JPH02285025A - Production of seawater corrosion resisting clad steel plate - Google Patents

Production of seawater corrosion resisting clad steel plate

Info

Publication number
JPH02285025A
JPH02285025A JP10452689A JP10452689A JPH02285025A JP H02285025 A JPH02285025 A JP H02285025A JP 10452689 A JP10452689 A JP 10452689A JP 10452689 A JP10452689 A JP 10452689A JP H02285025 A JPH02285025 A JP H02285025A
Authority
JP
Japan
Prior art keywords
less
steel
rolling
steel plate
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10452689A
Other languages
Japanese (ja)
Other versions
JP2830034B2 (en
Inventor
Sadahiro Yamamoto
山本 定弘
Yasuo Kobayashi
泰男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1104526A priority Critical patent/JP2830034B2/en
Publication of JPH02285025A publication Critical patent/JPH02285025A/en
Application granted granted Critical
Publication of JP2830034B2 publication Critical patent/JP2830034B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce a seawater corrosion resisting clad steel plate having high corrosion resistance by laying a stainless steel having a composition in which the total content of Cr, Mo, and N and the relationship between Ni and Cr contents are specified, respectively, on a steel plate and then rolling the resulting clad steel plate while specifying temp. conditions. CONSTITUTION:A stainless steel having a composition which consists of <=0.030% C, 0.05-2.0% Mn, 18.0-27.0% Cr, 4.0-7.0% Mo, 18.4-30.0% Ni, 0.10-0.25% N, 0.001-0.20% Al, P and S as inevitable impurities in the amounts of <=0.050% and <=0.010%, respectively, and the balance Fe and in which the conditions of Cr+3Mo+17N>=41.0 and Ni>=0.8Ct+4.0 are satisfied is laid at least on one side of a plate of steel, such as carbon steel. The resulting clad steel is heated up to 1150-1250 deg.C and hot-rolled, and rolling is completed at >=800 deg.C, followed by cooling at >=1 deg.C/sec cooling rate. By this method, the clad steel plate having >=about 60 deg.C critical pitting corrosion temp. and excellent in corrosion resistance in seawater can be produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐海水用クラッド鋼板の製造方法に関するも
ので、合せ材の成分系と圧延方法の最適化により、高耐
食性を有するクラッド鋼板を製造することを目的とする
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a seawater-resistant clad steel plate, and it is possible to produce a clad steel plate with high corrosion resistance by optimizing the component system of the laminated material and the rolling method. The purpose is to manufacture.

〔従来の技術〕[Conventional technology]

耐海水用ステンレス鋼としては、特開昭52−9552
4号に代表されるように製法として熱間加工性及び高温
域(1100℃以上)からの急冷を前提とした場合にお
ける耐食性の観点からCr、 Mo、 NJIを高めた
オーステナイト系ステンレス鋼が開発されている。しか
し。
As seawater resistant stainless steel, JP-A-52-9552
As typified by No. 4, austenitic stainless steels with increased Cr, Mo, and NJI content have been developed from the viewpoint of hot workability and corrosion resistance when rapidly cooling from a high temperature range (1100°C or higher) is assumed. ing. but.

高価なCr、Moを多量に添加しているため厚板の製造
を考えた場合、経済性の観点より炭素鋼又は低合金鋼と
のクラッド化が望ましい。
Since large amounts of expensive Cr and Mo are added, when considering the manufacture of thick plates, cladding with carbon steel or low alloy steel is desirable from the economical point of view.

そこで耐海水用クラッド鋼板の製造を考えた場合、従来
のソリッド材のように高温域からの急冷は母材の靭性を
大巾に損うためこの種のクラッド鋼板の製造には適用で
きない。−方、オーステナイト系ステンレスクラッド鋼
の製造については、特開昭63−248583号に示さ
れているように圧延冷却中におけるσ相の析出抑制の観
点からの検討が行われている。
Therefore, when considering the production of seawater-resistant clad steel plates, rapid cooling from a high temperature range, as with conventional solid materials, can not be applied to the production of this type of clad steel plate, as it greatly impairs the toughness of the base material. On the other hand, with regard to the production of austenitic stainless clad steel, studies have been conducted from the viewpoint of suppressing precipitation of the σ phase during rolling cooling, as shown in JP-A No. 63-248583.

しかし、N含有量を0.10%以上に高めた耐海水用ク
ラッド鋼板の製造においては、σ相よりもCr窒化物の
析出のほうが早く耐食性を大きく左右することになる。
However, in the production of seawater-resistant clad steel sheets with an increased N content of 0.10% or more, Cr nitrides precipitate faster than the σ phase and greatly influence corrosion resistance.

