JPH02285314A - Method for positioning light cutting microscope device and its optical means - Google Patents

Method for positioning light cutting microscope device and its optical means

Info

Publication number
JPH02285314A
JPH02285314A JP10848489A JP10848489A JPH02285314A JP H02285314 A JPH02285314 A JP H02285314A JP 10848489 A JP10848489 A JP 10848489A JP 10848489 A JP10848489 A JP 10848489A JP H02285314 A JPH02285314 A JP H02285314A
Authority
JP
Japan
Prior art keywords
light
reflected light
optical
measured
optical means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10848489A
Other languages
Japanese (ja)
Inventor
Koujirou Itou
考治郎 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10848489A priority Critical patent/JPH02285314A/en
Publication of JPH02285314A publication Critical patent/JPH02285314A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the peak detection accuracy of light intensity and to obtain a light-cut image with high resolution by providing a light limiting means which has slit width W between a 2nd optical means and an optical detecting means where reflected light from an object to be measured is made incident. CONSTITUTION:The incident light limiting means 7 which has the slit width W is provided between the 2nd optical means 15 and optical detecting means 16 where the reflected light L2 from the object 18 to be measured is made incident. Consequently, the reflected light from the object 18 to be measured is cut off by the incident light limiting means 17 except reflected light L3 which has the slit width 17, and consequently only the reflected light L3 which has the slit width W can be made incident on the optical detecting means 16. The optical detecting means 16 can, therefore, obtain a steep-rising light intensity distribution based upon the reflected light L3 with the slit width W. Consequently, the peak can accurately be detected and the light-cut image of a waving surface shape with high resolution can be obtained.

Description

【発明の詳細な説明】 〔概要〕 光切断顕微鏡装置、特に表面うねり形状の被測定対象の
表面と光学手段の焦点とを位置合わせする装置に関し、 核披測定対象からの反射光を全て光検出手段に入射する
ことなく、その表面の観測を希望する位置の反射光を取
り入れて、その位置に光学手段の焦点を、晴度良くかつ
再現性良く位置合わせをすることを目的とし、 測定光を発生する光源と、前記測定光を被測定対象に照
射する第1の光学手段と、前記被測定対象を設置する試
料台と、前記試料台を駆動する試料台駆動手段と、前記
被測定対象からの反射光を取り込む第2の光学手段と、
前記反射光を検出する光検出手段とを具備し、前記被測
定対象の光切断画像を取得する光切断顕微鏡装置におい
て、前記第2の光学手段と光学検出手段との間に、スリ
ット幅Wの入射光制限手段を設けていることを含み構成
する。
[Detailed Description of the Invention] [Summary] Regarding a light cutting microscope device, particularly a device that aligns the surface of an object to be measured with a surface undulation shape and the focal point of an optical means, all reflected light from the object to be measured is optically detected. The purpose of this method is to take in the reflected light at the desired position on the surface of the object to be observed, without it entering the measuring device, and to align the focal point of the optical device at that position with good brightness and high reproducibility. a light source that generates a light source, a first optical means for irradiating the measurement light onto the object to be measured, a sample stage on which the object to be measured is installed, a sample stand driving means for driving the sample stand, and a first optical means for irradiating the object to be measured with the measurement light; a second optical means for capturing the reflected light;
In the light-cutting microscope apparatus, which includes a light-cutting means for detecting the reflected light and acquiring a light-cutting image of the object to be measured, a slit having a slit width W is provided between the second optical means and the optical detecting means. The structure includes providing an incident light limiting means.

〔産業上の利用分野〕[Industrial application field]

本発明は、光切断顕微鏡装置及びその光学手段の位置合
わせ方法に関するものであり、更に詳しく言えば表面う
ねり形状の試料に光学手段の焦点を合わせる装置とその
方法に関するものである。
The present invention relates to a light sectioning microscope device and a method for positioning its optical means, and more specifically to a device and method for focusing the optical means on a sample having a surface undulation shape.

近年、半導体装置の配線パターン等の微細形状測定やそ
の検査に、線状レーザー光を測定光とする光切断顕v&
境が用いられている。
In recent years, optical cutting microscopes that use linear laser light as measurement light have been used to measure and inspect minute shapes such as wiring patterns of semiconductor devices.
boundaries are used.

この際に、試料表面がうねり形状の場合であっても、光
切断像の光強度のピーク検出をして、光学手段の焦点位
置合わせを精度良く行うことができる装置とその方法の
要望がある。
At this time, there is a need for an apparatus and method that can detect the peak of the light intensity of the optically sectioned image and accurately align the focus of the optical means even if the sample surface has a undulating shape. .

〔従来の技術〕[Conventional technology]

第6〜8図は、従来例に係る説明図である。 6 to 8 are explanatory diagrams related to conventional examples.

