JPH022850A - Narrowly fractionated molecular weight polyvinylformal film for ultrafiltration and its production - Google Patents
Narrowly fractionated molecular weight polyvinylformal film for ultrafiltration and its productionInfo
- Publication number
- JPH022850A JPH022850A JP15020288A JP15020288A JPH022850A JP H022850 A JPH022850 A JP H022850A JP 15020288 A JP15020288 A JP 15020288A JP 15020288 A JP15020288 A JP 15020288A JP H022850 A JPH022850 A JP H022850A
- Authority
- JP
- Japan
- Prior art keywords
- film
- ultrafiltration
- membrane
- polymerization
- dope
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000108 ultra-filtration Methods 0.000 title claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 239000011347 resin Substances 0.000 claims abstract description 36
- 229920005989 resin Polymers 0.000 claims abstract description 36
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 11
- 239000012528 membrane Substances 0.000 claims description 56
- 229920002554 vinyl polymer Polymers 0.000 claims description 20
- 239000000126 substance Substances 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 4
- 229920000642 polymer Polymers 0.000 claims description 4
- 239000002904 solvent Substances 0.000 abstract description 14
- 230000002209 hydrophobic effect Effects 0.000 abstract description 10
- 238000001179 sorption measurement Methods 0.000 abstract description 5
- 238000005345 coagulation Methods 0.000 abstract description 4
- 230000015271 coagulation Effects 0.000 abstract description 4
- 239000008267 milk Substances 0.000 abstract description 3
- 235000013336 milk Nutrition 0.000 abstract description 3
- 210000004080 milk Anatomy 0.000 abstract description 3
- 241000894006 Bacteria Species 0.000 abstract description 2
- 239000004745 nonwoven fabric Substances 0.000 abstract description 2
- 229920000728 polyester Polymers 0.000 abstract description 2
- 102000004169 proteins and genes Human genes 0.000 abstract description 2
- 108090000623 proteins and genes Proteins 0.000 abstract description 2
- 239000002351 wastewater Substances 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract 2
- 230000003252 repetitive effect Effects 0.000 abstract 2
- 230000000844 anti-bacterial effect Effects 0.000 abstract 1
- 239000003814 drug Substances 0.000 abstract 1
- 229920006254 polymer film Polymers 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 10
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 8
- 239000004372 Polyvinyl alcohol Substances 0.000 description 8
- 229920002451 polyvinyl alcohol Polymers 0.000 description 8
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 229920002678 cellulose Polymers 0.000 description 5
- 239000001913 cellulose Substances 0.000 description 5
- 229920002492 poly(sulfone) Polymers 0.000 description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 206010034133 Pathogen resistance Diseases 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000006359 acetalization reaction Methods 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 102000034238 globular proteins Human genes 0.000 description 2
- 108091005896 globular proteins Proteins 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229920003169 water-soluble polymer Polymers 0.000 description 2
- 241000207199 Citrus Species 0.000 description 1
- ZNZYKNKBJPZETN-WELNAUFTSA-N Dialdehyde 11678 Chemical compound N1C2=CC=CC=C2C2=C1[C@H](C[C@H](/C(=C/O)C(=O)OC)[C@@H](C=C)C=O)NCC2 ZNZYKNKBJPZETN-WELNAUFTSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- SMEGJBVQLJJKKX-HOTMZDKISA-N [(2R,3S,4S,5R,6R)-5-acetyloxy-3,4,6-trihydroxyoxan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@@H]1[C@H]([C@@H]([C@H]([C@@H](O1)O)OC(=O)C)O)O SMEGJBVQLJJKKX-HOTMZDKISA-N 0.000 description 1
- 229940081735 acetylcellulose Drugs 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 235000020971 citrus fruits Nutrition 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 235000015203 fruit juice Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、ポリビニルホルマール樹脂よりなる親水性限
外濾過膜であり、特に分画分子量が10万以下の小さい
分画分子量を持った親水性限外濾過膜及びその製造法に
関する。Detailed Description of the Invention [Industrial Application Field] The present invention relates to a hydrophilic ultrafiltration membrane made of polyvinyl formal resin, particularly a hydrophilic ultrafiltration membrane having a small molecular weight cut-off of 100,000 or less. This invention relates to an ultrafiltration membrane and its manufacturing method.