このような耐海水用クラッド鋼板の製造は合せ材の成分
系及び圧延、冷却条件の最適化により可能と考えられる
が、この方面での系統的な研究は行われていないのが現
状である。
It is thought that manufacturing such a seawater-resistant clad steel plate is possible by optimizing the composition of the laminated material and the rolling and cooling conditions, but at present no systematic research has been conducted in this direction.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

一般にクラッド圧延では1100℃以上に加熱後熱間圧
延を行い、800〜1000℃の温度域で圧延を終了し
、放冷又は加速冷却が行われる。しかし母材の制約等に
より10℃/S以上の冷却速度の確保は難しい。第6図
には特開昭52−95524号に対応する代表的耐海水
用オーステナイトステンレス鋼である2 0 Cr−1
8Ni −6,2Mo −0,7Cu −0,2ON鋼
を1200℃に加熱後圧延仕上温度を800°Cから1
000℃まで変化させ各種の冷却速度で冷却した場合の
耐食性を、塩化第二鉄溶液を用いた孔食試験(ASTM
G48.JISGO57g)で評価した結果を示す。孔
食が発生する臨界孔食温度(CPT)は圧延仕上温度に
ほとんど依存せず、圧延後の冷却速度の増加に伴い上昇
し10 ”c/sではCPT=55℃となっている。な
お比較例としてソリッド材の製造を前提に1200”C
に加熱後急冷した場合のCPTも示したが75℃であり
、クラッド圧延をシュミレートした場合は耐食性が太き
(低下している。
Generally, in clad rolling, hot rolling is performed after heating to 1100°C or higher, rolling is finished in a temperature range of 800 to 1000°C, and cooling is performed by standing or accelerated cooling. However, it is difficult to secure a cooling rate of 10° C./S or more due to constraints on the base material. Figure 6 shows 20 Cr-1 which is a typical seawater resistant austenitic stainless steel corresponding to Japanese Patent Application Laid-open No. 52-95524.
After heating the 8Ni -6,2Mo -0,7Cu -0,2ON steel to 1200°C, the rolling finishing temperature was changed from 800°C to 1
The corrosion resistance when the temperature was changed to 000℃ and cooled at various cooling rates was evaluated using a pitting corrosion test (ASTM) using a ferric chloride solution.
G48. The results of evaluation using JISGO57g) are shown. The critical pitting temperature (CPT) at which pitting corrosion occurs has almost no dependence on the finishing rolling temperature, and increases as the cooling rate increases after rolling, and at 10"c/s, CPT = 55°C.Comparison As an example, assuming the manufacture of solid materials, the temperature is 120”C.
The CPT in the case of heating and then quenching is also shown, but it is 75°C, and when clad rolling is simulated, the corrosion resistance is thick (decreased).

一方、テフロンにより人工的にすきまをつけた試験片を
天然海水中に1年間浸漬した場合の腐食深さと塩化第二
鉄試験におけるCPTの関係を第7図に示す。同図から
天然海水中ですきま腐食を抑制するには60”C以上の
CPTが必要である。
On the other hand, FIG. 7 shows the relationship between the corrosion depth and the CPT in the ferric chloride test when a test piece with an artificial gap created by Teflon was immersed in natural seawater for one year. From the figure, a CPT of 60"C or higher is required to suppress crevice corrosion in natural seawater.

これらの結果をもとに判断すると従来の代表的耐海水ス
テンレス鋼である20cr−18Ni−6,2Mo −
0,7Cu −0,20N鋼はクラッド用の合せ材成分
としては不十分であり、クラッド製造の熱加工履歴を前
提にした場合においてもCPT≧60℃となる成分の開
発が望まれている。
Judging from these results, 20cr-18Ni-6,2Mo-
0.7Cu -0.20N steel is insufficient as a component of a cladding material, and it is desired to develop a component that provides CPT≧60° C. even when taking the heat processing history of cladding production as a premise.

本発明は上記のような問題点を解決するためになされた
もので、クラッド鋼の合せ材成分の最適化とクラッド圧
延条件の規定を行うことにより、 CPT≧60℃とな
る耐海水用クラッド鋼板を得ることを目的とする。
The present invention was made to solve the above-mentioned problems, and by optimizing the composition of the cladding steel and specifying the cladding rolling conditions, it is possible to create a seawater-resistant cladding steel plate with a CPT≧60°C. The purpose is to obtain.

〔問題点を解決するための手段〕[Means for solving problems]

上記課題を解決するため本発明者等はクラッド圧延の熱
加工履歴を前提にした場合の成分系の開発とこれらの成
分系をもとに最適圧延条件の検討を行った。以下に詳細
を述べる。
In order to solve the above problems, the present inventors developed a component system based on the heat processing history of clad rolling, and investigated optimal rolling conditions based on these component systems. Details are given below.

第1図には下記衣1に示す鋼lから8を1200℃に加
熱し、900℃で圧延を終了後1℃/sで冷却した場合
のCPTが示されている。
FIG. 1 shows the CPT when steels 1 to 8 shown in Coating 1 below were heated to 1200°C and cooled at 1°C/s after finishing rolling at 900°C.

同図に示されるように、20 Cr −6Mo系及び2
5 Cr −4,5Mo系は、いずれの場合もNiiの
増加に伴ってCPTか上昇しており、天然海水中ですき
ま腐食を生じないための条件であるCP?≧60℃(1
0%塩化第二鉄溶液中)を満足するには、 20 Cr
 −6Mo系では20%以上。
As shown in the figure, 20Cr-6Mo system and 2
5 In the 5Cr-4,5Mo system, CPT increases as Nii increases in all cases, and CP?, which is a condition for not causing crevice corrosion in natural seawater, increases. ≧60℃ (1
0% ferric chloride solution), 20 Cr
-20% or more for 6Mo series.

25 Cr −4,5Mo系では24%以上のNi添加
が必要である。一般にオーステナイトステンレス鋼の耐
孔食、耐すきま腐食性はCr、Mo,N量で整理ができ
るとされており1例えばplttingIndexとし
てCr+3Mo+17Nが提唱されティる。しかしクラ
ッド圧延を前提にした場合はNi量が重要な役割をはた
していることが本実験により明らかとなった。
In the 25Cr-4,5Mo system, it is necessary to add 24% or more of Ni. It is generally believed that the pitting corrosion resistance and crevice corrosion resistance of austenitic stainless steel can be determined by the amounts of Cr, Mo, and N. For example, Cr+3Mo+17N is proposed as the plutting index. However, this experiment revealed that the amount of Ni plays an important role when cladding rolling is assumed.