第6図は、従来例の光切断顕微鏡装置に係る構成図を示
している。
FIG. 6 shows a configuration diagram of a conventional optical cutting microscope device.

図において、光切断顕微鏡装置は、レーザー光発生源1
.ミラー2a、2b、スリット3.入射側対物レンズ4
1反射側対物レンズ5.カメラ6結像レンズ7、ステー
ジ8及びステージ駆動装置9から成る。
In the figure, the light cutting microscope device includes a laser light generation source 1
.. Mirrors 2a, 2b, slit 3. Incoming objective lens 4
1 Reflection side objective lens 5. It consists of a camera 6, an imaging lens 7, a stage 8, and a stage driving device 9.

その装置機能は、まず、レーザー光発生atからミラー
2aにレーザー光11が照射変向され、該レーザー光1
1がスリット3により線状(光切断線)レーザー光12
にされる0次いで、線状レーザー光12が入射側対物レ
ンズ4を介して、ステージ8に載置した被測定対象(試
料)10に照射される。次に試料10からの反射光j!
3が反射側対物レンズ5により取り込まれ、該反射光t
3がミラー2bにより変向されて、それが結像レンズ7
を介して、カメラ6に入射される。これにより、半導体
装置の配線パターン等の光切断画像を取得して、試料1
0の@細形状測定やその検査等が行われるものである。
The function of the device is that first, a laser beam 11 is irradiated and redirected from a laser beam generating at to a mirror 2a, and the laser beam 1
1 is a linear (light cutting line) laser beam 12 caused by a slit 3
Then, the linear laser beam 12 is irradiated onto the object to be measured (sample) 10 placed on the stage 8 via the incident-side objective lens 4 . Next, reflected light j! from sample 10!
3 is captured by the reflective objective lens 5, and the reflected light t
3 is deflected by the mirror 2b, and it is directed to the imaging lens 7.
The light is incident on the camera 6 via. As a result, a photocutting image of the wiring pattern of the semiconductor device, etc. is acquired, and the sample 1 is
0 @ thin shape measurement and its inspection are performed.

第7図(a)、(b)は、従来例の光学手段の位置合わ
せ方法に係る説明図であり、同図(a)は段差部を有す
る試料に光切断線を照射している状態を示している。
FIGS. 7(a) and 7(b) are explanatory diagrams related to a conventional method for aligning optical means, and FIG. 7(a) shows a state in which a light cutting line is irradiated onto a sample having a stepped portion. It shows.

図において、光切断線12を試料10に照射する入射側
対物レンズ4の焦点と試料10からの反射光13を入射
する反射側対物レンズ5の焦点とは、予め位置合わせさ
れているものと仮定する。
In the figure, it is assumed that the focus of the incident-side objective lens 4 that irradiates the sample 10 with the light cutting line 12 and the focus of the reflection-side objective lens 5 that makes the reflected light 13 from the sample 10 enter are aligned in advance. do.

従って、ここで言う光学手段の位置合わせとは、入射側
対物レンズ4の焦点と反射側対物レンズ5の焦点が一敗
した光学系をステージ8に載置された試料表面に位置合
ねせをすること、すなわち垂直方向の位置合わせをいう
(同図(a))。
Therefore, the alignment of the optical means referred to here means aligning the optical system, which has lost its focus between the focal point of the incident side objective lens 4 and the reflective side objective lens 5, on the surface of the sample placed on the stage 8. In other words, it refers to alignment in the vertical direction (FIG. 4(a)).

同図(b)は、カメラ6で取り込んだ試料の段差表面の
光切断画像を示している。
FIG. 2B shows a light-cut image of the step surface of the sample captured by the camera 6.

図において、段差表面の光切断画像は、入射側対物レン
ズ4からの光切断綿12が試料IOの段差表面の上部(
凸部)で反射した反射光成分と、その段差表面の下部(
凹部)で反射した反射光成分とにより分割されて、カメ
ラ6に取り込まれ、その反射光13を光電変換等をする
ことによって得られたものである。
In the figure, the light-cutting image of the step surface shows that the light-cutting cotton 12 from the incident-side objective lens 4 is located above the step surface of the sample IO (
The reflected light component reflected by the convex part) and the lower part of the step surface (
The reflected light 13 is divided by the reflected light component reflected by the concave portion) and taken into the camera 6, and the reflected light 13 is obtained by photoelectric conversion or the like.

この際、反射光13の光強度は上部ピーク及び下部ピー
クを有する2つの光強度分布として1′fることができ
る。この反射光13の光強度のピーク検出を行うことに
よって、予め焦点位置合わせされた両対物レンズ4.5
の光学系と配線パターン等の段差表面を有する試料10
の垂直位置合わせをすることができる。
At this time, the light intensity of the reflected light 13 can be 1'f as two light intensity distributions having an upper peak and a lower peak. By detecting the peak of the light intensity of this reflected light 13, both objective lenses 4.5 and 4.5 are focused in advance.
Sample 10 with a stepped surface such as an optical system and a wiring pattern
vertical alignment.

