JPH01249530A - Vehicle speed and rotation responsive type coupling - Google Patents

Vehicle speed and rotation responsive type coupling

Info

Publication number
JPH01249530A
JPH01249530A JP7994788A JP7994788A JPH01249530A JP H01249530 A JPH01249530 A JP H01249530A JP 7994788 A JP7994788 A JP 7994788A JP 7994788 A JP7994788 A JP 7994788A JP H01249530 A JPH01249530 A JP H01249530A
Authority
JP
Japan
Prior art keywords
fluid
vehicle speed
input
chamber
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7994788A
Other languages
Japanese (ja)
Other versions
JPH0773983B2 (en
Inventor
Toji Takemura
統治 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP7994788A priority Critical patent/JPH0773983B2/en
Publication of JPH01249530A publication Critical patent/JPH01249530A/en
Publication of JPH0773983B2 publication Critical patent/JPH0773983B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Retarders (AREA)

Abstract

PURPOSE:To enhance the running ability in low and middle speed ranges, and the steering stability and rectilinearly advancing stability in a high speed range by a vehicle speed responsive type mechanism adapted to open and close in accordance with a rotational speed, in a fluid passage communicating between a plurality of fluid chambers and an accumulator chamber. CONSTITUTION:In a differential gear unit 1, a pair of output gears 15, 16 are meshed with a pinion 12 through the intermediary of a pair of side gears 13, 14 within a differential gear casing 10. In this arrangement, a rotational speed difference responsive type coupling A is disposed between the side gear 14 and the output gear 16, and is provided therein with a cam surface 31 formed on the inner surface of a differential gear casing cover 30, and several cam members 50 formed on the base part 40 of the side gear 14 so as to make slidably contact with the cam surface 31. Further, there are provided several fluid chambers 60 each having a volume which varies in association with the reciprocating motion of each cam member 50, and a fluid passage 70 communicating between the fluid chambers 60 and an accumulator chamber 90. Further, a vehicle speed responsive type mechanism 110 adapted to open and close in accordance with a rotational speed is disposed in the fluid passage 70.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、差動装置に左右輪の差動を制限する差動制限
手段等として組込まれたり、四輪駆動車のトランスファ
装置等として適応される車速・回転差感応型継手に関す
る。
Detailed Description of the Invention (Field of Industrial Application) The present invention is incorporated into a differential device as a differential limiting means for limiting the differential movement between left and right wheels, or is applicable as a transfer device of a four-wheel drive vehicle. This article relates to a vehicle speed/rotation difference sensitive joint.

(従来の技術) 従来、回転差感応型差動制限手段が組込まれた差動装置
としては、例えば、特開昭61−62642号公報に記
載されているような装置が知られている。
(Prior Art) Conventionally, as a differential device incorporating a rotation difference sensitive differential limiting means, a device as described in Japanese Patent Laid-Open No. 61-62642, for example, is known.

この差動装置の回転差感応型差動制限手段は、差動装置
の出力軸に平行な外周部に設けられ、−対のサイドギヤ
にカム面を有する一対のカムを設け、このカム間のスリ
ーブに摺動可能に設けられた一対のプランジャと、この
プランジャ間をオリフィスを介して連通ずる流体室とを
備え、一対のサイドギヤの相対回転時に、一対のプラン
ジャに左右輪の差動制限力となる押付力を発生させるよ
うにしている。
The rotational difference sensitive differential limiting means of this differential device is provided on the outer periphery parallel to the output shaft of the differential device, a pair of cams having cam surfaces are provided on the side gears of the pair, and a sleeve between the cams is provided. It is equipped with a pair of plungers that are slidably installed on the shaft, and a fluid chamber that communicates between the plungers through an orifice.When the pair of side gears rotate relative to each other, the pair of plungers exerts a differential limiting force between the left and right wheels. It is designed to generate pressing force.

(発明か解決しようとする課題) しかしながら、前記回転差感応型差動制限手段にあって
は、左右輪が回転差により相対回転した時にのみに差動
制限機能を発揮する構造であり、車速が上昇しても差動
制限機能はほとんど低回転時と変化がない特性しか得ら
れないものであった為、左右輪に回転差がほとんど生じ
ない高速道路等での高速直進走行時には、差動制限力が
発生せず、高速走行時における操安性や直進安定性の向
上を望めないという課題があった。
(Problem to be solved by the invention) However, the rotation difference-sensitive differential limiting means has a structure that exerts the differential limiting function only when the left and right wheels rotate relative to each other due to the rotation difference, and the vehicle speed increases. The differential limiting function was only able to obtain characteristics that were almost unchanged from those at low rotation speeds even when the vehicle was raised, so when driving straight at high speeds such as on expressways where there is almost no difference in rotation between the left and right wheels, the differential limiting function is effective. The problem was that it did not generate any force, making it impossible to improve handling and straight-line stability when driving at high speeds.