次kCPT≧60℃を得るための最低Nl量がCr量に
よりどのように変化するかを明らかkするため、0.2
ONにおいてCy −)−3Moを一定にしてcr 、
 Moバランスを変えた鋼を1200℃に加熱後100
0℃で圧延を終了し1℃/Bで冷却した。その結果を第
2図に示す、 CPT≧60℃を満すために必要な最低
Ni量はCr量とともに増加しており、Cr量の関数と
して下式で示されることになる。
In order to clarify how the minimum Nl amount to obtain kCPT≧60°C changes depending on the Cr amount, 0.2
cr with Cy −)-3Mo constant in ON,
100 after heating steel with different Mo balance to 1200℃
Rolling was completed at 0°C and cooled at 1°C/B. The results are shown in FIG. 2. The minimum amount of Ni required to satisfy CPT≧60° C. increases with the amount of Cr, and is expressed by the following equation as a function of the amount of Cr.

Nl (%)=0.8Cr(%)+4 このよ5に本発明は合せ材の成分及び後述する圧延条件
を最適化することkより耐海水用クラッド鋼板の製造を
可能にしたものである。これに対し、従来の耐海水用ス
テンレス鋼(ソリッド)は1100℃以上の高温域から
急冷することKより、 Cr炭窒化物、シグマ相等の金
属間化合物の析出を抑制していた。この場合の耐食性は
主1ccr、Mo、Ntに支配されていた。しかしクラ
ッド圧延のように母材の特性より急冷することが難しい
場合は、上記の成分の他KNiが大きな役割を果たす。
Nl (%) = 0.8 Cr (%) + 4 Thus, the present invention makes it possible to manufacture a seawater-resistant clad steel plate by optimizing the composition of the laminated material and the rolling conditions described below. In contrast, conventional seawater-resistant stainless steel (solid) is rapidly cooled from a high temperature range of 1100°C or higher, which suppresses the precipitation of intermetallic compounds such as Cr carbonitrides and sigma phase. Corrosion resistance in this case was mainly dominated by 1ccr, Mo, and Nt. However, in cases where rapid cooling is difficult due to the characteristics of the base material, such as in clad rolling, KNi plays a major role in addition to the above components.

第2図に示した様にCr量に依存して変化するNl量を
規定することkより耐孔食性が向上するのは、Niによ
り圧延後の冷却過程におけるCr窒化物の析出が抑制さ
れることによる。特に本発明鋼のようにNを高めた成分
ではCr窒化物の析出抑制が重要である。
As shown in Figure 2, the pitting corrosion resistance is improved by specifying the amount of Nl, which changes depending on the amount of Cr, because Ni suppresses the precipitation of Cr nitrides during the cooling process after rolling. It depends. Particularly in the case of a steel having a high N content like the steel of the present invention, it is important to suppress the precipitation of Cr nitrides.

更に、第3図には上記式を満″fNi量を含有しCr 
、 Mo,、N量を変化させた鋼を1200℃に加熱し
、900℃で圧延を終了後3 ’C/aで冷却した場合
のCPT″4tCr(%) + 3 Mo (%)+1
7N(%)で整理した結果が示されている。なお6鋼の
成分は次の表2に示す通りである。
Furthermore, FIG.
, Mo,, CPT when steel with varying amounts of N is heated to 1200°C and cooled at 3'C/a after finishing rolling at 900°C 4tCr (%) + 3 Mo (%) + 1
The results are shown organized by 7N (%). The ingredients of the 6 steels are shown in Table 2 below.

同図からNi1iを上記の式の下限にした場合、CPT
≧60℃とするために必要なP i t t i ng
Index即ちCrC%) + 3 Mo (%) +
 17 N (%)は41であることがわかる。またP
itting Index≧41.0を満足していても
27%を超えてCrを添加しMoを低減した鋼】2は同
一のPiffing Index鋼に比べCPTが大巾
に劣る。このように27%を超えてCrを添加すると、
σ相の形成が著しく促進されるからである。なおCrは
耐孔食、耐すきま腐食性向上の観点から18%以上必要
であり、このことも考慮すると耐海水用クラッド鋼板の
合せ材成分としては、18%≦Cr≦27%でかつC’
r (%)+3Mo(%)+ 17N (%)≧41.
0を満しNi=0.8Cr+4で規定される以上のNi
量を含有することが必要である。但し。
From the same figure, when Ni1i is set as the lower limit of the above equation, CPT
P i t t i ng necessary to make it ≧60℃
Index i.e. CrC%) + 3 Mo (%) +
It can be seen that 17 N (%) is 41. Also P
Even if it satisfies the Piffing Index≧41.0, steel with Cr added in excess of 27% and reduced Mo content [2] is significantly inferior in CPT compared to steel with the same Piffing Index. When Cr is added in excess of 27% in this way,
This is because the formation of the σ phase is significantly promoted. Note that Cr is required to be at least 18% from the viewpoint of improving pitting corrosion resistance and crevice corrosion resistance, and taking this into consideration, the cladding material component of seawater resistant clad steel plate should be 18%≦Cr≦27% and C'
r (%) + 3Mo (%) + 17N (%)≧41.
Ni that satisfies 0 and is greater than or equal to Ni=0.8Cr+4
It is necessary to contain the amount. however.