[従来の技術] 従来、ポリスルホン、ポリエーテルスルホン。[Conventional technology] Conventionally, polysulfone, polyethersulfone.
アセチルセルロース、セルロース等、種々の樹11’、
tから湿式製膜法によって限外濾過膜を得る方法が知ら
れている。しかしポリスルホン、ポリエーテルスルホン
等の疎水性樹脂より得られた限外濾過膜は、疎水性の強
い水溶液1例えば疎水性タンパク質水溶液、オイルエマ
ルジョン、ミルク、柑橘糸束11−1血漿、血清などを
その処理対象とした場合、膜が疎水性であるために、処
理対象物が膜表面に吸着してしまい、膜自体が汚染され
てくるとともに、経時的に透過水量が減少してしまうと
いった欠点を有している。またセルロースを素材とした
膜は、極めて親水性であり、疎水性膜に見られるような
、疎水性処理対象物の吸着による膜の汚染、透過水口の
低下といった問題は解決されるものの、耐酸性、耐アル
カリ性に乏しく、またセルロースは耐バクテリア性が極
めて低いといった欠点が指摘されている。Various trees 11' such as acetyl cellulose and cellulose,
A method of obtaining an ultrafiltration membrane from t by a wet membrane forming method is known. However, ultrafiltration membranes made of hydrophobic resins such as polysulfone and polyethersulfone cannot handle highly hydrophobic aqueous solutions such as hydrophobic protein aqueous solutions, oil emulsions, milk, citrus fiber bundles 11-1 plasma, and serum. When used as a treatment target, since the membrane is hydrophobic, the target substances are adsorbed to the membrane surface, which contaminates the membrane itself, and the amount of permeated water decreases over time. are doing. In addition, membranes made of cellulose are extremely hydrophilic, and although they solve the problems that occur with hydrophobic membranes, such as membrane contamination due to adsorption of hydrophobic substances and a decrease in the permeation port, they are not acid resistant. It has been pointed out that cellulose has poor alkali resistance, and that cellulose has extremely low bacterial resistance.
また、従来よりポリビニルアルコール系樹脂を累月とし
た膜が知られている(例えば特開昭49−53’155
号、特開昭52−123385号など)が、これはポリ
ビニルアルコールが水溶性高分子であるために、これを
膜形態とし、耐水性を付与するためにポリビニルアルコ
ールの水溶液にホルムアルデヒド、あるいはゲルタール
アルデヒドなどのジアルデヒドといったアセタール化剤
、架橋剤を添加し、この水溶性高分子水溶液を加熱する
ことなどにより、ポリビニルアルコールのアセタール化
反応を進行させながら製膜するものであった。In addition, films made of polyvinyl alcohol resin have been known for some time (for example, Japanese Patent Laid-Open No. 49-53'155
Since polyvinyl alcohol is a water-soluble polymer, formaldehyde or gel tar is added to an aqueous solution of polyvinyl alcohol in order to form a film and impart water resistance. The film was formed by adding an acetalizing agent such as dialdehyde such as aldehyde and a crosslinking agent, and heating the water-soluble polymer aqueous solution to advance the acetalization reaction of polyvinyl alcohol.
[発明が解決しようとする課題]
以上、現在主として用いられているポリスルホン系およ
びセルロース系樹脂よりなる限外濾過膜の欠点を要約す
る。[Problems to be Solved by the Invention] The drawbacks of ultrafiltration membranes made of polysulfone and cellulose resins that are currently mainly used are summarized above.
1) ポリスルホン膜は、疎水性の処理物の吸着が著し
い。1) Polysulfone membranes significantly adsorb hydrophobic substances.
2) セルロース膜は、耐バクテリア性が極めて低い。2) Cellulose membranes have extremely low bacterial resistance.
また、従来のポリビニルアルコール系樹脂による限外濾
過膜は、その製造工程が水系であり、水溶液中の均一反
応によるため、これを限外濾過膜のような実質的な多孔
質体とするためには気孔形成剤の添加が必要である。ま
た、アセタール化を均一に行うための温度制御も難しく
、製膜のスケールによる反応性も均一でないといった欠
点を有している。In addition, the manufacturing process for conventional ultrafiltration membranes made of polyvinyl alcohol resin is water-based and involves a homogeneous reaction in an aqueous solution. requires the addition of a pore-forming agent. Furthermore, it is difficult to control the temperature for uniform acetalization, and the reactivity is not uniform depending on the scale of film formation.