(課題を解決するための手段) 本発明は、上述のような課題を解決することを目的とし
、この目的達成のために本発明では、相対回転可能な入
出力部材間に設けられ、入出力部材の回転速度差に応じ
た量の流体を流動させると共に、この流体の流動抑制に
より流体圧を発生させ、この流体圧に応じて前記入出力
部材間の伝達トルクを制御する継手であって、前記入出
力部材の一方に形成されたカム面と、前記入出力部材の
他方に支持されると共に、前記カム面と周接し入出力部
材の相対回転時に径方向に往復動するカム体と、該カム
体の往復動に伴ない体積変化する槽数の流体室と、各流
体室とアキュムレータ室間を連通ずる流体路と、該流体
路の途中に設けられ、低回転時には各流体室とアキュム
レータ室間を所定のオリフィス開度を介して連通し、高
回転時には遠心力により外方へ移動する錘により流体路
を閉じる車速感応機構とを備えている事を特徴とする手
段とした。
(Means for Solving the Problems) The present invention aims to solve the above-mentioned problems, and in order to achieve this purpose, in the present invention, an input/output device is provided between relatively rotatable input/output members. A joint that allows an amount of fluid to flow according to the rotational speed difference of the members, generates fluid pressure by suppressing the flow of this fluid, and controls the transmission torque between the input and output members according to this fluid pressure, a cam surface formed on one side of the input/output member; a cam body supported by the other side of the input/output member, in circumferential contact with the cam surface and reciprocating in a radial direction when the input/output member rotates relative to each other; A fluid chamber with a number of tanks whose volume changes as the cam body reciprocates, a fluid path that communicates between each fluid chamber and the accumulator chamber, and a fluid path that communicates between each fluid chamber and the accumulator chamber. The means is characterized in that it is equipped with a vehicle speed sensitive mechanism that communicates between the fluid passages through a predetermined orifice opening degree and closes the fluid passages by means of a weight that moves outward due to centrifugal force at high rotation speeds.

(作 用) 低・中速で走行する場合、継手が低回転であることによ
り、車速感応機構は流体路とアキュムレータ室とを所定
のオリフィス開度を介して連通ずる状態となっている。
(Function) When traveling at low to medium speeds, the joint rotates at a low speed, so the vehicle speed sensing mechanism communicates the fluid path and the accumulator chamber through a predetermined orifice opening.

従って、低・中速走行時で、入出力部材間に回転速度差
の発生がない時は、流体圧及び伝達トルクの発生もなく
、入出力部材間に回転速度差が発生する時は、両部材の
相対回転によりカム面に周接するカム体は径方向に往復
動し、この往復動のうち回転軸中心に向かうことでシリ
ンダー室の容積を縮小させようとする時には、オリフィ
ス開度による流動抵抗でシリンダー室内の圧力が高まり
、この発生油圧とカム体の受圧面積とを掛は合せた油圧
力がカム体をカム面に押し付ける力となり、この押し付
は力によって回転速度差に応じた伝達トルクが発生する
Therefore, when running at low to medium speeds, when there is no rotational speed difference between the input and output members, no fluid pressure or transmission torque is generated, and when there is a rotational speed difference between the input and output members, both Due to the relative rotation of the members, the cam body that is in contact with the cam surface reciprocates in the radial direction, and when the volume of the cylinder chamber is reduced by moving toward the center of the rotation axis during this reciprocating movement, flow resistance due to the orifice opening degree occurs. The pressure inside the cylinder chamber increases, and the resulting hydraulic pressure multiplied by the pressure-receiving area of the cam body becomes a force that presses the cam body against the cam surface. occurs.

高速で走行する場合、継手が高回転であることにより、
車速感応機構は遠心力により外方へ移動する錘により流
体路を閉じ、流体路とアキュムレータ室とが遮断された
状態となる。
When traveling at high speeds, due to the high rotation of the joint,
The vehicle speed sensitive mechanism closes the fluid path by a weight that moves outward due to centrifugal force, and the fluid path and the accumulator chamber are cut off.

従って、シリンダー室及び流体路内に作動流体か封じ込
められることで、カム体が僅かに内側へストロークする
だけでシリンダー室内の圧力が急増し、その後、カム体
がカム面に大きな力で押し付けられてロック状態となり
、回転速度差にかかわらず高い伝達トルクが発生する。
Therefore, since the working fluid is confined within the cylinder chamber and fluid path, the pressure inside the cylinder chamber increases rapidly with just a slight inward stroke of the cam body, and then the cam body is pressed against the cam surface with a large force. It is in a locked state and a high transmission torque is generated regardless of the rotational speed difference.

(実施例) 以下、本発明の実施例を図面により詳述する。(Example) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

まず、実施例の構成を説明する。First, the configuration of the embodiment will be explained.