Ni量を規定する上記式とCr量の下限値を考慮すると
、Niの下限値は18.4%であり、且つ同元素は高価
であるため、上限値は30%とすることにした。又Mo
は耐孔食、耐すきま腐食性向上のために有効な元素であ
るため、4.0%以上必要であるが、7.0%を超える
とσ相の形成が層しく促進されるので、上限を7.0%
とした。更にNは耐食性を高める作用があり。
Considering the above formula that defines the amount of Ni and the lower limit of the amount of Cr, the lower limit of Ni is 18.4%, and since this element is expensive, the upper limit was decided to be 30%. Also Mo
is an effective element for improving pitting corrosion resistance and crevice corrosion resistance, so it is necessary to have a content of 4.0% or more, but if it exceeds 7.0%, the formation of the σ phase will be further promoted, so the upper limit is 7.0%
And so. Furthermore, N has the effect of increasing corrosion resistance.

0.10%以上必要であるが、0.25%を超える添加
は本発明成分範囲では困難である。
It is necessary to add 0.10% or more, but it is difficult to add more than 0.25% within the scope of the present invention.

以下本発明で規定される他の成分の限定理由について述
べる。
The reasons for limiting other components defined in the present invention will be described below.

Cは耐食性の観点から低いほど望ましく。The lower the C content, the more desirable it is from the viewpoint of corrosion resistance.

0.030%を超えて含有すると耐食性を損なうので、
0.030%以下とした。尚、製鋼上の制約から現状で
は0.0005%が最下限値となると考えられる。
If the content exceeds 0.030%, corrosion resistance will be impaired.
It was set to 0.030% or less. Note that due to steel manufacturing constraints, 0.0005% is considered to be the lowest limit at present.

Slは脱酸のためO;02%以上必要であるが。Sl is required to be O; 0.2% or more for deoxidation.

1.0%を超えると熱間加工性を著しく阻害する。When it exceeds 1.0%, hot workability is significantly inhibited.

そのため0.02%〜1.0%の範囲とした。Therefore, the content was set in the range of 0.02% to 1.0%.

Mnは脱酸のため0.05%以上必要であるが。0.05% or more of Mn is required for deoxidation.

2.0%を超えると耐食性を劣化させる。そのため0.
05%〜2.0%の範囲とした。
If it exceeds 2.0%, corrosion resistance will deteriorate. Therefore 0.
The range was 0.05% to 2.0%.

Alは脱酸のためo、oot%以上必要であるが、0.
30%を超えると耐食性が損なわれる。
Al is required for deoxidation at 0.00% or more, but 0.00% or more is required for deoxidation.
If it exceeds 30%, corrosion resistance will be impaired.

そのため0.001%〜0.30%の範囲とした。Therefore, the content was set in the range of 0.001% to 0.30%.

P、Sは低いほど望ましく、Pについては0.050%
を、Sについては0.010%を夫々超えて含むと熱間
加工性が損なわれる。そのためP≦0.050%、S≦
0.010%の範囲内に抑えた。尚、製鋼上の制約から
現状では夫々0.0005%が最下限値となると考えら
ねる。
The lower P and S are, the more desirable it is, and 0.050% for P.
If S exceeds 0.010%, hot workability will be impaired. Therefore, P≦0.050%, S≦
It was kept within the range of 0.010%. Note that, due to constraints in steel manufacturing, it is currently difficult to think that 0.0005% is the lowest limit for each.

更に第2発明では、熱間加工性又は耐食性の一層の改善
を図るため1こ、以上の成分の他に、 Cu≦2.0%
、W≦0.5%、Ti≦1.0%1Nb≦1.0%、7
61.0%、 Zr≦1.0%、La≦0.02%、 
Ce≦0.02%、C’a≦0.02%の一種又は二種
以上を含むこととしている。
Furthermore, in the second invention, in order to further improve hot workability or corrosion resistance, in addition to the above components, Cu≦2.0%.
, W≦0.5%, Ti≦1.0%1Nb≦1.0%, 7
61.0%, Zr≦1.0%, La≦0.02%,
One or more of Ce≦0.02% and C'a≦0.02% are included.

次に上記の成分を有する鋼7を用いてクラッドの最適圧
延条件を検討した。第4図には加熱温度、圧延仕上温度
を変化させ1℃/Sで冷却した場合のCPTの変化を示
す。900℃仕上を行なうことを前提として比較した場
合。
Next, the optimum rolling conditions for the cladding were investigated using Steel 7 having the above-mentioned components. FIG. 4 shows the change in CPT when the heating temperature and rolling finish temperature were changed and the material was cooled at 1° C./S. When compared on the assumption that 900℃ finishing is performed.

1150℃以上で加熱した場合はCPT≧60℃の良好
な値が得られているのに対し、1100℃加熱材ではC
PT=50℃と低下している。
When heated at 1150°C or higher, a good value of CPT≧60°C was obtained, whereas when heated to 1100°C, CPT
The temperature decreased to PT=50°C.