〔発明が解決しようとするL!4!り 第8図(a)、(b)は、従来例の問題点に係る説明図
であり、同図(a)はうねり表面形状の試料に光切断線
を照射している状態を示している。
[L that the invention tries to solve! 4! Figures 8(a) and 8(b) are explanatory diagrams related to the problems of the conventional method, and Figure 8(a) shows a state in which a light cutting line is irradiated to a sample with an undulating surface shape. .

図において、うねり表面形状の試料10aは、先の段差
表面を有する半導体装置の配線パターン等ではなく、何
らかの原因で半導体ウェハやディスクバット等に表面う
ねりを生じたものである。
In the figure, a sample 10a with an undulating surface shape is not a wiring pattern of a semiconductor device having a stepped surface, but is a semiconductor wafer, a disk bat, etc., which has surface undulations due to some reason.

このうねり表面形状の試料10aに光切断線12を照射
すると、そのうねり表面形状の断面等を表す反射光r3
が得られる(同図(a))。
When the sample 10a with this undulating surface shape is irradiated with the optical cutting line 12, the reflected light r3 representing the cross section of the undulating surface shape, etc.
is obtained (Figure (a)).

同図(b)は、カメラ6で取り込んだうねり表面形状の
試料の光切断画像を示している。
FIG. 6B shows a light-cut image of a sample with a undulating surface shape captured by the camera 6.

図において、うねり表面形状の光切断画像は、先の段差
表面の光切断画像と異なり、反射光13の光強度分布が
段差表面の光強度分布のように上部ピークや下部ピーク
を有している。
In the figure, the light-cutting image of the undulating surface shape is different from the light-cutting image of the stepped surface, in that the light intensity distribution of reflected light 13 has an upper peak and a lower peak like the light intensity distribution of the stepped surface. .

このため、うねり表面形状の試料と光学手段とを反射光
13の光強度ピーク検出によって垂直位置合わせを行う
と次のような問題を生ずる。
Therefore, when vertical alignment is performed between the sample having the undulating surface shape and the optical means by detecting the light intensity peak of the reflected light 13, the following problem occurs.

0反射光13の光強度ピークが段差表面の場合の上部ピ
ーク、下部ピークのように鋭く立ち上がらないため、光
強度のピーク検出精度が劣り、再現性良い位置合わせを
することができない。
Since the light intensity peak of the 0-reflected light 13 does not rise sharply like the upper and lower peaks in the case of a stepped surface, the detection accuracy of the light intensity peak is poor, and positioning with good reproducibility cannot be performed.

■これにより、観測を希望する位置と、両対物レンズの
光学系の焦点位置とが一敗せず、取得画像が不鮮明にな
る。
■As a result, the desired observation position and the focal position of the optical system of both objective lenses are not matched, resulting in an unclear image.

本発明は、かかる従来例の問題点に鑑み創作されたもの
であり、被測定対象からの反射先金て光検出手段に入射
することなく、その表面の観測を希望する位置に光学手
段の焦点を、精度良くかつ再現性良く位置合わせをする
ことを可能とする光切断顕微鏡装置及びその光学手段の
位置合わせ方法の提供を目的とする。
The present invention was created in view of the problems of the prior art, and focuses the optical means on the desired position to observe the surface of the object to be measured, without causing the reflected tip from the object to be measured to enter the light detecting means. The object of the present invention is to provide a light cutting microscope device and a method for positioning its optical means, which enables positioning of the optical device with high precision and reproducibility.

〔課題を解決するための手段] 第1図は、本発明の光切断顕微鏡装置に係る原理図を示
している。
[Means for Solving the Problems] FIG. 1 shows a principle diagram of a light cutting microscope device of the present invention.

その装置は、測定光L1を発生する光fillと、前記
測定光L1を被測定対象18に照射する第1の光学手段
12と、前記被測定対象18を設置する試料台13と、
前記試料台13を駆動する試料台駆動手段14と、前記
被測定対象18からの反射光L2を取り込む第2の光学
手段15と、前記反射光L2を検出する光検出手段16
とを具備し、前記被測定対象18の光切断画像を取得す
る光切断顕微鏡装置において、前記第2の光学手段15
と光学検出手段16との間に、スリット幅Wの入射光制
限手段17を設けていることを特徴とし、その方法は前
記装置であって、予め焦点位置合わせをした第1.第2
の光学手段12.15の焦点と、試料台13に戴置した
被測定対象18の表面とを位置合わせする光学手段の位
置合わせ方法において、前記被測定対象18からの反射
光L2をスリット幅Wの入射光制限手段17を介して、
光検出手段16に取り込み、前記入射光制限手段17に
取り込まれたスリット幅Wの反射光L3の光強度が最大
となるように試料台13若しくは光学手段12.15’
を移動し、前記光強度が最大となる位置に試料台13若
しくは光学手段12.15を止めることを特(改とし、
上記目的を達成する。
The device includes a light fill that generates measurement light L1, a first optical means 12 that irradiates the measurement target 18 with the measurement light L1, and a sample stage 13 on which the measurement target 18 is installed.
A sample stage driving means 14 that drives the sample stage 13, a second optical means 15 that captures the reflected light L2 from the object to be measured 18, and a light detection means 16 that detects the reflected light L2.
In the light-cutting microscope apparatus for acquiring a light-cutting image of the object to be measured 18, the second optical means 15
and the optical detection means 16, an incident light limiting means 17 having a slit width W is provided. Second
In the alignment method of the optical means for aligning the focal point of the optical means 12.15 and the surface of the object to be measured 18 placed on the sample stage 13, the reflected light L2 from the object to be measured 18 is divided into a slit width W. Through the incident light limiting means 17 of
The sample stage 13 or the optical means 12.15' is set so that the light intensity of the reflected light L3 having the slit width W taken into the light detection means 16 and into the incident light limiting means 17 is maximized.
and stop the sample stage 13 or the optical means 12.15 at the position where the light intensity is maximum.
Achieve the above objectives.

〔作用〕[Effect]

本発明の装置によれば、第2の光学手段15と光検出手
段16との間に、スリット幅Wの入射光制限手段17が
設けられている。
According to the device of the present invention, an incident light limiting means 17 having a slit width W is provided between the second optical means 15 and the light detecting means 16.

このため、被測定対象18からの反射光L2が入射光制
限手段17によりスリット幅Wの反射光L3を除いて、
その通過が阻止され、その阻止を免れたスリット幅Wの
反射光L3のみを光検出手段16に取り込むことができ
る。
Therefore, the reflected light L2 from the object to be measured 18 is filtered by the incident light limiting means 17 except for the reflected light L3 having the slit width W.
Its passage is blocked, and only the reflected light L3 having the slit width W that has escaped the blocking can be taken into the photodetecting means 16.

これにより、光検出手段16では従来のような光強度分
布に比べて、スリット幅Wの反射光L3に基づく鋭い立
ち上がりの光強度分布を取得することができ、この光強
度分布により、精度良いピーク検出を行うことが可能と
なる。
As a result, the light detection means 16 can obtain a light intensity distribution with a sharp rise based on the reflected light L3 of the slit width W, compared to a conventional light intensity distribution, and this light intensity distribution allows accurate peak detection. It becomes possible to perform detection.

また、本発明の方法によれば、スリット幅Wの反射光L
3の光強度が最大となる位置に、試料台13若しくは光
学手段12.15を止めている。
Further, according to the method of the present invention, the reflected light L with the slit width W
The sample stage 13 or the optical means 12.15 is stopped at the position where the light intensity of 3 is maximum.

このため、入射光制限手段17のスリットの位置を光学
検出手段16の中央に設置し、これを観測者が希望する
位置と仮定するならば、常に観測者の希望する位置に第
1.第2の光学手段12゜15の焦点を、試料表面の特
定位置に再現性良く、しかも精度良く一致させることが
可能となる。
Therefore, if the position of the slit of the incident light limiting means 17 is set at the center of the optical detecting means 16 and it is assumed that this is the position desired by the observer, the first slit is always located at the position desired by the observer. It becomes possible to bring the focus of the second optical means 12.degree. 15 to a specific position on the sample surface with good reproducibility and high precision.

これにより、高解像度のうねり表面形状等の光切断画像
を取得することが可能となる。
This makes it possible to obtain a high-resolution light-cut image of the undulating surface shape and the like.

〔実施例〕〔Example〕

次に図を参照しながら本発明の実施例について説明をす
る。
Next, embodiments of the present invention will be described with reference to the drawings.

第2〜5図は、本発明の実施例に係る光切断顕微鏡装置
及びその光学手段の位置合わせ方法を説明する図であり
、第2図は、本発明の実施例に係る光切断顕微鏡装置の
構成図を示している。
2 to 5 are diagrams for explaining a light sectioning microscope device according to an embodiment of the present invention and a method of positioning its optical means, and FIG. A configuration diagram is shown.

