室70と連通して作動油
を逃すリリーフバルブ機能を発揮するようにしている。
Incidentally, the accumulator piston 71 is provided with a piston seal 74, and a relief hole 75 is opened in the radial direction in the rotor 30 at the position where the piston seal 74 is provided, so that the accumulator chamber 70 exceeds the set pressure. When the accumulator piston 71 moves rightward in the drawing, the relief hole 75 communicates with the accumulator chamber 70 and functions as a relief valve to release hydraulic oil.

前記レギュレータ油路80は、シリンダ室50の油圧調
整のために設けられた油路で、アキュムレータ室70と
各シリンダ室50とをそれぞれワンウェイバルブ81を
介して連通させることで、ドライビングピストン40が
外径方向にストロクし、シリンダ室圧がアキュムレータ
室圧より低圧となってワンウエイバルフ81が開く時に
、アキュムレータ室70から各シリンダ室50に加圧作
動油を供給するようにしている。
The regulator oil passage 80 is an oil passage provided for adjusting the oil pressure of the cylinder chamber 50, and communicates the accumulator chamber 70 and each cylinder chamber 50 via one-way valves 81, so that the driving piston 40 can be moved out. Pressurized hydraulic oil is supplied from the accumulator chamber 70 to each cylinder chamber 50 when the cylinder chamber pressure becomes lower than the accumulator chamber pressure and the one-way valve 81 opens.

尚、このレギュレータ油路80は、第3図に示すように
、前記傾斜バランス油路60とは回転軸直交方向にオフ
セット量○を持たせて形成され、傾斜バランス油路60
と回転軸方向のオーバラップを避けることで、レギュレ
ータ油路80によるロータ軸方向幅Nの拡大を防止して
いる。
As shown in FIG. 3, the regulator oil passage 80 is formed with an offset amount ○ in the direction perpendicular to the rotation axis from the inclined balance oil passage 60.
By avoiding overlap in the rotation axis direction, the rotor axial width N is prevented from increasing due to the regulator oil passage 80.

前記オリフィス90は、傾斜バランス油路60からアキ
ュムレータ室70に向かう3つの軸方向分岐油路61に
それぞれ形成されていて、対向する2気筒のシリンダ室
50.50に対し流路断面積を大きくした1個のオリフ
ィス90により作動油に流動抵抗を与えるようにしてい
る。
The orifice 90 is formed in each of the three axially branched oil passages 61 extending from the inclined balance oil passage 60 to the accumulator chamber 70, and has a flow passage cross-sectional area larger than that of the cylinder chambers 50 and 50 of the two opposing cylinders. One orifice 90 provides flow resistance to the hydraulic oil.

次に、実施例の作用を説明する。Next, the operation of the embodiment will be explained.

(イ)非相対回転時 乾燥アスファルト路等を低・中速で平行走行する場合等
であって、出力軸15.16に連結される左右輪に回転
速度差が発生しない時は、ケースカバー20とロータ3
0とに相対回転がなく、ドライビングピストン40が径
方向に往復動しない為、ディファレンシャルケース10
から入力されるエンジン駆動力は出力軸?5.18に対
し等配分される。
(a) During non-relative rotation When running in parallel at low to medium speeds on a dry asphalt road, etc., and when there is no rotational speed difference between the left and right wheels connected to the output shaft 15, 16, the case cover 2 and rotor 3
0, and the driving piston 40 does not reciprocate in the radial direction, so the differential case 10
Is the engine driving force input from the output shaft? 5.18 will be equally distributed.

しかしながら、左右輪に相対回転か発生しない時であっ
ても、高速道路を高速直進走行する場合等では、出力軸
15.16の回転に伴なって高速回転するロータ30に
設けられているドライビングピストン4Qには遠心力が
作用し、この遠心力によってドライビングピストン40
がカム面21に押し付けられ、差動制限トルクが生じる
However, even when relative rotation does not occur between the left and right wheels, when driving straight on a highway at high speed, the driving piston installed in the rotor 30 rotates at high speed as the output shaft 15, 16 rotates. Centrifugal force acts on 4Q, and this centrifugal force causes the driving piston 40
is pressed against the cam surface 21, and a differential limiting torque is generated.

従って、高速直進走行時には、幾分か差動制限機能が発
揮されることになり、高速道路等での高速直進走行安定
性を高めることかできる。
Therefore, when traveling straight at high speed, the differential limiting function is exerted to some extent, and the stability of straight traveling at high speed on expressways can be improved.

(ロ)相対回転発生時 悪路走行時や片輪スタック時等で出力軸15゜16に連
結される左右輪に回転速度差が発生する時は、ケースカ
バー20とロータ30とにも相対回転が発生し、この相
対回転によりカム面21に周接するドライビングピスト
ン40は径方向に往復動し、この往復動のうち回転軸中
心に向かうことでシリンダ室50の容積を縮小させよう
とする時には、オリフィス90による流出規制で生じる
流動抵抗でシリンダ室50内の圧力が高まり、この発生
油圧とピストン40の受圧面積とを掛は合せた油圧力が
ドライビングピストン40をカム面21に押し付ける力
となり、この押し付は力が差動制限トルクとして作用し
、駆動力の分配を高速回転側を小さくし、低速回転側を
大きくするように差動が制限される。
(b) When relative rotation occurs When a difference in rotational speed occurs between the left and right wheels connected to the output shaft 15° 16 when driving on a rough road or when one wheel is stuck, the case cover 20 and rotor 30 also rotate relative to each other. occurs, and due to this relative rotation, the driving piston 40 in circumferential contact with the cam surface 21 reciprocates in the radial direction, and when attempting to reduce the volume of the cylinder chamber 50 by moving toward the center of the rotation axis during this reciprocating movement, The pressure inside the cylinder chamber 50 increases due to the flow resistance caused by the flow restriction by the orifice 90, and the hydraulic pressure obtained by multiplying this generated hydraulic pressure and the pressure receiving area of the piston 40 becomes a force that presses the driving piston 40 against the cam surface 21, and this In pressing, the force acts as a differential limiting torque, and the differential is limited so that the distribution of driving force is smaller on the high-speed rotation side and larger on the low-speed rotation side.

そして、実施例装置による差動制限トルク特性は、第4
図の実線特性に示すように、左右輪回転速度差ΔNRL
に対し差動制限トルクT LSDが二次関数曲線で増大
する特性を示す。
The differential limiting torque characteristics of the embodiment device are as follows:
As shown in the solid line characteristic in the figure, the left and right wheel rotational speed difference ΔNRL
In contrast, the differential limiting torque TLSD exhibits a characteristic that increases in a quadratic function curve.

尚、高速走行時等で車速Vか大きい場合には、車速Vの
大きさに対応して、第4図の点線特性に示すように、ド
ライビングピストン40に加わる遠心力による伝達トル
96丁が付加された特性を示す。
In addition, when the vehicle speed V is high, such as when driving at high speed, 96 transmission torques are added due to the centrifugal force applied to the driving piston 40, as shown by the dotted line characteristics in FIG. 4, corresponding to the magnitude of the vehicle speed V. It shows the characteristics that have been

以上説明してきたように、実施例の回転差感応型差動制
限装置2にあっては、以下に列挙する効果が得られる。
As described above, the rotational difference sensitive differential limiting device 2 of the embodiment provides the following effects.

■ 同相で体積変化するシリンダ室50.50を連通ず
る流体路を傾斜バランス油路60とし、回転軸に直交す
る2つの面A、Bと交差する位置をシリンダ室開口部6
0a、60bとして、ロータ軸方向幅Nに3本の傾斜バ
ランス油路60が互いに干渉しないで収まる構成とした
為1、ロータ30のうち油路が形成される内側部分が2
本の平行油路を形成する軸方向幅程度のロータ軸方向幅
Nとなり、回転差感応型差動制限装置2の小型コンパク
ト化を達成出来る。
■ The fluid path that communicates the cylinder chambers 50 and 50 whose volume changes in the same phase is an inclined balance oil path 60, and the position that intersects two planes A and B perpendicular to the rotation axis is the cylinder chamber opening 6.
As 0a and 60b, the three inclined balance oil passages 60 are configured to fit within the rotor axial width N without interfering with each other, so the inner part of the rotor 30 where the oil passages are formed is 2.
The axial width N of the rotor is approximately the same as the axial width of a parallel oil passage, and the rotation difference sensitive differential limiting device 2 can be made smaller and more compact.

そして、例えば、設計変更によりドライビングピストン
40の数を増大し、これに伴なって傾斜バランス油路6
0の数の増大があっても、ロータ軸方向幅を拡大するこ
となく、そのままの幅で対応出来る。
For example, the number of driving pistons 40 may be increased due to a design change, and along with this, the inclined balance oil passage 6 may be increased.
Even if there is an increase in the number of 0's, the width can be handled without increasing the axial width of the rotor.

■ レギュレータ油路80は、面Bと重なる位置に形成
しているにもかかわらず、傾斜バランス油路60に対し
回転軸直交方向にオフセット量○を持たせて形成した為
、傾斜バランス油路60と回転軸方向のオーバラップが
避けられ、レギュレタ油路80によるロータ軸方向幅N
の拡大が防止出来る。
■ Although the regulator oil passage 80 is formed at a position overlapping with surface B, it is formed with an offset amount ○ in the direction perpendicular to the rotation axis with respect to the inclined balance oil passage 60, so the inclined balance oil passage 60 overlap in the rotation axis direction is avoided, and the rotor axial width N due to the regulator oil passage 80 is reduced.
The expansion of can be prevented.

即ち、前記■の効果との相乗効果により、ロータ軸方向
幅Nを狭く設定することができ、回転差感応型差動制限
装置2の小型コンパクト化を達成出来る。
That is, due to the synergistic effect with the effect (2) above, the axial width N of the rotor can be set narrowly, and the rotation difference sensitive differential limiting device 2 can be made smaller and more compact.

■ 対向する2気筒のシリンダ室50.50を連通する
傾斜バランス油路60に対し1個のオリフィス90を設
けた為、1気筒のシリンダ室に対し1個のオリフィスを
設ける場合と同じ差動制限トルク特性を得る場合のオリ
フィス流路断面積に比較してオリフィス90の流路断面
積を大きくすることが出来、この結果、コンタミ(ゴミ
等)による影響を回避することが出来る。
■ Since one orifice 90 is provided for the inclined balance oil passage 60 that communicates the cylinder chambers 50 and 50 of two opposing cylinders, the differential limit is the same as when one orifice is provided for one cylinder chamber. The cross-sectional area of the orifice 90 can be made larger than the cross-sectional area of the orifice when obtaining torque characteristics, and as a result, the influence of contamination (dust, etc.) can be avoided.

以上、本考案の実施例を図面により詳述してきたが、具
体的な構成はこの実施例に限られるものではなく、本考
案の要旨を逸脱しない範囲における設計変更等があって
も本考案に含まれる。
Although the embodiment of the present invention has been described above in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and the present invention may be modified even if there are design changes within the scope of the gist of the present invention. included.

例えば、実施例では回転差感応型継手を回転差感応型差
動制限装置として用いる適応例を示したが、前後輪の回
転速度差△NFRに応じて差動制限トルクを与えるセン
ターディファレンシャルの差動制限装置としても適応出
来るし、また、前後輪の回転速度差△NFHに応じて前
後輪駆動力配分を変更する駆動力配分装!としても適応
することが出来る。
For example, in the embodiment, an example of application in which a rotation difference-sensitive joint is used as a rotation difference-sensitive differential limiting device is shown. It can also be used as a restriction device, and is also a driving force distribution system that changes the front and rear wheel drive force distribution according to the rotational speed difference △NFH between the front and rear wheels! It can be adapted as well.

また、実施例ではカム体としてのドライビングピストン
が6個設けられた例を示したが、その数は実施例に限ら
れるものではなく8個、10個。
Further, in the embodiment, an example is shown in which six driving pistons are provided as cam bodies, but the number is not limited to the embodiment, and may be eight or ten.

12個・・・等であっても勿論良い。Of course, it is also possible to have 12 pieces, etc.

また、実施例では固定オリフィスを示したが、この固定
オリフィスに限られず、例えば、高相対回転が長時間継
続する時には作動油温度を感知してオリフィス開度を全
閉とするようなものであっても良いし、また、相対回転
速度や流体室圧等に応じてオリフィス開度が徐々に変更
される可変オリフィス等であっても良い。
In addition, although a fixed orifice is shown in the embodiment, it is not limited to this fixed orifice. For example, when high relative rotation continues for a long time, the orifice opening degree may be fully closed by sensing the hydraulic oil temperature. Alternatively, it may be a variable orifice whose opening degree is gradually changed depending on the relative rotational speed, fluid chamber pressure, etc.

(考案の効果) 以上説明してきたように、本考案の回転差感応型継手に
あっては、カム体の往復動に伴ない同相で体積変化する
流体室を連遇するべくロータ部材に形成された流体路を
、カム体が設けられる流体室の軸方向幅の範囲内で回転
軸に直交する2つの面に対し、それぞれ交差する位置を
流体室開口部とする傾斜流体路とした為、カム体の数の
増大にかかわらず回転差感応型継手の小型コンパクト化
を達成出来るという効果が得られる。
(Effects of the invention) As explained above, in the rotation difference sensitive joint of the invention, a fluid chamber is formed in the rotor member to accommodate a fluid chamber whose volume changes in the same phase as the cam body reciprocates. Since the fluid path is an inclined fluid path with the fluid chamber opening at the intersection of two planes perpendicular to the rotation axis within the axial width of the fluid chamber in which the cam body is installed, the cam The effect is that the rotation differential sensitive joint can be made smaller and more compact regardless of the increase in the number of bodies.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案実施例の回転差感応型差動制限装置を示
す縦断平面図、第2図は第1図I−I線線による回転差
感応型差動制限装置を示す縦断正面図、第3図は回転差
感応型差動制限装置のロータを示す側面図、第4図は差
動制限トルク特性図である。 1・・・差動装置 2・・−回転差感応型差動制限装置 10・・・ディファレンシャルケース 11・・・ピニオンシャフト 12・・・ピニオン 13.14−・・サイドギヤ 15.16・・・出力軸 (第1回転軸、第2回転軸) 20−・カムハウジング(ハウジング部材)21・−・
カム面 30・・・ロータ(ロータ部材) 40・・・ドライビングピストン(カム体)50・・・
シリンダ室(流体室) 60・・・傾斜バランス油路(傾斜流体路)70・・・
アキュムレータ室 80・・・レギュレータ油路
1 is a longitudinal sectional plan view showing a rotational difference sensitive differential limiting device according to an embodiment of the present invention; FIG. 2 is a longitudinal sectional front view showing the rotational differential sensitive differential limiting device taken along line I-I in FIG. 1; FIG. 3 is a side view showing the rotor of the rotation difference sensitive differential limiting device, and FIG. 4 is a differential limiting torque characteristic diagram. 1...Differential device 2...-Rotation difference sensitive differential limiting device 10...Differential case 11...Pinion shaft 12...Pinion 13.14-...Side gear 15.16...Output Shaft (first rotating shaft, second rotating shaft) 20-・Cam housing (housing member) 21・-・
Cam surface 30... Rotor (rotor member) 40... Driving piston (cam body) 50...
Cylinder chamber (fluid chamber) 60... Inclined balance oil path (inclined fluid path) 70...
Accumulator chamber 80...regulator oil path

Claims (1)

