JPH0228426Y2 - - Google Patents

Info

Publication number
JPH0228426Y2
JPH0228426Y2 JP1985196193U JP19619385U JPH0228426Y2 JP H0228426 Y2 JPH0228426 Y2 JP H0228426Y2 JP 1985196193 U JP1985196193 U JP 1985196193U JP 19619385 U JP19619385 U JP 19619385U JP H0228426 Y2 JPH0228426 Y2 JP H0228426Y2
Authority
JP
Japan
Prior art keywords
cold air
ice
duct
water
test chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985196193U
Other languages
Japanese (ja)
Other versions
JPS62104137U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985196193U priority Critical patent/JPH0228426Y2/ja
Publication of JPS62104137U publication Critical patent/JPS62104137U/ja
Application granted granted Critical
Publication of JPH0228426Y2 publication Critical patent/JPH0228426Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は砕氷船、極地船、海上構造物等につい
て耐久力テスト等の格種の模擬実験を行うための
模擬氷海製造装置に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a simulated ice sea manufacturing device for conducting various types of simulation experiments such as durability tests on icebreakers, polar ships, offshore structures, etc.

〔従来の技術〕[Conventional technology]

砕氷船、極地船や石油プラツトホーム等の極地
海上構造物は設計段階で縮尺モデルを作り、実際
の氷海に擬した水槽内においてシユミレーシヨン
を行ない、種々の条件下における応力や抵抗等の
試験を行なつている。
Scale models of polar offshore structures such as icebreakers, polar ships, and oil platforms are created at the design stage, and simulations are performed in an aquarium that simulates the actual icy ocean to test stress, resistance, etc. under various conditions. ing.

しかし、試験室及び氷海水槽を冷却、凍結させ
る手段において次の問題点があつた。
However, the following problems arose in the means for cooling and freezing the test chamber and the ice seawater tank.

(1) 水槽内の氷の結氷速度が従来のものでは遅い
ため、1回の実験サイクルが長く、実験回数を
多くできない。
(1) Since the freezing rate of ice in the aquarium is slow in the conventional method, one experimental cycle is long and it is not possible to increase the number of experiments.

(2) 氷層の氷質が良好でない。(2) The ice quality of the ice layer is not good.

(3) 氷上面に凹凸のアバタが生じる。(3) An uneven avatar appears on the ice surface.

(4) 結氷終了時の氷厚偏差が多くて、水槽内の場
所により氷厚が異なるため、正確な実験結果が
期待できない。
(4) Accurate experimental results cannot be expected because there are many deviations in the ice thickness at the end of freezing, and the ice thickness varies depending on the location in the tank.

従来から使用されている氷海模擬実験装置とし
て第3図に示す自然対流式のものがある。
There is a natural convection type device shown in FIG. 3 as a conventional ice sea simulation experiment device.

同図において断熱構造室体1よりなる試験室2
内の底部には水槽3が設けられ、水槽3内には結
氷用の水4が入つている。一方試験室2の天井部
分には冷却コイル5が吊金具6により吊り下げら
れており、冷却コイル5へは冷凍機8から冷媒ま
たは冷却されたブラインが冷媒管7から供給され
るようになつている。
In the figure, a test chamber 2 consisting of a heat insulating structure chamber body 1
A water tank 3 is provided at the bottom of the tank, and the water tank 3 contains water 4 for freezing. On the other hand, a cooling coil 5 is suspended from the ceiling of the test chamber 2 by a hanging fitting 6, and refrigerant or cooled brine from a refrigerator 8 is supplied to the cooling coil 5 from a refrigerant pipe 7. There is.

上述したものでは、水槽3内の水4の結氷は冷
却コイル5を−25℃程度に冷却することによる試
験室2内の空気の自然対流により行なわれ、特に
氷厚偏差が少ないという利点があるものの、前述
した(1)〜(3)の欠点があり、しかも空気伝熱を良好
にするため大型の冷却コイル5を水槽上面全域を
覆うように配設する必要があり、設備費、保守費
が増大する。
In the above system, the water 4 in the water tank 3 is frozen by natural convection of the air in the test chamber 2 by cooling the cooling coil 5 to about -25°C, which has the advantage of having a particularly small deviation in ice thickness. However, it has the drawbacks (1) to (3) mentioned above, and in addition, it is necessary to arrange a large cooling coil 5 to cover the entire top surface of the water tank in order to improve air heat transfer, which increases equipment costs and maintenance costs. increases.