図において、21は光源11の一実施例となるレーザー
発生源であり、ミラー22a方向にレーザー光Llを発
生するものである。22a〜22Cは第1の光学手段1
2の一実施例となるミラースリット及び入射側対物レン
ズをそれぞれ示している。ミラー22aはレーザー光L
llを光軸方向に変向する機能、スリン)22bはレー
ザー光L11を綿状レーザー光(光切断線)L12に変
える機能、入射側対物レンズ22cは光切断線L12を
集光してステージ23方向に照射する機能をそれぞれ有
している。
In the figure, reference numeral 21 denotes a laser generation source which is an example of the light source 11, and generates a laser beam Ll in the direction of the mirror 22a. 22a to 22C are first optical means 1
A mirror slit and an incident side objective lens, which are one example of No. 2, are shown respectively. Mirror 22a emits laser light L
22b is a function to change the laser beam L11 into a cotton-like laser beam (light cutting line) L12, and the incident side objective lens 22c focuses the light cutting line L12 on the stage 23. Each has the function of irradiating in a direction.

23は試料台の一実施例となるステージであり、被測定
対象28を載置するものである。24は試料台駆動手段
の一実施例となるステージ駆動装置であり、x、y、z
方向にステージ23を移動する機能を有している。
Reference numeral 23 denotes a stage which is an example of a sample stage, on which an object to be measured 28 is placed. 24 is a stage driving device which is an example of a sample stage driving means, and x, y, z
It has a function of moving the stage 23 in the direction.

25a〜25cは第2の光学手段15の一実施例となる
反射側対物レンズ、ミラー及び結像レンズをそれぞれ示
している。反射側対物レンズ25aは、被測定対象28
からの反射光■、21を集光して、それを光軸に沿って
ミラー25b方向に通過させる機能を有している。ミラ
ー25bは反射側対物レンズ25aからの反射光L21
を結像レンズ方向25cに変向するものである。結像レ
ンズ25cは反射光L21等を結像するものである。
Reference numerals 25a to 25c each indicate a reflection side objective lens, a mirror, and an imaging lens, which are one embodiment of the second optical means 15. The reflective objective lens 25a
It has a function of condensing the reflected lights 1 and 21 from the mirror 25b and passing them along the optical axis toward the mirror 25b. The mirror 25b receives the reflected light L21 from the reflective objective lens 25a.
is directed toward the imaging lens direction 25c. The imaging lens 25c forms an image of the reflected light L21 and the like.

26は光検出手段の一実施例となるカメラであり、被測
定対象からの反射光L21等を取り込む機能を有してい
る。カメラ26は、固体撮像素子等の画像取得装置であ
り、取り込んだ反射光L21等の光強度を検出する機能
を有している0例えば、反射光L21等の光強度は観測
者が一目で確認できるように、その計数値を逐次表示す
るデジタル表示装置等を設けても良い。
A camera 26 is an embodiment of the light detection means, and has a function of capturing reflected light L21 etc. from the object to be measured. The camera 26 is an image acquisition device such as a solid-state image sensor, and has a function of detecting the light intensity of the captured reflected light L21 etc. For example, the light intensity of the reflected light L21 etc. can be confirmed by the observer at a glance. A digital display device or the like may be provided to sequentially display the counted value.

これまでは、従来の光切断顕微鏡装置と同様な構成であ
るが、本発明の光切断顕微鏡装置では次の構成物が設け
られている。
Up to now, the structure is similar to that of a conventional light sectioning microscope device, but the light sectioning microscope device of the present invention is provided with the following components.

すなわち、カメラ26の直前に設けられた27は、入射
光制限手段17の一実施例となる遮光用スリットであり
、結像レンズ25cを通過した反射光L21の一部の反
射光L22を通過させて、その反射光L22のみをカメ
ラ26に入射させる機能を有している。この遮光用スリ
ット26については第3図において詳述する。
That is, 27 provided immediately in front of the camera 26 is a light shielding slit which is an example of the incident light limiting means 17, and allows a part of the reflected light L22 of the reflected light L21 that has passed through the imaging lens 25c to pass therethrough. It has a function of allowing only the reflected light L22 to enter the camera 26. The light shielding slit 26 will be explained in detail in FIG. 3.

28は被測定対象18の一実施例となるうねり表面形状
の試料であり、何らかの原因で半導体ウェハやディスク
バット等に表面うねりを生したものである。
Reference numeral 28 denotes a sample with a undulating surface shape, which is an example of the object to be measured 18, and is a semiconductor wafer, a disk bat, or the like that has surface undulations for some reason.

なお、29は制御手段であり、本発明の光切断顕微鏡装
置の光学手段の位置合わせを自動的に行う場合に用いる
ものである。制御手段29はカメラ26から出力される
反射光122等の光強度のピーク検出値に基づいて、ス
テージ駆動装置24の出力を制御する機能を有している
In addition, 29 is a control means, which is used when automatically aligning the optical means of the light sectioning microscope apparatus of the present invention. The control means 29 has a function of controlling the output of the stage driving device 24 based on the detected peak value of the light intensity of the reflected light 122 etc. output from the camera 26.

第3図は、本発明の実施例に係る遮光用スリット27に
係る説明図である。
FIG. 3 is an explanatory diagram of the light shielding slit 27 according to the embodiment of the present invention.

図において、遮光用スリット27は黒色のプレートにス
リット幅Wのスリット開口部27aを有している。スリ
ット幅Wは、数百〔μm]程度であれば良い。スリット
開口部27aの開口方向は光切断線用のスリット22b
の開口方向に対して直交するようにする。さらに、スリ
ットの開口位置は観測者が希望する画像取得位置、例え
ばカメラの中央部付近にその焦点が一致するようにする
In the figure, the light shielding slit 27 has a slit opening 27a having a slit width W in a black plate. The slit width W may be on the order of several hundred [μm]. The opening direction of the slit opening 27a is the slit 22b for the light cutting line.
perpendicular to the opening direction. Further, the opening position of the slit is set so that its focal point coincides with the image acquisition position desired by the observer, for example, near the center of the camera.

また、遮光用スリット27はカメラ26に直前に設けら
れ、光学手段22c、25aの焦点と被測定対象28の
表面との垂直位置合わせ時のみ取り付ける0通常の画像
観察時には、それが取り外されるものである。
In addition, the light-shielding slit 27 is provided just in front of the camera 26, and is attached only when vertically aligning the focus of the optical means 22c, 25a with the surface of the object to be measured 28; it is removed during normal image observation. be.

これにより、結像レンズ25cを通過した反射光L21
の一部の反射光L22を通過させて、その反射光L22
のみをカメラ26に入射させることができる。
As a result, the reflected light L21 passing through the imaging lens 25c
A part of the reflected light L22 is passed through, and the reflected light L22 is
can be incident on the camera 26.

第4図は、本発明の実施例に係る取得画像と光強度との
関係図であり、同図(a)はうねり表面形状の試料28
に光切断線を照射している状態を示している。
FIG. 4 is a diagram showing the relationship between an acquired image and light intensity according to an embodiment of the present invention, and FIG. 4 (a) shows a sample 28 with an undulating surface shape.
This shows the state in which the optical cutting line is irradiated.

同図(b)において、L21はうねり表面形状の試料2
8に光切断線L12を照射した場合に得られる反射光で
ある。この反射光L21が反射側対物レンズ25a、ミ
ラー25b、結像レンズ25c及び遮光用スリット27
を介してカメラ26に取り込まれる。
In the same figure (b), L21 is sample 2 with an undulating surface shape.
This is the reflected light obtained when 8 is irradiated with the light cutting line L12. This reflected light L21 is transmitted to the reflecting side objective lens 25a, the mirror 25b, the imaging lens 25c and the light shielding slit 27.
The image is captured by the camera 26 via the camera 26.

同図(b)は、カメラ26で取り込んだ反射光L22と
その光強度分布を示している。
FIG. 2B shows the reflected light L22 captured by the camera 26 and its light intensity distribution.

図において、Aはカメラ26で取り込んだ画像であり、
遮光用スリット27に入射した反射光L21の一部の反
射光L22により得られる画像である。また、1は反射
光L22の光強度であり、予め入射側対物レンズ22c
の焦点と反射側対物レンズ25aの焦点とが一致した光
学系をうねり表面形状の試料28に垂直位置合わせした
場合、その焦点とその試料28面とが一致した時に最大
となる。
In the figure, A is an image captured by the camera 26,
This is an image obtained by a part of the reflected light L22 of the reflected light L21 that has entered the light shielding slit 27. Further, 1 is the light intensity of the reflected light L22, and is set in advance by the incident side objective lens 22c.
When an optical system whose focal point coincides with that of the reflective objective lens 25a is vertically aligned to a sample 28 having an undulating surface shape, the maximum value is reached when the focal point coincides with the surface of the sample 28.

これ等の関係を利用して後述する光学手段の垂直方向の
位置合わせを行うことができる。
These relationships can be used to align the optical means in the vertical direction, which will be described later.

このようにして、本発明の実施例に係る光切断顕微鏡装
置によれば、結像レンズ25cとカメラ26との間であ
って、カメラ26の直前にスリット幅Wの遮光用スリッ
ト27が設けられている。
In this way, according to the light-cutting microscope device according to the embodiment of the present invention, the light-shielding slit 27 with the slit width W is provided between the imaging lens 25c and the camera 26 and just before the camera 26. ing.

このため、うねり表面形状の試料28からの反射光L2
1が遮光用スリット27により、スリット幅Wの反射光
L22を除いてその通過が阻止され、その阻止を免れた
スリット幅Wの反射光L22のみをカメラ26に取り込
むことができる。
Therefore, the reflected light L2 from the sample 28 with the undulating surface shape
1 is blocked by the light-shielding slit 27, except for the reflected light L22 having the slit width W, from passing through, and only the reflected light L22 having the slit width W that is not blocked can be taken into the camera 26.

これにより、カメラ26では従来のような光強度分布に
比べてスリット幅Wの反射光L22に基づく、鋭い立ち
上がりの光強度分布を取得することができ、この光強度
分布によりt#廣良いピーク検出を行うことが可能とな
る。
As a result, the camera 26 can obtain a light intensity distribution with a sharp rise based on the reflected light L22 of the slit width W, compared to a conventional light intensity distribution, and this light intensity distribution allows t# to detect a peak with good accuracy. It becomes possible to do this.

第5図は、本発明の実施例の光学手段の位置合わせ方法
に係るフローチャートを示している。
FIG. 5 shows a flowchart relating to a method for positioning optical means according to an embodiment of the present invention.

図において、まずステップP1で光学系の焦点位置合わ
せに先立って、スリット22bと遮光用スリット27b
とを取り外す。この際、ステージ23上には試料を載置
しない。
In the figure, first, in step P1, prior to focus positioning of the optical system, the slit 22b and the light shielding slit 27b are
and remove. At this time, no sample is placed on the stage 23.

次いで、ステップP2で、入射側対物レンズ22cと反
射側対物レンズ25aとを焦点位置合わせをする。この
際の焦点位置合わせは、本発明者が別途出願中の位置合
わせ方法等により行う。これによれば、ステージ23上
に焦点位置合わせ用のプレートを置き、入射側対物レン
ズ22cの焦点を先に焦点位置合わせ用のプレートに一
致させ、次いで反射側対物レンズ25aの焦点をそれに
位置合わせするものである。これにより、入射側対物レ
ンズ22cの焦点と反射側対物レンズ25aの焦点とを
一致させることができる。
Next, in step P2, the focal positions of the incident side objective lens 22c and the reflection side objective lens 25a are aligned. The focus positioning at this time is performed by a positioning method, etc., which the present inventor is currently applying for separately. According to this, a plate for focus alignment is placed on the stage 23, the focus of the incident side objective lens 22c is first aligned with the focus alignment plate, and then the focus of the reflection side objective lens 25a is aligned therewith. It is something to do. Thereby, the focus of the incident side objective lens 22c and the focus of the reflection side objective lens 25a can be matched.

次にステップP3で、ステージ23にうねり表面形状等
の被測定対象(試料)28を載置する。
Next, in step P3, an object (sample) 28 to be measured, such as an undulating surface shape, is placed on the stage 23.

この際、先の焦点位置合わせに用いた位置合わせ用プレ
ートは取り除き、代わりに試料28をステージ23に置
く。
At this time, the alignment plate used for the previous focus alignment is removed and the sample 28 is placed on the stage 23 instead.

次いで、ステップP4で光切断線用のスリット22b及
び遮光用スリット27を取り付ける。このときに、カメ
ラ26の取得画像を見た場合、第4図(b)のような取
得画像が得られるものの、入射側対物レンズ22cと反
射側対物レンズ25aとの焦点がステージ23のほぼ表
面に位置合わせされているため、その取得画像は不鮮明
となっている。
Next, in step P4, the slit 22b for the light cutting line and the light shielding slit 27 are attached. At this time, when looking at the image acquired by the camera 26, although the acquired image as shown in FIG. Because the image is aligned with the image, the obtained image is unclear.

このため、ステップP5でステージ23を調整し、カメ
ラ26に入射したスリット幅Wの反射光L22の光強度
を検出する。この際、本発明の実施例ではステージ23
は、手動又は制御手段29を介して自動でステージ駆動
装置を駆動することにより、Z方向に上下される。これ
により、カメす イ”、Wスリット暢 本発明の実施例に係る遮尤用スリットの説明間第 図 光強度 (a) (b) 本発明の実施レリに係る取イ!) 1ilj像と光強度
との関係図第4図 (a) 従来ツ(」の問題へに係る説明1.薗 奉発明O実施汐1」の光学手段の位置合わせ方法(こ係
るフロチャート 第 図 第 図
Therefore, in step P5, the stage 23 is adjusted, and the light intensity of the reflected light L22 having the slit width W that is incident on the camera 26 is detected. At this time, in the embodiment of the present invention, stage 23
is moved up and down in the Z direction by manually or automatically driving the stage drive device via the control means 29. As a result, the light intensity (a) (b) between the explanation of the shielding slit according to the embodiment of the present invention and the W slit light intensity according to the implementation example of the present invention!) 1ilj image and light Relationship diagram with strength Figure 4 (a) Explanation regarding the problem of the conventional method

Claims (2)

【特許請求の範囲】[Claims] (1)測定光(L1)を発生する光源(11)と、前記
測定光(L1)を被測定対象(18)に照射する第1の
光学手段(12)と、前記被測定対象(18)を設置す
る試料台(13)と、前記試料台(13)を駆動する試
料台駆動手段(14)と、前記被測定対象(18)から
の反射光(L2)を取り込む第2の光学手段(15)と
、前記反射光(L2)を検出する光検出手段(16)と
を具備し、前記被測定対象(18)の光切断画像を取得
する光切断顕微鏡装置において、 前記第2の光学手段(15)と光学検出手段(16)と
の間に、スリット幅Wの入射光制限手段(17)を設け
ていることを特徴とする光切断顕微鏡装置。
(1) A light source (11) that generates measurement light (L1), a first optical means (12) that irradiates the measurement light (L1) onto the object to be measured (18), and the object to be measured (18) A sample stand (13) for installing the sample stand (13), a sample stand driving means (14) for driving the sample stand (13), and a second optical means (2) for taking in the reflected light (L2) from the object to be measured (18). 15) and a light detection means (16) for detecting the reflected light (L2), and a light sectioning microscope apparatus for acquiring a light sectioning image of the object to be measured (18), wherein the second optical means A light cutting microscope apparatus characterized in that an incident light limiting means (17) having a slit width W is provided between the optical detecting means (15) and the optical detecting means (16).
(2)請求項1記載の光切断顕微鏡装置の光学手段の位
置合わせ方法であって、 予め焦点位置合わせをした第1、第2の光学手段(12
、15)の焦点と、試料台13に載置した被測定対象(
18)の表面とを位置合わせする光学手段の位置合わせ
方法において、 前記被測定対象(18)からの反射光(L2)をスリッ
ト幅Wの入射光制限手段(17)を介して、光検出手段
(16)に取り込み、前記入射光制限手段(17)に取
り込まれたスリット幅Wの反射光(L3)の光強度が最
大となるように試料台(13)若しくは光学手段(12
、15)を移動し、前記光強度が最大となる位置に試料
台(13)若しくは光学手段(12、15)を止めるこ
とを特徴とする光切断顕微鏡の光学手段の位置合わせ方
法。
(2) A method for positioning the optical means of the light sectioning microscope device according to claim 1, comprising the step of aligning the first and second optical means (12
, 15) and the object to be measured (
18) In the method for aligning the optical means with the surface of the object to be measured (18), the reflected light (L2) from the object to be measured (18) is passed through the incident light limiting means (17) with a slit width W to the light detecting means. (16) and the incident light limiting means (17) so that the light intensity of the reflected light (L3) with the slit width W is maximized.
, 15) and stopping the sample stage (13) or the optical means (12, 15) at a position where the light intensity is maximum.
JP10848489A 1989-04-27 1989-04-27 Method for positioning light cutting microscope device and its optical means Pending JPH02285314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10848489A JPH02285314A (en) 1989-04-27 1989-04-27 Method for positioning light cutting microscope device and its optical means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10848489A JPH02285314A (en) 1989-04-27 1989-04-27 Method for positioning light cutting microscope device and its optical means

Publications (1)

Publication Number Publication Date
JPH02285314A true JPH02285314A (en) 1990-11-22

Family

ID=14485929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10848489A Pending JPH02285314A (en) 1989-04-27 1989-04-27 Method for positioning light cutting microscope device and its optical means

Country Status (1)

Country Link
JP (1) JPH02285314A (en)

Similar Documents

Publication Publication Date Title
JP3404134B2 (en) Inspection device
US5159412A (en) Optical measurement device with enhanced sensitivity
JPH06112106A (en) Apparatus and method for focusing of object image as well as apparatus for focusing of mask image
JP2000275027A (en) Slit confocal microscope and surface shape measuring apparatus using it
JPH11211439A (en) Surface form measuring device
JP3227106B2 (en) Inner diameter measuring method and inner diameter measuring device
JP2955017B2 (en) Simultaneous and confocal imaging devices
JPH10161195A (en) Autofocusing method and device
JP2001504592A (en) Distance measuring method and distance measuring device
JP3306858B2 (en) 3D shape measuring device
JP2007078485A (en) Auto-collimator and angle measuring device using it
JPH02285314A (en) Method for positioning light cutting microscope device and its optical means
JP2828145B2 (en) Optical section microscope apparatus and method for aligning optical means thereof
JP3184641B2 (en) Edge detecting device for tapered hole and its depth measuring device
JPH08334317A (en) Measuring microscope
JP2000097805A (en) Double refraction measuring method and device
JP2911283B2 (en) Non-contact step measurement method and device
JP3951914B2 (en) Displacement measuring device
JPH0471453B2 (en)
EP0218613A1 (en) Device for the alignment, testing and/or measurement of two-dimensional objects.
JPS62503049A (en) Methods and apparatus for orienting, inspecting and/or measuring two-dimensional objects
JPH05346532A (en) Automatic focusing device of microscope and dark-field microscope
JPH0783623A (en) Measurement method and device for thickness
JPS5815104A (en) Measuring method for rate of change in thickness of paint layer
JPS58213221A (en) Measuring device of optical spot