実施例は、第1図に示すように、差動機能を発揮する差
動装置1内に差動制限機能を発揮する車速・回転差感応
型継手Aが内蔵状態で組込まれ、両者で差動制限装置を
構成した例である。
In this embodiment, as shown in Fig. 1, a vehicle speed/rotation difference sensitive joint A that performs a differential limiting function is built into a differential device 1 that performs a differential function, and both This is an example of a restriction device.

前記差動装置1としては、駆動入力側に連結されるディ
ファレンシャルケース10内に、ビニオンシャフト11
を介して回転自在に支持されたビニオン12と、該ピニ
オン12に噛合する一対のサイドギヤ13,14と、サ
イドギヤ13,14に連結される2つの出力軸15.1
6とを備えている。
The differential device 1 includes a pinion shaft 11 in a differential case 10 connected to the drive input side.
A pinion 12 rotatably supported via a pinion 12, a pair of side gears 13, 14 meshing with the pinion 12, and two output shafts 15.1 connected to the side gears 13, 14.
6.

そして、前記出力軸+5.16のうち、一方の出力軸1
5へはサイドギヤ13から直接駆動力が伝達され、他方
の出力軸16へはサイドギヤ14から回転差感応型継手
Aを介して駆動力か伝達される。
Then, one output shaft 1 among the output shafts +5.16
5, the driving force is directly transmitted from the side gear 13, and the driving force is transmitted from the side gear 14 to the other output shaft 16 via the rotation difference sensitive joint A.

前記回転差感応型継手Aは、第1図及び第2図に示すよ
うに、相対回転する前記ディファレンシャルケース10
とサイドギヤ14のうち、一方のディファレンシャルケ
ース10のケースカバー30の内面に形成されたカム面
31と、他方のサイドギャ14のギヤ基部40に設けら
れ、相対回転により略正方形によるカム面31に周接し
ながら径方向に往復動する放射状配置の6個のドライビ
ングピストン50(カム体)と、該ドライビングピスト
ン50の往復動に伴ない体積変化する6室のシリンダー
室60(流体室)と、各シリンダー室60とアキュムレ
ータ室90間を連通ずるバランス油路70(流体路)と
、該バランス油路70の途中に設けられ、前記ギヤ基部
40が低回転時には各シリンダー室60とアキュムレー
タ室90間を所定のオリフィス開度を介して連通し、高
回転時には遠心力により外方へ移動するウェイトポール
群113(錘)によりバランス油路70を閉じるスプー
ルバルブ110(車速感応機構)を介して連通するバラ
ンス油路70(流体路)と、各シリンダー室60とアキ
ュムレータ室90間を連通ずるレギュレータ油路80と
、前記アキュムレータ室90より作動油(流体)を外部
に排出するリリーフバルブ100とを備えている。
As shown in FIGS. 1 and 2, the rotation difference sensitive joint A is connected to the differential case 10 which rotates relatively.
A cam surface 31 formed on the inner surface of the case cover 30 of one differential case 10 and a gear base 40 of the other side gear 14 are provided among the side gears 14, and the cam surface 31 is provided on the gear base 40 of the other side gear 14, and the cam surface 31 contacts the substantially square cam surface 31 due to relative rotation. six radially arranged driving pistons 50 (cam bodies) that reciprocate in the radial direction, six cylinder chambers 60 (fluid chambers) whose volume changes as the driving pistons 50 reciprocate, and each cylinder chamber. A balance oil passage 70 (fluid passage) that communicates between each cylinder chamber 60 and the accumulator chamber 90, and a balance oil passage 70 (fluid passage) provided in the middle of the balance oil passage 70, which is provided between each cylinder chamber 60 and the accumulator chamber 90 when the gear base 40 rotates at low speed. A balance oil passage that communicates via the orifice opening degree and that communicates via a spool valve 110 (vehicle speed sensitive mechanism) that closes the balance oil passage 70 by a weight pole group 113 (weight) that moves outward due to centrifugal force at high speeds. 70 (fluid path), a regulator oil path 80 that communicates between each cylinder chamber 60 and an accumulator chamber 90, and a relief valve 100 that discharges hydraulic oil (fluid) from the accumulator chamber 90 to the outside.

前記ケースカバー30は、駆動入力部材であるディファ
レンシャルケース10に対し、ボルト止めにより一体に
設けられている。
The case cover 30 is integrally bolted to the differential case 10, which is a drive input member.

前記ギヤ基部40は、前記ケースカバー30のカム面3
1内に挿入状態で配置されていて、前記サイドギヤ14
が形成されると共に、前記カム面31に対向する位置で
゛放射半径方向に等間隔で6個所にシリンダー穴42が
形成されている。
The gear base 40 is connected to the cam surface 3 of the case cover 30.
1, and the side gear 14 is inserted into the side gear 14.
At the same time, six cylinder holes 42 are formed at equal intervals in the radial direction at positions facing the cam surface 31.