また大型で重量のある冷却コイルを試験室内の
天井に吊り下げるため、構造上誌験室の強度を上
げなければならず、試験設備のコストが高くなる
欠点がある。
Furthermore, since large and heavy cooling coils are suspended from the ceiling of the test chamber, the structural strength of the test chamber must be increased, which has the disadvantage of increasing the cost of the test equipment.

さらに、冷却コイルに付着した霜の塊の落下や
試験中のデフロスト時におけるドレン水滴の落下
により氷の表面にアバタができる。
Furthermore, avatars are formed on the surface of the ice due to falling lumps of frost attached to the cooling coil and falling water droplets from the drain during defrosting during testing.

これを防止するために、第4図に示すように冷
却コイルから落下する水滴を受けるドレンパン1
0を冷却コイルの下方で試験室内に設けたものも
あるが、そうすると試験室内の空気の対流が阻害
されて冷却効率が減少するという結果を招く。
In order to prevent this, a drain pan 1 that receives water droplets falling from the cooling coil is installed as shown in Figure 4.
0 in the test chamber below the cooling coil, but this results in obstruction of air convection within the test chamber and a decrease in cooling efficiency.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

本考案は上述した欠点を解決するため、冷却コ
イルを試験室の外部に設置し、冷却された空気の
みをダクトを通じて強制的に試験室内に送り込
み、また冷却空気は水面に沿つて、かつ所定時間
経過すると流れ方向が逆になるよう吹き出される
ようにすることにより水面の結氷速度をめ、しか
も均一な厚さの表層を得ることができるととも
に、設備の小型化を期せるようにした。
In order to solve the above-mentioned drawbacks, the present invention installs a cooling coil outside the test chamber, and forces only the cooled air into the test chamber through a duct. By blowing the water in such a way that the flow direction is reversed after the water elapses, the freezing speed of the water surface can be adjusted, a surface layer of uniform thickness can be obtained, and the equipment can be made more compact.

〔問題点を解決するための手段〕[Means for solving problems]

本考案の模擬氷海製造装置は、底部に水槽を有
する試験室内に、冷風の流れが水槽内の水の表面
に沿うよう各冷風口が横向き開口して相対峙する
一対の冷風ダクトを設け、各冷風ダクトには、試
験室の外部に設けた冷風発生器をそれぞれダンパ
を有するダクトを介して接続し、各ダクト内のダ
ンパ切換により冷風の送風方向を可逆ならしめた
構造のものとしてある。
The simulated ice sea production device of the present invention is provided with a pair of cold air ducts facing each other with each cold air outlet opening laterally so that the flow of cold air follows the surface of the water in the tank, in a test chamber with a water tank at the bottom. The cold air duct has a structure in which cold air generators installed outside the test chamber are connected through ducts each having a damper, and the blowing direction of the cold air is reversible by switching the dampers in each duct.

〔作用〕[Effect]

冷風発生器から送出される冷風が試験室内の水
槽の水面へそれに沿つて直かに吹き付けられ、ま
た冷風の吹出方向は所定時間経過すると反対とな
つて、実効氷層部に厚みムラの殆どない均一な厚
さの擬製氷海を再現できる。
The cold air sent out from the cold air generator is blown directly along the water surface of the water tank in the test room, and the blowing direction of the cold air is reversed after a predetermined period of time, so that there is almost no unevenness in the thickness of the effective ice layer. A simulated ice sea with uniform thickness can be reproduced.

〔実施例〕〔Example〕

次ぎに本考案の一実施例を添付図面に示す具体
例により詳細に説明する。
Next, one embodiment of the present invention will be described in detail with reference to a specific example shown in the accompanying drawings.

第1図において、断熱構造室体1により構成さ
れる試験室2内の底部には水4を溜めるための水
槽3が設けられている。また試験室の左右には、
上端をチヤンバー12a,12bに接続し、下端
には冷風出入口11a,11bを開口せしめた冷
風ダクト13a,13bよりなる一対の冷風供給
器14a,14bを設けてあり、冷風出入口11
a,11bは冷風を水槽内の水の表面へこれに沿
つて吹き出すよう斜傾せしめて開口してある。
In FIG. 1, a water tank 3 for storing water 4 is provided at the bottom of a test chamber 2 constituted by a heat-insulating structure chamber body 1. Also, on the left and right of the exam room,
A pair of cold air supply devices 14a and 14b are provided, each consisting of cold air ducts 13a and 13b whose upper ends are connected to the chambers 12a and 12b and whose lower ends are opened with cold air inlets and outlets 11a and 11b.
The openings a and 11b are tilted so that cold air is blown out along the surface of the water in the tank.