[課題を解決するための手段]
本発明者らは、上記のような問題点を解決し、疎水性処
理対象物の吸着を軽減し、耐バクテリア性を有する限外
濾過膜を得ることを目的として鋭意研究した結果、親水
性の樹脂であるポリビニルホルマール樹脂(下記一般式
(I))を用いて、湿式製膜法により限外濾過膜を製造
することで。[Means for Solving the Problems] The present inventors aimed to solve the above-mentioned problems, reduce the adsorption of hydrophobic substances to be treated, and obtain an ultrafiltration membrane having bacteria resistance. As a result of intensive research, an ultrafiltration membrane was manufactured using a wet membrane forming method using polyvinyl formal resin (general formula (I) below), which is a hydrophilic resin.
気孔形成剤などを添加することなく、目的の限外濾過膜
を得ることができる本発明に到達した。The present invention has been achieved, which allows the desired ultrafiltration membrane to be obtained without adding a pore-forming agent or the like.
すなわち本発明は上記一般式(1)に示す繰返し111
−位を持つポリビニルホルマール樹脂であり、その重合
度が異なる2種類の樹脂をブレンドしてなるポリマーを
素材とする限外濾過膜及び湿式製膜法により菌膜を製造
する方法を提供するものである。That is, the present invention provides the repetition 111 shown in the above general formula (1).
The present invention provides an ultrafiltration membrane made of a polymer made by blending two types of resins, which are polyvinyl formal resins with a − position and differing degrees of polymerization, and a method for producing a bacterial membrane using a wet membrane forming method. be.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
膜の原料樹脂はポリビニルホルマール樹脂であるが、こ
のポリビニルホルマール樹脂はポリビニルアルコールよ
り誘導される。このポリビニルアルコールは酢酸ビニル
の単独重合体のケン化物であり、そのケン化度が70%
以上、特に80%以上のものが好ましい。このポリビニ
ルアルコールにホルムアルデヒドを常法に従って作用さ
せて、分子内ホルマール化されたポリビニルホルマール
樹脂が得られる。このポリビニルホルマール樹脂の重合
度が600より低いものは膜性能の安定性に劣り、また
950より高いものはドープの粘度が高くなり、また温
度変化による粘度の変化も大きいことから、通常は重合
度600〜950の範囲のものが限外濾過膜の作製に使
用される。The raw material resin for the membrane is polyvinyl formal resin, and this polyvinyl formal resin is derived from polyvinyl alcohol. This polyvinyl alcohol is a saponified product of vinyl acetate homopolymer, and its degree of saponification is 70%.
Above, 80% or more is particularly preferable. This polyvinyl alcohol is treated with formaldehyde according to a conventional method to obtain an intramolecularly formalized polyvinyl formal resin. If the degree of polymerization of this polyvinyl formal resin is lower than 600, the stability of the membrane performance will be poor, and if it is higher than 950, the viscosity of the dope will be high, and the viscosity will change greatly due to temperature changes, so the degree of polymerization is usually Those in the range of 600 to 950 are used for making ultrafiltration membranes.
しかし、上記範囲よりも重合度の低い樹脂を用いた場合
、その膜強度は低下するものの限外濾過膜の分画分子量
を小さくすることができる。However, when a resin having a degree of polymerization lower than the above range is used, the molecular weight cutoff of the ultrafiltration membrane can be reduced, although the membrane strength is reduced.
そこで、製膜に適した範囲の重合度を有する樹脂と低重
合度のポリビニルホルマール樹脂をブレンドして製膜し
たところ、製膜に適した範囲の重合度を有する樹脂をマ
トリックスとして、低重合度のポリビニルホルマール樹
脂も十分な膜強度を有する限外濾過膜として製膜するこ
とが可能となった。ここで用いる2種類のポリビニルホ
ルマ−ル樹脂は重合度がそれぞれnl−550〜650
゜n2−700〜800の範囲内であることが望ましく
、両者のブレンド率は低重合度:高重合度−10:90
〜85:15(重量比)の範囲であることが好ましい。Therefore, we created a film by blending a resin with a degree of polymerization in a range suitable for film formation and a polyvinyl formal resin with a low degree of polymerization. It has become possible to form polyvinyl formal resin into an ultrafiltration membrane having sufficient membrane strength. The two types of polyvinyl formal resins used here each have a polymerization degree of nl-550 to 650.