前記ドライビングピストン50は、前記シリンダー穴4
2に対しシールリング51により油密状態で設けられた
カム部材で、カム面31との周接面は滑らかな接触移動
を確保する為に球面50aに形成され、該球面50aの
曲率半径は、カム面31より小さいがシリンダー穴42
の径に合うドライビングポールよりも大きく設定されて
いて、ヘルツの接触応力が高く、高容量(高トルク)に
耐えられるようにしている。
The driving piston 50 is connected to the cylinder hole 4
2, the cam member is provided in an oil-tight state by a seal ring 51, and the circumferential surface with the cam surface 31 is formed into a spherical surface 50a to ensure smooth contact movement, and the radius of curvature of the spherical surface 50a is as follows. The cylinder hole 42 is smaller than the cam surface 31.
It is set larger than the driving pole that matches the diameter of the pole, has a high Hertz contact stress, and can withstand high capacity (high torque).

前記シリンダー室60は、前記シリンダー穴42と前記
ドライビングピストン50との間に形成された室で、ド
ライビングピストン50の往復動に伴なって体積変化す
る。
The cylinder chamber 60 is a chamber formed between the cylinder hole 42 and the driving piston 50, and changes in volume as the driving piston 50 reciprocates.

前記バランス油路YOは、前記ギヤ基部40に形成され
たスプールバルブ110のバルブ穴111から放射状に
形成されている。
The balance oil passage YO is formed radially from a valve hole 111 of a spool valve 110 formed in the gear base 40.

前記レギュレータ油路80は、前記ギヤ基部40に形成
されたスプールバルブ110のバルブ穴111から放射
状に形成され、その途中にはアキュムレーター室100
からシリンダー室60への作動油流通のみを許すポール
弁構造のワンウェイバルブ81が設けられている。
The regulator oil passage 80 is formed radially from a valve hole 111 of a spool valve 110 formed in the gear base 40, and an accumulator chamber 100 is formed in the middle thereof.
A one-way valve 81 having a pawl valve structure is provided to allow only flow of hydraulic oil from the cylinder chamber 60 to the cylinder chamber 60.

前記アキュムレータ室90は、作動油の一時的貯留及び
放出により油量の増減吸収を行なう室で、ギヤ基部40
に往復動可能に油密状態で設けられたアキュムレータピ
ストン91と、該ピストン91とスプリングリテーナ9
2との間に介装されたスプリング93と、によって構成
されている。
The accumulator chamber 90 is a chamber that absorbs an increase or decrease in the amount of oil by temporarily storing and releasing hydraulic oil.
an accumulator piston 91 that is provided in an oil-tight manner so as to be able to reciprocate, and the piston 91 and the spring retainer 9.
2 and a spring 93 interposed between the spring 93 and the spring 93.

尚、前記アキュムレータピストン91には、そのストロ
ークが所定ストロークを越えると、ギヤ基部40に開穴
されたバルブ穴101を開くリリーフバルブ100が形
成され、アキュムレータ室90が設定圧を越えたら作動
油を外部に逃がすようにしている。
Incidentally, the accumulator piston 91 is formed with a relief valve 100 that opens a valve hole 101 formed in the gear base 40 when the stroke exceeds a predetermined stroke. I try to let it escape to the outside.

前記スプールバルブ110は、前記バルブ穴111に軸
方向移動可能に嵌合され、一端側にテーバ面112aが
形成され他端側にオリフィスランド112bが形成され
たスプール112と、該スプール112のテーバ面11
2aに接してポールケース115内に収容されたウェイ
トポール群113と、前記スプール112のオリフィス
ランド112b側に設けられたリターンスプリング11
4とによって構成されている。
The spool valve 110 is fitted into the valve hole 111 so as to be movable in the axial direction, and includes a spool 112 having a tapered surface 112a formed at one end and an orifice land 112b formed at the other end, and a tapered surface of the spool 112. 11
2a and a return spring 11 provided on the orifice land 112b side of the spool 112.
4.

尚、前記スプール112及びポールケース115には中
央に通孔112c、115aが開孔され、バルブ穴11
1とアキュムレータ室90とは連通状態か保たれるよう
にしている。
Incidentally, the spool 112 and the pole case 115 have through holes 112c and 115a in the center, and the valve hole 11
1 and the accumulator chamber 90 are kept in communication.

次に、実施例の作用を説明する。Next, the operation of the embodiment will be explained.

(イ)低・中速時 低・中速で走行する場合、スプールバルブ110は、ス
プール112を図面右方向に押すリターンスプリング1
14の初期セット荷重が、スブール112を図面左方向
に押すウェイトポール群113の遠心押力を上回ってい
る為、第1図の下半分に示すように、バランス油路70
とアキュムレータ室90とはオリフィスランド112b
による所定のオリフィス開度を介して連通した状態とな
っている。
(a) Low/medium speed When driving at low/medium speed, the spool valve 110 has a return spring 1 that pushes the spool 112 to the right in the drawing.
Since the initial set load of 14 exceeds the centrifugal pushing force of the weight pole group 113 that pushes the subur 112 to the left in the drawing, the balance oil passage 70 as shown in the lower half of Fig. 1
The accumulator chamber 90 and the orifice land 112b
They are in communication via a predetermined orifice opening degree.