また水槽の左右にはレール10a,10bが敷
設され、レール上には水槽に掛けた測定室兼用の
キヤリア28が試験室の長手方向へ移動可能に設
けられており、キヤリアの下部には、キヤリアの
移動とともに氷を砕いて移動させられる模擬船2
5がロツド27によつて取り付けられている。
In addition, rails 10a and 10b are laid on the left and right sides of the water tank, and a carrier 28, which also serves as a measurement chamber and hangs over the water tank, is provided on the rails so as to be movable in the longitudinal direction of the test chamber. Mock ship 2 that can be moved by breaking ice as it moves
5 is attached by a rod 27.

一方試験室2の外部には、ケーシング15内に
送風機16と加熱器17、及び冷凍機18から冷
媒管7により低温冷媒が供給される冷却コイル1
9が配設された送風発生器20が設けられ、冷風
出口15aには通風ダクト22が接続されてい
る。そして同ダクトにはそれぞれダンパ21a,
21bを有する分岐ダクト22a,22bが接続
されていて、各分岐ダクトは冷風供給器のチヤン
バー12a,12bへそれぞれ接続されており、
チヤンバー12a,12bからは各々ダンパ23
a,23bを有する戻りダクト24a,24bが
冷風発生器20の吸入口15bへ接続されてい
る。
On the other hand, outside the test chamber 2, there are a blower 16 and a heater 17 inside the casing 15, and a cooling coil 1 to which low-temperature refrigerant is supplied from a refrigerator 18 through a refrigerant pipe 7.
A ventilation generator 20 is provided, and a ventilation duct 22 is connected to the cold air outlet 15a. The same duct has a damper 21a,
Branch ducts 22a, 22b having 21b are connected, each branch duct being connected to a chamber 12a, 12b of the cold air supplier, respectively;
Dampers 23 are provided from the chambers 12a and 12b, respectively.
A return duct 24a, 24b with a, 23b is connected to the inlet 15b of the cold air generator 20.

本考案の一例は上述した構造のもので、冷風発
生器20は吸入口15bより吸入した空気を冷却
コイル19により冷却し、分岐ダクト22a又は
22bを通じて試験室2内の各チヤンバー12a
又は12bへ送出するが、ダンパ21b,23b
を開、ダンパ21a,23aを閉としておくと、
冷風は実線矢印の方向へ流れて左チヤンバー12
aへ送られ、左冷風ダクト13a下端の傾斜する
冷風口11aから結氷用の水槽3の水面上へ斜め
方向から直かに吹き出される。この空気は右ダク
ト13bの下端冷風口11bから吸収され、右チ
ヤンバ12b、戻りダクト24bを経て冷風発生
器20へ吸入口15bから吸入される。
An example of the present invention has the above-mentioned structure, in which the cold air generator 20 cools the air taken in through the intake port 15b with the cooling coil 19, and passes it through the branch duct 22a or 22b to each chamber 12a in the test chamber 2.
Or send it to damper 12b, but damper 21b, 23b
is opened and dampers 21a and 23a are closed.
The cold air flows in the direction of the solid arrow and reaches the left chamber 12.
a, and is blown diagonally directly onto the water surface of the freezing water tank 3 from the inclined cold air outlet 11a at the lower end of the left cold air duct 13a. This air is absorbed from the cold air port 11b at the lower end of the right duct 13b, passes through the right chamber 12b, the return duct 24b, and is sucked into the cold air generator 20 from the suction port 15b.

以上の循環を繰り返すことにより水面上に氷2
6が生成されるが、生成される氷層は冷風吹出
側、すなはち第1図では左側の方が厚くなり、右
側は薄いものになる。
By repeating the above circulation, 2 ice cubes are formed on the water surface.
6 is generated, but the ice layer that is generated is thicker on the cold air outlet side, that is, on the left side in Figure 1, and thinner on the right side.