゜n2 - Desirably within the range of 700 to 800, and the blend ratio of both is low polymerization degree: high polymerization degree - 10:90
The range is preferably 85:15 (weight ratio).
低重合度の樹脂が10%以下では1」的とする小分画分
子量を有する限外濾過膜は作製できす、また低重合度の
樹脂が85%以上では十分な膜強度を有さない。If the resin has a low degree of polymerization of 10% or less, an ultrafiltration membrane having a small molecular weight cut-off of 1'' cannot be produced, and if the resin has a low degree of polymerization of 85% or more, the membrane does not have sufficient strength.
製膜に適した上記の範囲内にある樹脂を溶解して、目的
とする10万以下の小さな分画分子量を白゛する限外濾
過膜を作製するためのドープの作製に使用する溶媒とし
ては、水と相溶性のある極性溶媒が使用でき、特に好ま
しい溶媒は、N−メチル−2−ピロリドン、N、N−ジ
メチルホルムアミドなどの単一溶媒、あるいは水中への
拡散速度が遅い、分子内に酸素原子を有するような極性
溶媒である1、4−ジオキサン、テトラヒドロフラン、
13−ジオキソラン等と水中への拡散速度か適度に速い
N−メチル−2−ピロリドンまたはNN−ジメチルホル
ムアミドとの混合溶媒であり、その混合率が1:9〜9
:1(重量比)であるもの、あるいは上記混合溶媒の全
重量に対して、気化速度の速い溶媒であるアセトンを、
全溶媒重量の1〜20%の範囲で添加した混合溶媒系が
好適である。Solvents used in the production of dopes for producing ultrafiltration membranes with a small molecular weight cut-off of 100,000 or less by dissolving resins within the above-mentioned range suitable for film production include: , polar solvents that are compatible with water can be used, and particularly preferred solvents include single solvents such as N-methyl-2-pyrrolidone and N,N-dimethylformamide, or solvents that have a slow diffusion rate in water and that are contained within the molecule. 1,4-dioxane, tetrahydrofuran, which is a polar solvent having an oxygen atom,
It is a mixed solvent of 13-dioxolane, etc. and N-methyl-2-pyrrolidone or NN-dimethylformamide, which has a moderately fast diffusion rate in water, and the mixing ratio is 1:9 to 9.
:1 (weight ratio), or acetone, which is a solvent with a fast vaporization rate, relative to the total weight of the above mixed solvent,
A mixed solvent system in which the solvent is added in an amount ranging from 1 to 20% of the total solvent weight is preferred.
以上のような溶媒を用いて、ポリビニルホルマール樹脂
を溶解し製膜ドープを作製するが、このときの全ポリマ
ー濃度は10〜30重量パーセントが好適である。10
重量パーセント未満の濃度で限外濾過膜を作製しようと
すると、ドープのポリマー濃度が稀薄であるために、目
的とするような小さな分画分子量を持った限外濾過膜は
製膜困難である。また、30重量パーセントより濃厚な
ドープは粘度が高すぎるために実質的に製膜に適さない
1以上のような条件で調製されたドープを湿式製脱法(
相転換法)によって製膜する。本発明でいう湿式製膜法
とは、ドープをゲル化させる雰囲気を湿潤状態(液相中
)に保持する方法、すなわちドープ中の溶媒を凝固浴中
の液相に移行させ、ドープをゲル化させる方法をいう。The polyvinyl formal resin is dissolved using the above solvent to prepare a film-forming dope, and the total polymer concentration at this time is preferably 10 to 30 weight percent. 10
When attempting to produce an ultrafiltration membrane with a concentration of less than weight percent, it is difficult to produce an ultrafiltration membrane with a desired small molecular weight cutoff because the concentration of the polymer in the dope is dilute. In addition, dopes with a concentration of more than 30% by weight have too high a viscosity and are not substantially suitable for film formation.
The film is formed by phase conversion method). The wet film forming method referred to in the present invention is a method in which the atmosphere for gelling the dope is maintained in a wet state (in the liquid phase), that is, the solvent in the dope is transferred to the liquid phase in a coagulation bath, and the dope is gelled. It refers to the method of
このとき使用する凝固浴には、O℃〜45℃の温度範囲
の水が好ましく使用される。45℃以上ではドープか急
激な収縮を伴ってゲル化するために膜性能の均一性に欠
ける。For the coagulation bath used at this time, water having a temperature range of 0°C to 45°C is preferably used. At temperatures above 45° C., the dope undergoes rapid shrinkage and gels, resulting in lack of uniformity in film performance.
[発明の効果]
以上の工程でポリビニルホルマール限外濾過膜が得られ
るが、波膜は高度に親水性であるため、疎水性物質の吸
着が極めて低く、耐バクテリア分解性にも優れている。[Effects of the Invention] A polyvinyl formal ultrafiltration membrane can be obtained through the above steps, and since the wave membrane is highly hydrophilic, the adsorption of hydrophobic substances is extremely low and the membrane has excellent bacterial decomposition resistance.
そのため得られた限外濾過膜は、医薬品1食料品などの
製造工程や廃水処理なとの分野に利用でき、具体的には
タンパク質水溶液の脱塩・分画・濃縮、血漿の分画操作
、ワクチン等の濾過精製、脱パイロジェン、オイルエマ
ルジョンの濾過f+’7製、ミルク、せ橘系果汁の濃縮
。Therefore, the obtained ultrafiltration membrane can be used in fields such as the manufacturing process of pharmaceutical products, foodstuffs, etc., and wastewater treatment. Filtration and purification of vaccines, depyrogenization, filtration of oil emulsions, concentration of milk, and fruit juice.
廃水の脱COD、活性汚泥の処理などに適している。Suitable for removing COD from wastewater, treating activated sludge, etc.
また、波膜は乾燥後もその膜性能を保持しており、乾燥
状態で膜を取扱えるという利点がある。Moreover, the corrugated membrane retains its membrane properties even after drying, and has the advantage that the membrane can be handled in a dry state.
[実施例]
以下に実施例および比較例をあげて本発明をさらに詳細
に説明するか5本発明はこれらの実施例に限定されるも
のではない。[Examples] The present invention will be explained in more detail with reference to Examples and Comparative Examples below, but the present invention is not limited to these Examples.
実施例I
N−メチル−2−ピロリドンを溶媒として、平均重合度
550のポリビニルホルマール樹脂(ホルマール化率8
0%)と平均重合度750のポリビニルホルマール樹脂
(ホルマール化率80%)をそれぞれ15重量%、10
重量%の割合で溶解してドープを調製した。このドープ
をポリエステル不織布上に均一に塗布し、続いて水温5
℃の純水を満たした凝固浴に導入し、湿式製膜法によっ
て製膜した。得られた平膜は分離膜層の厚さ230μm
であり、純水透水速度4001/d−hr−kgf/c
iであった。また球状タンパク質の阻止率によって分画
分子量を4?1定した結果、波膜は分画分子fii30
,000の性能であった。また波膜の純水による接触角
は、水滴を滴下した直後は約50°であったが、約1分
間で完全にぬれひろがり、得られた膜は高度に親水性で
あることを示していた。Example I Using N-methyl-2-pyrrolidone as a solvent, a polyvinyl formal resin with an average degree of polymerization of 550 (formalization rate of 8
0%) and polyvinyl formal resin with an average degree of polymerization of 750 (formalization rate 80%), 15% by weight and 10% by weight, respectively.
A dope was prepared by dissolving it in a proportion of % by weight. This dope was evenly applied onto a polyester nonwoven fabric, and then the water temperature was increased to 5°C.
It was introduced into a coagulation bath filled with pure water at ℃, and a film was formed by a wet film forming method. The obtained flat membrane has a separation membrane layer thickness of 230 μm.
and pure water permeation rate 4001/d-hr-kgf/c
It was i. In addition, as a result of determining the fractional molecular weight by 4?1 depending on the rejection rate of globular proteins, the wave membrane has a fractional molecular weight of fii30.
,000 performance. In addition, the contact angle of the wave membrane with pure water was approximately 50° immediately after the water droplet was dropped, but it completely spread in approximately 1 minute, indicating that the resulting membrane was highly hydrophilic. .