従って、乾燥アスファルト路等での低・中速走行時で、
出力軸15.16に連結される左右輪に回転速度差が発
生しない時は、ケースカバー30とローター40とに相
対回転がなく、ドライビングピストン50が径方向に往
復動じない為、ディファレンシャルケース10から入力
されるエンジン駆動力は、出力軸15.16に対し等配
分される。
Therefore, when driving at low to medium speeds on dry asphalt roads,
When there is no difference in rotational speed between the left and right wheels connected to the output shaft 15, 16, there is no relative rotation between the case cover 30 and the rotor 40, and the driving piston 50 does not reciprocate in the radial direction. The input engine driving force is equally distributed to the output shafts 15,16.

また、悪路走行時や片輪スタック時等で出力軸15.1
6に連結される左右輪に回転速度差が発生する時は、ケ
ースカバー30とギヤ基部40とにも相対回転が発生し
、この相対回転によりカム面31に周接するドライビン
グピストン50は径方向に往復動し、この往復動のうち
回転軸中心に向かうことでシリンダー室60の容積を縮
小させようとする時には、オリフィスランド112bに
よる流動抵抗でシリンダー室60内の圧力が高まり、こ
の発生油圧とピストン50の受圧面積とを掛は合せた油
圧力かドライビングピストン50をカム面31に押し付
ける力となり、この押し付は力によって入力駆動トルク
の分配を高速回転側を小さくし、低速回転側を大きくす
るように差動が制限される。
In addition, when driving on rough roads or when one wheel gets stuck, the output shaft 15.1
When a difference in rotational speed occurs between the left and right wheels connected to the wheel 6, relative rotation also occurs between the case cover 30 and the gear base 40, and this relative rotation causes the driving piston 50 in circumferential contact with the cam surface 31 to move in the radial direction. When the volume of the cylinder chamber 60 is reduced by moving toward the center of the rotation axis, the pressure inside the cylinder chamber 60 increases due to the flow resistance caused by the orifice land 112b, and this generated hydraulic pressure and the piston 50 is multiplied by the hydraulic pressure or the force that presses the driving piston 50 against the cam surface 31, and this pressing makes the distribution of input drive torque smaller on the high-speed rotation side and larger on the low-speed rotation side. The differential is limited.

尚、差動制限トルク△Tは、左右輪の回転速度差ΔNが
大きければ大きい程、オリフィスランド112bの前後
圧力差も大きくなることから、2次関数曲線であられさ
れるトルク特性を示し、また、駆動伝達系の破壊強度よ
り小さな圧力でアキュムレータ室90から外部に油を逃
がすリリーフバルブ100を設けた為、所定の最大トル
クまでに差動制限トルクは規定される。
It should be noted that the differential limiting torque ΔT shows a torque characteristic drawn by a quadratic function curve, since the greater the rotational speed difference ΔN between the left and right wheels, the greater the pressure difference between the front and rear orifice lands 112b. Since the relief valve 100 is provided to release oil from the accumulator chamber 90 to the outside at a pressure lower than the destructive strength of the drive transmission system, the differential limiting torque is regulated up to a predetermined maximum torque.

以上により、差動時には差動度合に応じて、自動的に差
動制限制御されることになり、悪路での直進走行性や、
片輪スタック時の脱出性やタックイン抑制等が向上する
As a result of the above, when using a differential, differential restriction control is automatically performed according to the degree of differential, which improves straight-line driving performance on rough roads,
Improves escape performance and tuck-in control when one wheel is stuck.

(ロ)高速時 高速道路等を高速(例えば、80km/h以上)で走行
する場合、スプールバルブ110は、スプール112を
図面右方向に押すリターンスプリング114の初期セッ
ト荷重より、スプール112を図面左方向に押すウェイ
トポール群113の遠心押力が上回り、スプール112
か図面左方向にストロークして、第1図の上半分に示す
ように、バランス油路70とアキュムレータ室90とが
スプール112により遮断された状態となる。
(b) At high speeds When traveling at high speeds (for example, 80 km/h or more) on expressways, the spool valve 110 moves the spool 112 to the left in the drawing due to the initial set load of the return spring 114 that pushes the spool 112 to the right in the drawing. The centrifugal pushing force of the weight pole group 113 pushing in the direction exceeds the spool 112
Then, the balance oil passage 70 and the accumulator chamber 90 are cut off by the spool 112, as shown in the upper half of FIG.