しかし本考案では、ダンパ21a,23aを
開、ダンパ21b,23bを閉とすることにより
冷風の流れは逆転し、冷風発生器20からの冷風
は右ダクト13cの冷風口11bから氷面上へ冷
風が吹き出され、同冷風は左ダクトに吸い込まれ
て冷風の流れは破線矢印方向に逆転する。
However, in the present invention, by opening the dampers 21a and 23a and closing the dampers 21b and 23b, the flow of cold air is reversed, and the cold air from the cold air generator 20 is directed onto the ice surface from the cold air outlet 11b of the right duct 13c. is blown out, the same cold air is sucked into the left duct, and the flow of the cold air is reversed in the direction of the dashed arrow.

以上のように冷風吹出し方向の切換を行なうこ
とにより、氷層は気流の上流側と下流側とで氷厚
差ができることはなく、第2図に示されるように
均等な厚みの氷が形成される。
By switching the cold air blowing direction as described above, there is no difference in ice thickness between the upstream and downstream sides of the airflow, and ice with an even thickness is formed as shown in Figure 2. Ru.

なお、氷層は冷風口11a,11bに近い左右
の部分が若干厚くなるが(0.5m/m程度)、実験
は模擬船25などを通常水槽中央部分(両サイド
でない実効氷層部分)に配して行なうため、実用
上問題とはならない。
Note that the ice layer is slightly thicker on the left and right parts near the cold air vents 11a and 11b (approximately 0.5 m/m), but in experiments, the simulated ship 25 etc. is usually placed in the center part of the tank (the effective ice layer part that is not on both sides). Since this is done by

〔本考案の効果〕[Effects of this invention]

上述した本考案においては次の作用効果があ
る。
The present invention described above has the following effects.

(1) 冷却コイルへ強制的に空気を送り込む方式で
あるため、空気に対する熱通過率が大きく、従
来の自然対流結氷式のものに比較して小型の冷
却コイルで結氷速度を増すことができ、設備
費、保守費とも低減する。
(1) Since it is a method that forces air into the cooling coil, the heat transfer rate to the air is high, and compared to the conventional natural convection freezing type, the freezing speed can be increased with a smaller cooling coil. Both equipment costs and maintenance costs are reduced.

(2) 結氷速度が早くなるため、実験サイクルを短
くできて、実験回数を多くできる。
(2) Since the freezing rate becomes faster, the experimental cycle can be shortened and the number of experiments can be increased.

(3) 冷風発生設備が試験室外部に設置されるた
め、試験室の構造強度を低減できる。
(3) Since the cold air generation equipment is installed outside the test room, the structural strength of the test room can be reduced.

(4) デフロスト時のドレン排出が容易になるた
め、試験中でも冷却コイルのデフロストを行な
うことができる。
(4) Since draining during defrosting is facilitated, cooling coils can be defrosted even during testing.