このように加熱温度が1150℃より低い場合は1本発
明鋼のような高Cr、高Mo 、高N鋼においてはCr
炭窒化物又はσ相が完全に固溶せず、耐孔食性が損われ
るためであると考えられる。又、1200℃加熱におい
ても750℃仕上材ではCPTか50’Cまで低下して
いる。
In this way, when the heating temperature is lower than 1150°C, 1) In high Cr, high Mo, and high N steel such as the steel of the present invention, Cr
This is thought to be because carbonitrides or the σ phase are not completely dissolved in solid solution, which impairs pitting corrosion resistance. Furthermore, even when heated at 1200°C, the CPT of the material finished at 750°C decreased to 50'C.

これは、圧延仕上温度が800℃未満の場合Ni量を高
めても圧延中にCr窒化物が析出するため、耐孔食性が
失なわれるからである。
This is because when the finishing rolling temperature is less than 800° C., even if the Ni content is increased, Cr nitrides precipitate during rolling, resulting in a loss of pitting corrosion resistance.

一方策5図には同じく前記鋼3を1200℃1こ加熱後
900℃で圧延を終了し、その後の冷却速度を大巾に変
化させた場合のCPTの変化を示す。CPTは冷却速度
の減少に伴って低下するが特に3”C/s未満では急激
な低下か生じている。こねは冷却中にCr望化物が析出
し、耐孔食性が失なわれたためである。
On the other hand, Fig. 5 shows the change in CPT when the steel 3 is heated once at 1200°C, then rolled at 900°C, and the subsequent cooling rate is varied widely. CPT decreases as the cooling rate decreases, but there is a particularly rapid decrease below 3"C/s. This is because Cr precipitates precipitate during cooling and pitting corrosion resistance is lost. .

以上示した加熱、圧延、冷却条件の検討はクラッド圧延
における合せ材が受ける熱加工履歴をシュミレートして
行ったが、実際のクランド圧延では母材の特性も考慮す
る必要があり、5250℃を超えるような加熱は母材の
靭性から望ましくない。従って耐海水用ステンレス鋼の
圧延、冷却条件としては1150℃以上1250℃以下
に加熱し、800℃以上で圧延を終了した後、1℃/8
以上で冷却することか必要である。
The study of the heating, rolling, and cooling conditions shown above was conducted by simulating the thermal processing history that the laminate undergoes in clad rolling, but in actual clad rolling, it is necessary to also consider the characteristics of the base material, and the temperature exceeds 5250°C. Such heating is undesirable due to the toughness of the base material. Therefore, the rolling and cooling conditions for seawater-resistant stainless steel are to heat it to 1150°C or higher and 1250°C or lower, and after finishing rolling at 800°C or higher, 1°C/8
It is necessary to cool it down.

(実施例1) 下記表3にはAからHに成分を示すステンレス鋼板を0
.20 C−0,25Si −0,70Mnの組成を有
する炭素鋼を重ね合わせ、1200℃に加熱後圧延を8
50℃で終了した後、2℃/3で冷却した場合の合せ材
の耐孔食性を10%塩化第二鉄溶液中で好個した結果を
示す。この実験での仕上板厚は合せ材2mm、母材13
mの鋼Aは本発明の特徴であるNi量の規定Ni(%)
≧0.8Cr(%)+4を満足していないためCPTが
45℃と低い。また鋼C,DはNi量の条件は満足して
いるものの鋼CはCr(%)+3Mo(%)+ 17N
 (%)≧41.0を、又鋼りはN量の条件を満してい
ないためいずれもCPTが55℃と低い。これ1こ対し
鋼Bは本発明の成分に関する各規定条件を満足している
ためCPTが70℃と良好である。Crを25%以上含
有する鋼E−)Iにおいても、同様にNiの規定を満し
ていない鋼E、及びCrの条件を満足していない鋼Hは
、CPTがそれぞれ45℃、50℃と低い。これに対し
本発明条件を満している鋼F、GはCPTが65℃及び
75℃であり、天然海水中ですきま腐食を生じないため
の条件であるCPT≧60℃を満している。
(Example 1) Table 3 below shows stainless steel plates whose components are shown from A to H.
.. Carbon steels having a composition of 20 C-0,25Si-0,70Mn were stacked together, heated to 1200°C and rolled for 8
The results are shown in which the pitting corrosion resistance of the laminated material was evaluated in a 10% ferric chloride solution when the test was completed at 50°C and then cooled at 2°C/3. The finished plate thickness in this experiment was 2 mm for the laminated material and 13 mm for the base material.
Steel A of m is the specified Ni amount (%) which is a feature of the present invention.
Since the condition ≧0.8Cr(%)+4 is not satisfied, the CPT is as low as 45°C. Also, although steels C and D satisfy the Ni content condition, steel C has Cr (%) + 3Mo (%) + 17N.
(%)≧41.0, and the steel does not satisfy the condition of N amount, so the CPT is low at 55°C. On the other hand, Steel B satisfies each prescribed condition regarding the components of the present invention, and therefore has a good CPT of 70°C. Similarly, among steels E-)I containing 25% or more of Cr, steel E, which does not meet the requirements for Ni, and steel H, which does not meet the requirements for Cr, have a CPT of 45°C and 50°C, respectively. low. On the other hand, steels F and G that meet the conditions of the present invention have a CPT of 65°C and 75°C, and satisfy the condition of CPT≧60°C, which is a condition for not causing crevice corrosion in natural seawater.