実施例2
1,4−ジオキサンとN、N−ジメチルホルムアミドと
を7二3(重量比)の割合で混合したものを溶媒として
、平均重合度550のポリビニルホルマール樹脂(ホル
マール化率80%)と平均重合度750のポリビニルホ
ルマール樹脂(ホルマール化率80%)をそれぞれ15
重量%、10重量%の割合で溶解してドープを調製した
。該ドープを用いて、実施例1と同様の操作によって、
水温5℃で製膜した。得られた平膜は分離膜層の厚さが
230μmであり、純水透水速度100g/ trr−
h r・kgf / c−であった。また球状タンパク
質の阻止率によって分画分子量を測定した結果、波膜は
分画分子量10,000の性能であった。Example 2 Using a mixture of 1,4-dioxane and N,N-dimethylformamide at a ratio of 723 (weight ratio) as a solvent, a polyvinyl formal resin with an average degree of polymerization of 550 (formalization rate 80%) was prepared. 15% each of polyvinyl formal resin with an average degree of polymerization of 750 (formalization rate 80%)
A dope was prepared by dissolving it in a proportion of 10% by weight. Using the dope, by the same operation as in Example 1,
A film was formed at a water temperature of 5°C. The obtained flat membrane has a separation membrane layer thickness of 230 μm and a pure water permeation rate of 100 g/trr-
It was hr·kgf/c-. Furthermore, as a result of measuring the molecular weight cut-off based on the rejection rate of globular proteins, the wave membrane had a performance with a cut-off molecular weight of 10,000.
また波膜の純水による接触角を測定したところ、水滴は
1分以内に完全にぬれひろがっていった。In addition, when the contact angle of the wave film with pure water was measured, the water droplets completely wetted and spread within one minute.
比較例1
平均重合度500のポリビニルホルマール樹脂(ホルマ
ール化率80%)をN−メチル−2−ピロリドンを溶媒
として20重量%のドープに調製した。このドープを用
いて実施例1と同様にして限外濾過膜を作製した。しか
し、この樹脂では目的とする分画分子量10万以下の実
質的に十分な膜強度を有する限外濾過膜が得られなかっ
た。Comparative Example 1 A polyvinyl formal resin having an average degree of polymerization of 500 (formalization rate: 80%) was prepared into a 20% by weight dope using N-methyl-2-pyrrolidone as a solvent. Using this dope, an ultrafiltration membrane was produced in the same manner as in Example 1. However, with this resin, it was not possible to obtain an ultrafiltration membrane having a molecular weight cut off of 100,000 or less and having substantially sufficient membrane strength.
比較例2
平均重合度970のポリビニルホルマール樹脂(ホルマ
ール化率80%)を1,4−ジオキサンとN、N−ジメ
チルホルムアミドとを7:3(ffl量比)の割合で混
合した溶媒を用いて17重量%のドープに調製した。こ
のドープを用いて実施例1と同様にして製膜しようとし
たところ、該ドープの粘度が高いために製膜できなかっ
た。Comparative Example 2 A polyvinyl formal resin with an average degree of polymerization of 970 (formalization rate 80%) was mixed with a solvent of 1,4-dioxane and N,N-dimethylformamide at a ratio of 7:3 (ffl ratio). A dope of 17% by weight was prepared. When an attempt was made to form a film using this dope in the same manner as in Example 1, it was not possible to form a film due to the high viscosity of the dope.