(5) 気流の流れ方向が一定であると、氷層におけ
る気流の下流側になる部分が気流の上流側にな
る部分よりも薄くなり、ために気流の上流側と
下流側では氷厚を異にする氷層が形成される
が、本装置では所定時間毎に気流の流れ方向が
逆転するので、気流の下流側程氷厚が薄くなる
氷層が生成されるようなことはなく、実効氷層
部を、氷厚にムラのない均一な厚さのものに生
成できる。
(5) If the flow direction of the airflow is constant, the part of the ice layer on the downstream side of the airflow will be thinner than the part on the upstream side of the airflow, so the ice thickness will differ between the upstream and downstream sides of the airflow. However, since this device reverses the flow direction of the airflow at predetermined intervals, an ice layer that becomes thinner toward the downstream side of the airflow does not occur, and the effective ice The ice layer can be formed to have a uniform thickness with no unevenness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る模擬氷海製造装置の一例
を示す図、第2図は結氷状態を示す縦断面図、第
3図は従来の模擬氷海実験装置を示す図、第4図
はドレンパンを設けた従来の模擬氷海実験室を示
す図である。 図中、1……断熱構造室体、2……試験室、3
……水槽、4……水、5,19……冷却コイル、
6……吊金具、7……冷媒管、8……冷凍機、1
0……ドレンパン、11a,11b……冷風口、
12a,12b……チヤンバー、13a,13b
……冷風ダクト、14a,14b……冷風供給
器、15……ケーシング、15a……冷風出口、
15b……吸入口、16……送風機、17……加
熱器、18……冷凍機、20……冷風発生器、2
1a,21b,23a,23b……ダンパ、22
……送風ダクト、22a,22b……分岐ダク
ト、24a,24b……戻りダクト、25……模
擬船、26……氷。
Figure 1 is a diagram showing an example of the simulated ice sea production apparatus according to the present invention, Figure 2 is a longitudinal cross-sectional view showing the frozen state, Figure 3 is a diagram showing the conventional simulated ice sea experiment apparatus, and Figure 4 is a diagram showing the drain pan. FIG. 2 is a diagram showing a conventional simulated ice sea laboratory. In the figure, 1...Insulation structure chamber body, 2...Test chamber, 3
...Water tank, 4...Water, 5,19...Cooling coil,
6... Hanging fittings, 7... Refrigerant pipes, 8... Freezer, 1
0...Drain pan, 11a, 11b...Cold air outlet,
12a, 12b...chamber, 13a, 13b
...Cold air duct, 14a, 14b...Cold air supply device, 15...Casing, 15a...Cold air outlet,
15b... Suction port, 16... Air blower, 17... Heater, 18... Refrigerator, 20... Cold air generator, 2
1a, 21b, 23a, 23b...damper, 22
...Blower duct, 22a, 22b... Branch duct, 24a, 24b... Return duct, 25... Simulated ship, 26... Ice.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 底部に水槽を有する試験室内に、冷風の流れが
水槽内の水の表面に沿うよう各冷風口が横向き開
口して相対峙する一対の冷風ダクトを設け、各冷
風ダクトには、試験室の外部に設けた冷風発生器
をそれぞれダンパを有するダクトを介して接続
し、各ダクト内のダンパ切換により冷風の送風方
向を可逆ならしめた模擬氷海製造装置。
A pair of cold air ducts are installed in the test chamber that has a water tank at the bottom, with each cold air outlet opening laterally and facing each other so that the flow of cold air follows the surface of the water in the tank. This is a simulated ice sea production device in which cold air generators installed in each duct are connected via ducts each having a damper, and the direction of cold air blowing is reversible by switching the dampers in each duct.
JP1985196193U 1985-12-19 1985-12-19 Expired JPH0228426Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985196193U JPH0228426Y2 (en) 1985-12-19 1985-12-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985196193U JPH0228426Y2 (en) 1985-12-19 1985-12-19

Publications (2)

Publication Number Publication Date
JPS62104137U JPS62104137U (en) 1987-07-02
JPH0228426Y2 true JPH0228426Y2 (en) 1990-07-31

Family

ID=31486825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985196193U Expired JPH0228426Y2 (en) 1985-12-19 1985-12-19

Country Status (1)

Country Link
JP (1) JPH0228426Y2 (en)

Also Published As

Publication number Publication date
JPS62104137U (en) 1987-07-02

Similar Documents

Publication Publication Date Title
CN110031387A (en) One kind can load ocean tide environment simulation system
CN101469931A (en) Air conditioner, refrigerator and water heater integrated machine
JP6725366B2 (en) Environmental test equipment
Phillips et al. A model to compare freezing control strategies for residential air to air heat recovery ventilators.
Gendebien et al. Investigation of a single room ventilation heat recovery exchanger under frosting conditions: Modeling, experimental validation and operating strategies evaluation
JPH0228426Y2 (en)
Lyu et al. Performance study of an active-passive combined anti-frosting method for fin-tube heat exchanger
KR101653519B1 (en) Separation space insulate house
CN1304117C (en) High and low temperature simulation method and object developing test device
CN206400378U (en) For the cooling device of regulator cubicle, system and wind-driven generator
US2460623A (en) Liquid cooler for air-conditioning systems
CN206572649U (en) A kind of reinforcing refrigeration outdoor unit of Split air conditioning system
CN206161503U (en) Bituminous mixture temperature circle test machine
JPH06323576A (en) Operation method of heat source system for environmental testing room
CN109496111A (en) A kind of container data center
US2265634A (en) Refrigerating plant
US2307422A (en) Cooling system for buildings
CN206600965U (en) A kind of non-frost refrigerator control system
JP6056268B2 (en) Heat exchanger refrigerant behavior evaluation device
CN206114490U (en) Novel accurate japanning ageing testing device
SU1124225A1 (en) Method for simulating ground freezing
CN109520093A (en) Assembled laboratory control method and controlled environment based on temperature and humidity adjustment
JPH0540775U (en) Artificial snow making equipment
US3570262A (en) Refrigeration arrangement
CN220969143U (en) Three comprehensive temperature and humidity test boxes