(実施例2) 下記表4には、本発明の成分条件を満す前記実施例の鋼
B、Fを0.04C−0,30Si −1,40Mn 
−0,03Nb −0,07Vの組成を有する低合金鋼
に重ね合せ、種々の条件でそれぞれ33111111(
合せ材31m、母材30m)、l0W(合せ材2鵡、母
材S W )に圧延した場合の合せ材の耐孔食性を10
%塩化第二鉄溶液中で評価した結果を示す。
(Example 2) Table 4 below shows the steels B and F of the above examples that meet the compositional conditions of the present invention.
-0,03Nb -0,07V superimposed on low alloy steel with composition 33111111(
The pitting corrosion resistance of the laminate is 10 when rolled into 10W (2 laminates, base material SW).
% ferric chloride solution is shown.

条件Jは圧延後の冷却速度が本発明の冷却速度である1
℃/8以上を満していないため。
Condition J is 1 in which the cooling rate after rolling is the cooling rate of the present invention.
Because the temperature does not meet ℃/8 or higher.

条件り及びOは加熱温度が本発明の温度範囲である11
50’C以上1250℃以下を満足していないため、又
条件K及びPは圧延仕上温度が本発明の請求範囲である
800℃以上を満していないため、いずれもCPTが5
5℃以下と低い。これに対し本発明条件を満足している
条件1.M及びNはいずれもCPT≧60℃の良好な耐
食性を示している。
Conditions and O are heating temperatures within the temperature range of the present invention.
50'C or more and 1250°C or less, and conditions K and P do not satisfy the rolling finishing temperature of 800°C or more, which is the claimed range of the present invention, so both have a CPT of 5.
The temperature is low, below 5℃. In contrast, condition 1 satisfies the conditions of the present invention. Both M and N exhibit good corrosion resistance with CPT≧60°C.

(実施例 3) 下記表5には、天々QからVに成分を示すステンレス鋼
板を0.08 C−0,35t−1,5Mn −0,0
1Nb−0,01Tiの組成を有する低合金鋼に重ね合
わせ、1230℃に加熱後、圧延を950℃で終了した
後1.5℃/8で冷却した場合の合せ材の耐孔食性を1
0%塩化第二鉄溶液中で評価した結果を示す。仕上板厚
は合せ材3箇、母材20■の合計23mである。
(Example 3) Table 5 below shows stainless steel plates whose components are shown from Tenten Q to V.
The pitting corrosion resistance of the laminated material when laminated on a low alloy steel having a composition of 1Nb-0,01Ti, heated to 1230°C, finished rolling at 950°C, and cooled at 1.5°C/8 is 1.
The results of evaluation in 0% ferric chloride solution are shown. The finished plate thickness was 23 m in total, including 3 laminates and 20 mm base material.

耐食性又は熱間加工性の一層の向上を図るためCuを添
加した鋼Q、W及びLaを添加した鋼R,Nb及びCm
を添加した鋼S。
Steel Q to which Cu is added to further improve corrosion resistance or hot workability, steel R to which W and La are added, Nb and Cm.
Steel S with added.

Zr及びceを添加した鋼T、TI及びVを添加した鋼
Uのいずれ化おいても本発明条件を満足しているため、
CPT≧60℃の良好な耐食性を有している。これ番ζ
対し本発明番こおけるNi量の規定を満していない鋼■
はCPTが45℃と低い。
Since both the steel T with the addition of Zr and CE and the steel U with the addition of TI and V satisfy the conditions of the present invention,
It has good corrosion resistance of CPT≧60°C. This number ζ
On the other hand, steel that does not meet the Ni content regulations in the present invention
has a low CPT of 45°C.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、−船釣なりラッド圧延の熱加工履
歴を前提にして耐海水用クラッド鋼板を製造する場合に
1本発明のように合せ材の成分系及び圧延、冷却条件を
最適化せしめることで、10%塩化第二鉄試験における
臨界孔食温度が60”C以上を有し、海水中Iζおける
耐食性に優れた耐海水用クラッド鋼板の製造が可能とな
った。
As detailed above, when manufacturing seawater-resistant clad steel plates based on the thermal processing history of boat fishing rad rolling, one method is to optimize the composition system of the laminate and the rolling and cooling conditions as in the present invention. By doing so, it has become possible to produce a seawater-resistant clad steel sheet that has a critical pitting temperature of 60"C or higher in a 10% ferric chloride test and has excellent corrosion resistance in seawater Iζ.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はNi量に伴なう臨界孔食温度の変化を示すグラ
フ図、第2図はcr量及びNi量と臨界孔食温度の変化
を示すグラフ図、第3図はPitting Index
と臨界孔食温度の関係を示すグラフ図、第4図は加熱温
度及び圧延仕上温度に伴なう臨界孔食温度の変化を示す
グラフ図、第5図は圧延後の冷却速度に伴なう臨界孔食
温度の変化を示すグラフ図、第6図は圧延及び冷却条件
による臨界孔食温度の変化を示すグラフ図、第7図はl
O%塩化第二鉄試験における臨界孔食温度と海水浸漬に
よる最大すきま腐食深さとの関係を示すグラフ図である
。 特許出願人  日本鋼管株式会社 発 明 者   山   本   定   仏間 小   林   泰   男
Figure 1 is a graph showing the change in critical pitting temperature with the amount of Ni, Figure 2 is a graph showing the change in critical pitting temperature with the amount of cr and Ni, and Figure 3 is the Pitting Index.
Figure 4 is a graph showing the relationship between critical pitting temperature and heating temperature, Figure 5 is a graph showing changes in critical pitting temperature due to heating temperature and finishing temperature, and Figure 5 is a graph showing changes in critical pitting temperature due to cooling rate after rolling. A graph showing changes in critical pitting temperature. Figure 6 is a graph showing changes in critical pitting temperature depending on rolling and cooling conditions. Figure 7 is a graph showing changes in critical pitting temperature.
FIG. 3 is a graph showing the relationship between the critical pitting temperature in the O% ferric chloride test and the maximum crevice corrosion depth due to seawater immersion. Patent applicant Nippon Kokan Co., Ltd. Inventor Sada Yamamoto Yasuo Butsuma Kobayashi