従って、シリンダー室60及びバランス油路70内に作
動油が封じ込められることで、ドライビングピストン5
0が僅かに内側へストロークするだけでシリンダー室6
0内の圧力が急増し、その後、ドライビングピストン5
0がカム面31に大きな力で押し付けられてロック状態
となり、左右輪の差動が非常に大きな差動制限力により
制限されることになる。
Therefore, by sealing the hydraulic oil in the cylinder chamber 60 and the balance oil passage 70, the driving piston 5
0 moves slightly inward, cylinder chamber 6
The pressure in 0 increases rapidly, then the driving piston 5
0 is pressed against the cam surface 31 with a large force, resulting in a locked state, and the differential movement between the left and right wheels is limited by a very large differential limiting force.

尚、高速走行する場合には、出力軸15.16の回転に
伴なって高速回転するギヤ基部40に設けられているド
ライビングピストン50には遠心力か作用し、この遠心
力によってドライビングピストン50がカム面31に押
し付けられることになり、この分の差動制限力も付加さ
れる。
When traveling at high speed, centrifugal force acts on the driving piston 50 provided at the gear base 40, which rotates at high speed as the output shaft 15, 16 rotates, and this centrifugal force causes the driving piston 50 to move. It will be pressed against the cam surface 31, and a differential limiting force corresponding to this will also be added.

以上により、高速時には、高い差動制限力が得られる為
、操舵性能としてアンダーステアとなり操安性か向上す
ると共に、片輪浮き上がりに対しても蛇行をもたらす左
右輪への駆動力配分の変化がなく、直進安定性が向上す
る。
As a result of the above, a high differential limiting force can be obtained at high speeds, which improves steering performance by causing understeer, and also eliminates changes in drive force distribution to the left and right wheels that would cause meandering when one wheel lifts up. , straight-line stability is improved.

ここで、例えば、差動制限装置を、デフロック装置のよ
うに車速に関係なく、高い差動制限力が得られるように
すると、車両の直進安定性は極めて良くなるが、逆に旋
回性か悪くなる。特に、低速にあってはアンダーステア
傾向が著しくなると共に、ハンドルが極端に重くなり実
用的なものになり得ない。
For example, if the differential limiting device is configured to provide a high differential limiting force regardless of the vehicle speed, like a differential lock device, the straight-line stability of the vehicle will be extremely improved, but on the other hand, the turning performance will be poor. Become. In particular, at low speeds, there is a marked tendency to understeer, and the steering wheel becomes extremely heavy, making it impractical.

そして、高速時には、直進安定性が第1に要求される事
項であり、高速道路ではオーバステア傾向であるより多
少アンダーステア傾向の方が安全性が高い。しかしなが
ら、高速道路より車速を落しランプ部曲線路を経過して
一般道路に入ったら、このアンダーステア特性は望まし
いものではなく避けるのが賢明である。
At high speeds, straight-line stability is the first requirement, and on expressways, a tendency to understeer is safer than a tendency to oversteer. However, when the vehicle speed is reduced from the expressway and the vehicle passes through the curved ramp section and enters the public road, this understeer characteristic is not desirable and it is wise to avoid it.

即ち、実施例の車速・回転差感応型継手Aを組込んだ差
動制限装置にあっては、回転差感応型差動制限をベース
とし、車速と対応関係にある遠心力を利用してスプール
バルブ110を作動させる構成とすることによって、低
・中速走行時における回転差感応型差動制限機能と高速
時における車速感応型差動制限機能との両機能を併せて
持ち、回転差感応型差動制限装置によるスタック脱出効
果等を達成した上で、高速走行時において直進安定性を
向上させることが出来る。
That is, the differential limiting device incorporating the vehicle speed/rotation difference sensitive joint A of the embodiment is based on a rotation difference sensitive differential limiting device, and utilizes centrifugal force that corresponds to the vehicle speed to control the spool. By configuring the valve 110 to operate, it has both a rotation difference-sensitive differential limiting function at low to medium speeds and a vehicle speed-sensitive differential limiting function at high speeds. In addition to achieving the stuck escape effect using the differential limiting device, it is possible to improve straight-line stability during high-speed running.

しかも、スプールバルブ110を追加するだけの極めて
低コストで目標性能を達成出来ると共に、オリフィスと
開閉弁とを兼用するスプールバルブ170とし、部品点
数的にも油漏れ個所的にも少なくした為、信頼性が高い
ものとすることが出来る。
Furthermore, the target performance can be achieved at an extremely low cost by simply adding the spool valve 110, and the spool valve 170 serves both as an orifice and an opening/closing valve, reducing the number of parts and oil leakage points, making it reliable. It can be made to have high quality.

また、前記効果以外にも、本出願人が先に出願した実願
昭62−184485号の明細書に記載した効果が得ら
れる。
In addition to the above-mentioned effects, the effects described in the specification of U.S. Pat.