Claims (1)
ルホルマール樹脂であり、その重合度が異なる2種類の
樹脂をブレンドしてなるポリマーを素材とすることを特
徴とする限外濾過膜。 ▲数式、化学式、表等があります▼( I ) (2)重合度がそれぞれn1=550〜650、n2=
700〜800である2種類の樹脂を用いることを特徴
とする特許請求の範囲第 (1)項記載の限外濾過膜。 (3)下記一般式( I )で示され、重合度が異なる2
種類の樹脂をブレンドしたポリビニルホルマール樹脂を
湿式製膜法により製膜することを特徴とする特許請求の
範囲第(1)項または第(2)項記載の限外濾過膜の製
造法。 ▲数式、化学式、表等があります▼(2)[Claims] (1) A polyvinyl formal resin having a repeating unit represented by the general formula (I), characterized in that it is made of a polymer obtained by blending two types of resins with different degrees of polymerization. Ultrafiltration membrane. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (I) (2) Degree of polymerization is n1 = 550 to 650, n2 = respectively
The ultrafiltration membrane according to claim 1, characterized in that two types of resins having a molecular weight of 700 to 800 are used. (3) 2 represented by the following general formula (I) and having different degrees of polymerization
A method for producing an ultrafiltration membrane according to claim 1 or 2, characterized in that a polyvinyl formal resin blended with different types of resins is formed into a film by a wet film forming method. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(2)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15020288A JPH022850A (en) | 1988-06-20 | 1988-06-20 | Narrowly fractionated molecular weight polyvinylformal film for ultrafiltration and its production |
EP88312359A EP0323224B1 (en) | 1987-12-28 | 1988-12-28 | Polyvinyl formal ultrafiltration membrane and process for producing the same |
DE88312359T DE3882217T2 (en) | 1987-12-28 | 1988-12-28 | Ultrafiltration membrane made of polyvinyl formal and process for its production. |
US07/291,122 US5132059A (en) | 1987-12-28 | 1988-12-28 | Process for producing a polyvinyl formal ultrafiltration membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15020288A JPH022850A (en) | 1988-06-20 | 1988-06-20 | Narrowly fractionated molecular weight polyvinylformal film for ultrafiltration and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH022850A true JPH022850A (en) | 1990-01-08 |
Family
ID=15491754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15020288A Pending JPH022850A (en) | 1987-12-28 | 1988-06-20 | Narrowly fractionated molecular weight polyvinylformal film for ultrafiltration and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH022850A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8063301B2 (en) * | 2005-03-31 | 2011-11-22 | Sanyo Electric Co., Ltd. | Photovoltaic module |
-
1988
- 1988-06-20 JP JP15020288A patent/JPH022850A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8063301B2 (en) * | 2005-03-31 | 2011-11-22 | Sanyo Electric Co., Ltd. | Photovoltaic module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3200095B2 (en) | Hydrophilic heat-resistant film and method for producing the same | |
CN1120036C (en) | Preparation of sulfonated polyether sulfone filtering film | |
CN1050773C (en) | Polyvinylidene fluoride hollow fibre porous membrane manufacturing method | |
WO2005094451A2 (en) | Hydrophilic cross-linked polymeric membranes and sorbents | |
CN101143304A (en) | Hollow fiber membrane and its preparing process | |
JPH02135134A (en) | Membrane for separating water-alcohol mixed liquid | |
JP3187420B2 (en) | Polytetramethylene adipamide or nylon 46 membrane with narrow pore size distribution and process for producing the same | |
JPH04310223A (en) | Polyfluorovinylidene resin membrane and method for production thereof | |
JPS6354903A (en) | Separation membrane for pervaporation | |
Kurşun | Application of PVA-b-NaY zeolite mixture membranes in pervaporation method | |
CA1073822A (en) | Ethylene-vinyl alcohol copolymer membranes with improved permeability characteristics and a method for producing the same | |
CN102580576A (en) | Polyvinylidene fluoride ultrafiltration membrane and ultrafiltration membrane method | |
JPS61238834A (en) | Porous polysulfone resin membrane | |
JPS6138208B2 (en) | ||
EP0270647B1 (en) | Polyamide membranes | |
JPH022850A (en) | Narrowly fractionated molecular weight polyvinylformal film for ultrafiltration and its production | |
US5132059A (en) | Process for producing a polyvinyl formal ultrafiltration membrane | |
JPH01231902A (en) | Ultrafiltration membrane consisting of polyvinyl formal having small molecular weight restricted distribution and production of the membrane | |
JPS6138207B2 (en) | ||
JPH01231901A (en) | Ultrafiltration membrane consisting of polyvinyl formal and production of the membrane | |
JPH05253455A (en) | Cyclodextrine-polyvinyl alcohol composite membrane | |
JPH01176401A (en) | Polyvinyl formal ultrafiltration membrane and production thereof | |
US4892661A (en) | Novel membrane method | |
JPS60206404A (en) | Permselective membrane and its prepration | |
JP3046082B2 (en) | Polysulfone resin membrane and method for producing the same |