Claims (1)

【特許請求の範囲】 1、C:0.030%以下、Mn:0.05%以上2.
0%以下、Cr:18.0%以上27.0%以下、Mo
:4.0%以上7.0%以下、Ni:18.4%以上3
0.0%以下、N:0.10%以上0.25%以下、A
l:0.001%以上0.30%以下を含有し、且つC
r(%)+3Mo(%)+17N(%)≧41.0、N
i(%)≧0.8Cr(%)+4.0の条件を満たし、
不可避的不純物としてP:0.050%以下、S:0.
010%以下及び残部Feを含むステンレス鋼を鋼板の
少なくとも片面に重ね合 わせたクラッド鋼板の圧延に際し、1150℃以上12
50℃以下に加熱後熱間圧延を 行なつて800℃以上で圧延を終了し、そ の後1℃/s以上で冷却することを特徴と する耐海水用クラッド鋼板の製造方法。 2、C:0.030%以下、Mn:0.05%以上2.
0%以下、Cr:18.0%以上27.0%以下、Mo
:4.0%以上7.0%以下、Ni:18.4%以上3
0.0%以下、N:0.10%以上0.25%以下、A
l:0.001%以上0.30%以下を含有し、且つC
u:2.0%以下、W:0.5%以下、Ti:1.0%
以下、Nb:1.0%以下、V:1.0%以下、Zr:
1.0%以下、La:0.02%以下、Ce:0.02
%以下、Ca:0.02%以下の一種又は二種以上を含
むと共に、Cr(%)+ 3Mo(%)+17N(%)
≧41.0、Ni(%)≧0.8Cr(%)+4.0の
条件を満たし、不可避的不純物と してP:0.050%以下、S:0.010%以下及び
残部Feを含有するステンレス鋼を鋼 板の少なくとも片面に重ね合わせたクラ ッド鋼板の圧延に際し、1150℃以上 1250℃以下に加熱後熱間圧延を行なつ て800℃以上で圧延を終了し、その後1 ℃/s以上で冷却することを特徴とする耐 海水用クラッド鋼板の製造方法。
[Claims] 1. C: 0.030% or less, Mn: 0.05% or more 2.
0% or less, Cr: 18.0% or more and 27.0% or less, Mo
: 4.0% or more and 7.0% or less, Ni: 18.4% or more 3
0.0% or less, N: 0.10% or more and 0.25% or less, A
l: Contains 0.001% or more and 0.30% or less, and C
r (%) + 3Mo (%) + 17N (%) ≧ 41.0, N
satisfies the condition of i (%) ≧ 0.8 Cr (%) + 4.0,
Unavoidable impurities include P: 0.050% or less, S: 0.
When rolling a clad steel plate in which stainless steel containing 0.010% or less and the balance is superimposed on at least one side of the steel plate, the temperature at 1150°C or higher is 12
A method for manufacturing a seawater-resistant clad steel sheet, which comprises heating to 50°C or lower, hot rolling, finishing rolling at 800°C or higher, and then cooling at 1°C/s or higher. 2.C: 0.030% or less, Mn: 0.05% or more2.
0% or less, Cr: 18.0% or more and 27.0% or less, Mo
: 4.0% or more and 7.0% or less, Ni: 18.4% or more 3
0.0% or less, N: 0.10% or more and 0.25% or less, A
l: Contains 0.001% or more and 0.30% or less, and C
u: 2.0% or less, W: 0.5% or less, Ti: 1.0%
Below, Nb: 1.0% or less, V: 1.0% or less, Zr:
1.0% or less, La: 0.02% or less, Ce: 0.02
% or less, including one or more of Ca: 0.02% or less, and Cr (%) + 3Mo (%) + 17N (%)
Stainless steel that satisfies the conditions of ≧41.0, Ni (%)≧0.8Cr (%) + 4.0, and contains P: 0.050% or less, S: 0.010% or less, and the balance Fe as unavoidable impurities. When rolling a clad steel plate in which steel is laminated on at least one side of the steel plate, hot rolling is performed after heating to 1150°C or more and 1250°C or less, finishing the rolling at 800°C or more, and then cooling at 1°C/s or more. A method for manufacturing a seawater-resistant clad steel sheet, characterized by:
JP1104526A 1989-04-26 1989-04-26 Manufacturing method of clad steel sheet for seawater Expired - Fee Related JP2830034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1104526A JP2830034B2 (en) 1989-04-26 1989-04-26 Manufacturing method of clad steel sheet for seawater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1104526A JP2830034B2 (en) 1989-04-26 1989-04-26 Manufacturing method of clad steel sheet for seawater

Publications (2)

Publication Number Publication Date
JPH02285025A true JPH02285025A (en) 1990-11-22
JP2830034B2 JP2830034B2 (en) 1998-12-02

Family

ID=14382937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1104526A Expired - Fee Related JP2830034B2 (en) 1989-04-26 1989-04-26 Manufacturing method of clad steel sheet for seawater

Country Status (1)