以上、本発明の実施例を図面により詳述してきたが、具
体的な構成はこの実施例に限られるものではなく、本発
明の要旨を逸脱しない範囲における設計変更等があって
も本発明に含まれる。
Although the embodiments of the present invention have been described above in detail with reference to the drawings, the specific configuration is not limited to these embodiments, and the present invention may be modified without departing from the gist of the present invention. included.

例えば、実施例では、車速感応機構としてオリフィスを
兼用し、部品点数が少なく油漏れによる伝達トルク影響
の小さな好ましいスプールバルブの例を示したか、実願
昭62−184485号に記載されている様に、オリフ
ィスを別に形成し、このオリフィスと流路開閉弁との組
合わせにより構成しても良い。
For example, in the embodiment, an example of a preferable spool valve is shown, which also serves as an orifice as a vehicle speed sensing mechanism, has a small number of parts, and has little effect on transmission torque due to oil leakage, or as described in Utility Model Application No. 184485/1985. , an orifice may be formed separately, and the orifice may be combined with a flow path opening/closing valve.

また、実施例では、車速・回転差感応型継手を差動装置
に組込むことで差動制限装置に適応した例を示したが、
四輪駆動車の前後輪への駆動力配分可能な位置に設けら
れるトランスファ装置として適応しても良く、この場合
にも、高速時にはリジット4輪駆動方向に駆動力配分が
制御されることで、直進安定性を向上させることが出来
る。
In addition, in the example, an example was shown in which a vehicle speed/rotation difference sensitive joint was incorporated into a differential to be adapted to a differential limiting device.
It may be applied as a transfer device installed at a position where driving force can be distributed to the front and rear wheels of a four-wheel drive vehicle, and in this case as well, the driving force distribution is controlled in the direction of rigid four-wheel drive at high speeds. Straight-line stability can be improved.

(発明の効果) 以上説明してきたように、本発明の車速・回転差感応型
継手にあっては、相対回転可能な入出力部材間に設けら
れ、入出力部材の回転速度差に応じた!の流体を流動さ
せると共に、この流体の流動抑制により流体圧を発生さ
せ、この流体圧に応じて前記入出力部材間の伝達トルク
を制御する継手であって、各流体室とアキュムレータ室
間を連通する流体路の途中に設けられ、低回転時には各
流体室とアキュムレータ室間を所定のオリフィス開度を
介して連通し、高回転時には遠心力により外方へ移動す
る錘により流体路を閉じる車速感応機構とを備えている
手段とした為、継手が低回転である低・中速走行時にお
ける回転差感応型伝達トルク特性による走破性向上効果
と、継手が高回転である高速走行時における高い車速感
応型伝達トルク特性による操安性及び直進安定性向上効
果との両立を達成することが出来るという効果が得られ
る。
(Effects of the Invention) As explained above, the vehicle speed/rotation difference sensitive joint of the present invention is provided between relatively rotatable input and output members, and is adapted to respond to the rotational speed difference between the input and output members. A joint that allows the fluid to flow, generates fluid pressure by suppressing the flow of this fluid, and controls the transmission torque between the input and output members according to this fluid pressure, and communicates between each fluid chamber and the accumulator chamber. The vehicle speed-sensitive system is installed in the middle of the fluid path to communicate between each fluid chamber and the accumulator chamber at low speeds through a predetermined orifice opening, and at high speeds the fluid path is closed by a weight that moves outward due to centrifugal force. Since the method is equipped with a mechanism, it has the effect of improving running performance due to the rotation difference-sensitive transmission torque characteristics when driving at low to medium speeds when the joint is running at low rotations, and it improves the running performance when driving at high speeds when the joint is at high rotations. The effect is that it is possible to simultaneously achieve the effects of improving steering stability and straight-line stability due to the sensitive transmission torque characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の車速・回転差感応型継手をを適
応した差動制限装置を示す縦断側面図、第2図は第1図
I−I線による差動制限装置の縦断正面図である。 A・・・車速・回転差感応型継手 1・・・差動装置 10・・・ディファレンシャルケース 11・・・ビニオンシャフト 12・・・ビニオン 13.14・・・サイドギヤ 15.16・・・出力軸 30・・−ケースカバー(入力部材) 31・・・カム面 40・・・ギヤ基部C出力部材) 50・・・ドライビングピストン(カム体)60・・・
シリンダー室 70・・・バランス油路(流体路) 90・・・アキュムレータ室 110・・・スプールバルブ(車速感応機構)112・
・・スプール 112a・・−テーバ面 112b・・・オリフィスランド 113・・・ウェイトポール群(錘) 114・・・リターンスプリング
Fig. 1 is a longitudinal side view showing a differential limiting device to which a vehicle speed/rotation difference sensitive joint according to an embodiment of the present invention is applied, and Fig. 2 is a longitudinal sectional front view of the differential limiting device taken along line I-I in Fig. 1. It is. A...Vehicle speed/rotation difference sensitive joint 1...Differential device 10...Differential case 11...Binion shaft 12...Binion 13.14...Side gear 15.16...Output Shaft 30... Case cover (input member) 31... Cam surface 40... Gear base C output member) 50... Driving piston (cam body) 60...
Cylinder chamber 70...Balance oil path (fluid path) 90...Accumulator chamber 110...Spool valve (vehicle speed sensitive mechanism) 112.
... Spool 112a ... - Taper surface 112b ... Orifice land 113 ... Weight pole group (weight) 114 ... Return spring

Claims (1)

【特許請求の範囲】[Claims] (1) 相対回転可能な入出力部材間に設けられ、入出
力部材の回転速度差に応じた量の流体を流動させると共
に、この流体の流動抑制により流体圧を発生させ、この
流体圧に応じて前記入出力部材間の伝達トルクを制御す
る継手であって、 前記入出力部材の一方に形成されたカム面と、前記入出
力部材の他方に支持されると共に、前記カム面と周接し
入出力部材の相対回転時に径方向に往復動するカム体と
、該カム体の往復動に伴ない体積変化する複数の流体室
と、各流体室とアキュムレータ室間を連通する流体路と
、該流体路の途中に設けられ、低回転時には各流体室と
アキュムレータ室間を所定のオリフィス開度を介して連
通し、高回転時には遠心力により外方へ移動する錘によ
り流体路を閉じる車速感応機構とを備えている事を特徴
とする車速・回転差感応型継手。
(1) It is provided between relatively rotatable input and output members, allows an amount of fluid to flow according to the rotational speed difference between the input and output members, and generates fluid pressure by suppressing the flow of this fluid, and responds to this fluid pressure. A joint for controlling transmission torque between the input and output members, the joint having a cam surface formed on one of the input and output members, and a joint that is supported by the other of the input and output members and that is in circumferential contact with the cam surface. A cam body that reciprocates in the radial direction when the output member rotates relative to each other, a plurality of fluid chambers whose volume changes as the cam body reciprocates, a fluid path communicating between each fluid chamber and an accumulator chamber, and the fluid A vehicle speed-sensitive mechanism is installed in the middle of the path, and at low speeds, each fluid chamber and the accumulator chamber are communicated through a predetermined orifice opening, and at high speeds, the fluid path is closed by a weight that moves outward due to centrifugal force. A vehicle speed/rotation difference sensitive joint characterized by:
JP7994788A 1988-03-31 1988-03-31 Vehicle speed / speed difference sensitive joint Expired - Lifetime JPH0773983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7994788A JPH0773983B2 (en) 1988-03-31 1988-03-31 Vehicle speed / speed difference sensitive joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7994788A JPH0773983B2 (en) 1988-03-31 1988-03-31 Vehicle speed / speed difference sensitive joint

Publications (2)

Publication Number Publication Date
JPH01249530A true JPH01249530A (en) 1989-10-04
JPH0773983B2 JPH0773983B2 (en) 1995-08-09

Family

ID=13704497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7994788A Expired - Lifetime JPH0773983B2 (en) 1988-03-31 1988-03-31 Vehicle speed / speed difference sensitive joint

Country Status (1)

Country Link
JP (1) JPH0773983B2 (en)

Also Published As

Publication number Publication date
JPH0773983B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
EP0187447B1 (en) Motor-cycle
JPH078620B2 (en) Torque transmission device
US5024309A (en) Rotational speed differential responsive type control coupling
US5303797A (en) Torque distribution control device for four-wheel drive vehicle
US5137130A (en) Controlled type rotation speed difference sensitive coupling
US5890574A (en) Hydraulic coupling arrangement for 4WD vehicle
US5106347A (en) Rotational speed differential responsive type torque transmitting assembly with variable orifice means
JPH01249530A (en) Vehicle speed and rotation responsive type coupling
JP2630017B2 (en) Rotational differential fitting
JPH07103901B2 (en) Rotation sensitive joint
JPH0819974B2 (en) Controlled differential rotation sensitive joint
JPS6388328A (en) Torque transmitter
JP2748538B2 (en) Rotational differential fitting
JPH0337428A (en) Control type rotating difference induction joint
JP2564878Y2 (en) Hydraulic power transmission coupling
JP2701448B2 (en) Rotational difference sensitive differential limiter
JPH0293124A (en) Controlled rotation-difference sensing type joint
JPH051722Y2 (en)
JP2646809B2 (en) Final reducer
JPH0532667Y2 (en)
JPH0547864Y2 (en)
JPH0341228A (en) Control type rotation difference sensitive coupling
JPH03189426A (en) Control type rotation difference sensitive coupling
JPH0756330B2 (en) Differential rotation sensitive differential limiting device
JPH0819973B2 (en) Controlled differential rotation sensitive joint