【特許請求の範囲】 1)同軸上に配置された相対回転する第1回転軸及び第
2回転軸と、 前記第1回転軸の軸端部に設けられ、内面にカム面を有
するハウジング部材と、 前記第2回転軸の軸端部に設けられ、相対回転により前
記カム面に周接しながら径方向に往復動する放射状配置
のカム体を有するロータ部材と、前記カム体の往復動に
伴ない同相で体積変化する流体室を連通するべくロータ
部材に形成された流体路であって、カム体が設けられる
流体室の軸方向幅の範囲内で回転軸に直交する2つの面
に対し、それぞれ交差する位置を流体室開口部とする傾
斜流体路と、 前記傾斜流体路に設けられ、吐出流体の流通抑制により
流体圧に変換するオリフィス部材とを備えている事を特
徴とする回転差感応型継手。
[Claims] 1) A first rotating shaft and a second rotating shaft that are coaxially arranged and rotate relative to each other, and a housing member that is provided at the shaft end of the first rotating shaft and has a cam surface on its inner surface. , a rotor member having a radially arranged cam body that is provided at the shaft end of the second rotating shaft and reciprocates in the radial direction while circumferentially contacting the cam surface by relative rotation; A fluid path formed in a rotor member to communicate fluid chambers whose volume changes in the same phase, and which connects two surfaces perpendicular to the rotation axis within the axial width of the fluid chamber in which the cam body is installed. A rotation difference sensitive type characterized by comprising: an inclined fluid passage whose intersecting position is a fluid chamber opening; and an orifice member provided in the inclined fluid passage and which converts discharged fluid into fluid pressure by suppressing the flow of the fluid. Fittings.
JP10635689A 1989-04-26 1989-04-26 Rotational differential fitting Expired - Lifetime JP2748538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10635689A JP2748538B2 (en) 1989-04-26 1989-04-26 Rotational differential fitting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10635689A JP2748538B2 (en) 1989-04-26 1989-04-26 Rotational differential fitting

Publications (2)

Publication Number Publication Date
JPH02286924A true JPH02286924A (en) 1990-11-27
JP2748538B2 JP2748538B2 (en) 1998-05-06

Family

ID=14431482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10635689A Expired - Lifetime JP2748538B2 (en) 1989-04-26 1989-04-26 Rotational differential fitting

Country Status (1)

Country Link
JP (1) JP2748538B2 (en)

Also Published As

Publication number Publication date
JP2748538B2 (en) 1998-05-06

Similar Documents

Publication Publication Date Title
US5305858A (en) Rotary shock absorber having vanes with radial flow clearance
JPS62286838A (en) Torque transmission device
US5063738A (en) Pressure generation and responsive mechanism with high viscous fluid
JPS63285334A (en) Rotational difference sensing coupling
US5137130A (en) Controlled type rotation speed difference sensitive coupling
JPH02286924A (en) Rotation difference responding type joint
JPS6388328A (en) Torque transmitter
JP2701449B2 (en) Rotational difference sensitive differential limiter
JP2701448B2 (en) Rotational difference sensitive differential limiter
JP2669113B2 (en) Rotational differential fitting
JPH051722Y2 (en)
JP2815731B2 (en) Hydraulic power transmission coupling
JP2626175B2 (en) Rotational differential fitting
JP2523749Y2 (en) Drive coupling device for four-wheel drive
JP3007451B2 (en) Hydraulic power transmission
JPH02159423A (en) Hydraulic power transmission coupling
JP2564878Y2 (en) Hydraulic power transmission coupling
JPS61155070A (en) Power steering device with reaction force mechanism
JPH0532667Y2 (en)
JPH0819974B2 (en) Controlled differential rotation sensitive joint
JP3235854B2 (en) Hydraulic pump for power transmission
JPH01249530A (en) Vehicle speed and rotation responsive type coupling
JPH06241247A (en) Speed differential sensitive coupling
JPH0289821A (en) Rotation difference-sensitive type joint
JPH02278023A (en) Rotational difference sensitive type coupling