Country Link
JP (1) JP2830034B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159438A (en) * 2009-01-06 2010-07-22 Nippon Yakin Kogyo Co Ltd High corrosion-resistant alloy excellent in grain-boundary corrosion resistance
WO2013132838A1 (en) * 2012-03-08 2013-09-12 Jfeスチール株式会社 Stainless clad steel
WO2013132863A1 (en) * 2012-03-08 2013-09-12 Jfeスチール株式会社 Seawater-resistant stainless clad steel
JP2014040669A (en) * 2013-10-10 2014-03-06 Nippon Yakin Kogyo Co Ltd High corrosion-resistant alloy excellent in intergranular corrosion resistance
JP2014074209A (en) * 2012-10-05 2014-04-24 Kobe Steel Ltd Duplex stainless steel material and duplex stainless steel pipe
JP2014132113A (en) * 2012-12-05 2014-07-17 Jfe Steel Corp Stainless clad steel plate excellent in seawater corrosion resistance
JP2017061711A (en) * 2015-09-24 2017-03-30 Jfeスチール株式会社 Manufacturing method of stainless clad steel sheet

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159438A (en) * 2009-01-06 2010-07-22 Nippon Yakin Kogyo Co Ltd High corrosion-resistant alloy excellent in grain-boundary corrosion resistance
WO2013132838A1 (en) * 2012-03-08 2013-09-12 Jfeスチール株式会社 Stainless clad steel
WO2013132863A1 (en) * 2012-03-08 2013-09-12 Jfeスチール株式会社 Seawater-resistant stainless clad steel
KR20140129139A (en) * 2012-03-08 2014-11-06 제이에프이 스틸 가부시키가이샤 Stainless clad steel
US20150132177A1 (en) * 2012-03-08 2015-05-14 Jfe Steel Corporation Stainless clad steel with excellent corrosion resistance
JPWO2013132863A1 (en) * 2012-03-08 2015-07-30 Jfeスチール株式会社 Seawater resistant stainless clad steel and method for producing seawater resistant stainless clad steel
EP2824211A4 (en) * 2012-03-08 2016-03-09 Jfe Steel Corp Seawater-resistant stainless clad steel
US10774396B2 (en) 2012-03-08 2020-09-15 Jfe Steel Corporation Seawater-resistant stainless clad steel
JP2014074209A (en) * 2012-10-05 2014-04-24 Kobe Steel Ltd Duplex stainless steel material and duplex stainless steel pipe
JP2014132113A (en) * 2012-12-05 2014-07-17 Jfe Steel Corp Stainless clad steel plate excellent in seawater corrosion resistance
JP2014040669A (en) * 2013-10-10 2014-03-06 Nippon Yakin Kogyo Co Ltd High corrosion-resistant alloy excellent in intergranular corrosion resistance
JP2017061711A (en) * 2015-09-24 2017-03-30 Jfeスチール株式会社 Manufacturing method of stainless clad steel sheet

Also Published As

Publication number Publication date
JP2830034B2 (en) 1998-12-02

Similar Documents

Publication Publication Date Title
US20060243356A1 (en) Austenite-type stainless steel hot-rolling steel material with excellent corrosion resistance, proof-stress, and low-temperature toughness and production method thereof
JPWO2019189708A1 (en) Duplex stainless clad steel plate and method for manufacturing the same
TW200925294A (en) Hot-rolled shape steel for crude oil tanks and process for manufacturing the same
JPH02285025A (en) Production of seawater corrosion resisting clad steel plate
JPH06220545A (en) Production of cr-series stainless steel thin strip excellent in toughness
WO2019189707A1 (en) Two-phase stainless-clad steel sheet and method for manufacturing same
JPH04285119A (en) Production of thick-walled high tensile strength steel plate excellent in toughness at low temperature
US4832765A (en) Duplex alloy
CN109930083B (en) Low-nickel low-chromium stainless steel and manufacturing method thereof
CN109108071A (en) A kind of high strength anti-corrosion single-side stainless steel composite plate and its manufacturing method
JP2002194507A (en) Ferritic stainless steel superior in workability with less planar anisotropy and production method for the same
JPH02254121A (en) Production of clad steel plate for sea water resistance
JPH0717946B2 (en) Method for producing duplex stainless steel with excellent resistance to concentrated sulfuric acid corrosion
JPH05320764A (en) Production of high chromium ferritic stainless steel
JPS6030724B2 (en) Manufacturing method of high toughness high tensile strength steel plate
JP2743765B2 (en) Cr-Mo steel plate for pressure vessel and method for producing the same
JPS61166916A (en) Manufacture of cr-mo steel excelling in toughness and creep strength
JPS59211555A (en) Steel for pressure vessel with high toughness
JPS61223126A (en) Production of stainless clad steel material having excellent corrosion resistance
JPH01172516A (en) Manufacture of acicular ferritic stainless steel having excellent stress corrosive cracking resistance
JP4207738B2 (en) High formability and high strength composite steel sheet with excellent surface properties and method for producing the same
JPS61144284A (en) Production of clad material
JPS6293313A (en) Manufacture of accerelatedly cooled steel sheet superior in stress relief annealing characteristic
JPH01301843A (en) Ferritic super stainless steel-clad sheet metal excellent in workability and corrosion resistance
JPH051327A (en) Cold rolled multilayer steel sheet having surface layer composed of ferritic stainless steel and excellent in corrosion resistance and deep drawability, and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070925

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080925

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees