JPH0228388A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPH0228388A
JPH0228388A JP17844588A JP17844588A JPH0228388A JP H0228388 A JPH0228388 A JP H0228388A JP 17844588 A JP17844588 A JP 17844588A JP 17844588 A JP17844588 A JP 17844588A JP H0228388 A JPH0228388 A JP H0228388A
Authority
JP
Japan
Prior art keywords
layer
light guide
semiconductor laser
conductivity type
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17844588A
Other languages
Japanese (ja)
Inventor
Shoji Kitamura
祥司 北村
Yoichi Shindo
洋一 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP17844588A priority Critical patent/JPH0228388A/en
Publication of JPH0228388A publication Critical patent/JPH0228388A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a semiconductor laser element having high output with transverse mode oscillation by arranging the constitution such that it has refractive index difference between a mesa stripe part equivalent to a wave guide path and a region other than it, and further setting properly the thicknesses and composition ratios of a light guide layer and other each layer. CONSTITUTION:A light guide layer 12 is provided between an active layer 13 and the first clad layer 11, and a mesa stripe part consisting of each layer positioned above the active layer 13 is formed, and light absorbing layers 16 are provided on both sides of it, whereby it is constructed such that it has equivalent refractive index difference between the stripe part and the part other than the stripe part. Hereby, the necessity of forming a V groove vanishes, and it becomes possible to manufacture it easily using a vapor growth method, and basic transverse mode oscillation can be realized by controlling the refractive index difference in the transverse direction by the etching depth in formation of the stripe part in manufacturing process. Also, by properly setting the thickness of the light guide layer 12 and the composition ratio of each layer by this construction, high output operation can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光ガイド層を有する屈折率導波型半導体レーザ
素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an index-guided semiconductor laser device having a light guide layer.

〔従来の技術〕[Conventional technology]

発振モードの制御に有利なリブ導波路をもつ屈折率導波
型半導体レーザ素子は、高出力とするために光ガイド層
を設けることが行なわれており、その代表的な構造の一
つを第4図の模式断面図に示す。第4図においてこの半
導体レーザ素子はP −GaA s基板1上に電流阻止
層であるn−GaAs 2を設けた後、表面を工、チン
グして■溝を形成し、引き続きP −AJ)(Ga 1
−XAS第1クラッド層3゜P −AJ3 y Ga 
+ −y A s光ガイド層4.P−人Az(3a 1
−2As活性層5 * n−A−e)(Gal−xAs
第2クラッド層6およびn−GaAsキャ、1層7を順
次液相成長により積層したものである。8.9はそれぞ
れ上下の電極である。
A refractive index guided semiconductor laser device having a rib waveguide, which is advantageous for controlling the oscillation mode, is provided with an optical guide layer in order to achieve high output. This is shown in the schematic cross-sectional view of Figure 4. In FIG. 4, this semiconductor laser device is manufactured by forming an n-GaAs 2 as a current blocking layer on a P-GaAs substrate 1, etching the surface to form a groove, and then proceeding to form a P-AJ)( Ga 1
-XAS first cladding layer 3°P -AJ3 y Ga
+ -y As light guide layer 4. P-person Az (3a 1
-2As active layer 5 * n-A-e) (Gal-xAs
A second cladding layer 6, an n-GaAs layer, and a first layer 7 are sequentially laminated by liquid phase growth. 8.9 are the upper and lower electrodes, respectively.

第4図の構造をもつ半導体レーザ素子は基本モード発振
が起こる条件下に?いて、レーザ光を光ガイド層4にし
み出させることにより、活性層3中の光密度を瞬時光学
損傷(COD (CatastrophicOptic
al Damage ) )のレベル以下にして高出力
を得るものであり、そのため光力イト層4の厚さや各層
の組成などについての検討がなされており、この素子構
造では最大光出力が120mW以上のものが得られるこ
とが知られている。
Under what conditions does fundamental mode oscillation occur in a semiconductor laser device with the structure shown in Figure 4? By causing the laser light to seep into the optical guide layer 4, the optical density in the active layer 3 is reduced by instantaneous optical damage (COD).
The device structure is designed to obtain high output at a level below the level of 120 mW or higher, and the thickness of the optical power layer 4 and the composition of each layer have been studied. is known to be obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第4図のように■擲によって導波路を形成するのは液相
成長においてのみ実現可能である。それは液相成長では
ある程度厚さが増してくると狭面は平坦になり、活性層
5から上の層は平坦に形成されるからである。これに対
して気相成長法を用いた場合は、%構成層はV溝に做り
て結晶成長するから活性層5を含めて各層とも湾曲状態
となる。
4. Forming a waveguide by sanding as shown in FIG. 4 is only possible through liquid phase growth. This is because in liquid phase growth, when the thickness increases to a certain extent, the narrow surface becomes flat, and the layers above the active layer 5 are formed flat. On the other hand, when the vapor phase growth method is used, each layer including the active layer 5 is in a curved state because the crystals of the constituent layers are grown along with the V-groove.

したがって横方向に十分な光のノ田折ぶ差を得ることが
できない。
Therefore, it is not possible to obtain a sufficient difference in light transversely.

しり)しながら、素子製造に際しては薄膜の形成が容易
で大面積の素子を得るのに有利な気相成長法を用いるの
が好ましい。
However, when manufacturing the device, it is preferable to use a vapor phase growth method, which is easy to form a thin film and is advantageous in obtaining a large-area device.

本発明は上述の点に−み−〔なされたものであり、その
目的は気相成長法によつて容易に製造可能でゐり、横方
向に十分屈折率差を有し、光ガイド層をもつた構造の半
導体レーザ素子を提供することにある。
The present invention has been made in view of the above-mentioned points, and its purpose is to provide a material that can be easily manufactured by vapor phase growth, has a sufficient difference in refractive index in the lateral direction, and has a light guide layer. An object of the present invention is to provide a semiconductor laser device having a tangled structure.

〔課題夕を解決するための手段〕[Means for solving problems]

本発明の半導体レーザ素子は半導体基板の一主面上に気
相成長により積層形成される第1クラツド層、活性ノー
、第2.クラッド磨およびキャップ層のうちの活性層と
第1.第2クラッド層のいずれか一方との間にそのクラ
ッド層と同じ導電型の光ガイド層を有し、活性層より上
部に位置する各層によって形成したメサストライプ部の
レーザ光進行方向と平行な両側面にメサストライプ部と
は反対の導電型をもつ元吸収虐を備えた構造としたもの
である。
The semiconductor laser device of the present invention includes a first cladding layer, an active layer, a second cladding layer, and a second cladding layer, which are stacked on one principal surface of a semiconductor substrate by vapor phase growth. The active layer of the clad polishing and cap layer and the first. A light guide layer of the same conductivity type as the cladding layer is provided between one of the second cladding layers, and both sides of the mesa stripe part parallel to the laser beam traveling direction are formed by each layer located above the active layer. It has a structure in which the surface has an original absorption layer having a conductivity type opposite to that of the mesa stripe portion.

〔作用〕[Effect]

本発明の半導体レーザ素子は光ガイド層12を活性l−
13と第1クラツド鳩11の間(第1図)または光ガイ
ド層12aを活性層13と第2クラッド層14aとの間
(第3図)に設け、活性層13より上に位置する各層か
らなるメサストライズ部を形成し、その両肯面に光吸収
鳩16を設け、ストライスsとストライプ部以外の領域
とに等測的な屈折率差をもたせる構造としたために、第
4図のようにv蒋を形成する心安がなくなり、気相成長
法を用いて容易に製造Tることが可能となり、製造過程
におけるストライプ部形成の工、チング深さにより横方
向の屈折率差を制御し、基本横モード発振を実現するこ
とができる。またこの構造では光ガイド層の厚さや各層
の組成比を適切に定めることにより高出力動作が得られ
る。
In the semiconductor laser device of the present invention, the optical guide layer 12 is activated l-
13 and the first cladding layer 11 (FIG. 1), or between the active layer 13 and the second cladding layer 14a (FIG. 3), the light guide layer 12a is provided between the active layer 13 and the second cladding layer 14a (FIG. 3), and from each layer located above the active layer 13. The structure is such that a mesa striated portion is formed, and light absorption doves 16 are provided on both sides of the mesa striated portion to provide an isometric refractive index difference between the mesa striated portion s and the region other than the striped portion, as shown in Fig. 4. There is no need to worry about forming a thin layer, and it is now possible to easily manufacture T using the vapor phase growth method. Mode oscillation can be realized. Further, in this structure, high output operation can be obtained by appropriately determining the thickness of the optical guide layer and the composition ratio of each layer.

〔実施例〕〔Example〕

以下本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.

第1図は本発明の半導体レーザ素子の正面からみた模式
断面図である。第1図は例えばn−GaAs基板lOの
上にn −An)(Ga s−x春S第1クラッド層1
1゜A#yGa t−yAs元ガ光ガイド層 a P−
k13zOa 1−2As活性IInt i’−A−e
xGa、−xhs第2クラッド層14およびP−GaA
sキャ、プ層15を積層形成し、さらに第2クラツド膚
14とキャップ層15にメサストライプを形成して、こ
のメサストライプのレーザ光進行方向と平行な両側面を
n−GaAs光吸収層16で埋め込んだ構造としたもの
である。17 、18は電極である。
FIG. 1 is a schematic sectional view of the semiconductor laser device of the present invention seen from the front. FIG. 1 shows, for example, an n-An) (Ga s-x spring S first cladding layer 1 on an n-GaAs substrate lO.
1゜A#yGa t-yAs original Ga light guide layer a P-
k13zOa 1-2As activity IInt i'-A-e
xGa, -xhs second cladding layer 14 and P-GaA
A mesa stripe is formed on the second cladding layer 14 and the cap layer 15, and an n-GaAs light absorption layer 16 is formed on both sides of the mesa stripe parallel to the direction in which the laser beam travels. This is a structure embedded with . 17 and 18 are electrodes.

第2図(a)〜(c)はこの半導体レーザ素子の製造方
法を述べるための主な工程順を示したものであり、第1
図と共通部分を同一符号で表わしである。第1図の構造
をもつ本発明の半導体レーザ素子に対しては、有機金属
を原料とする熱分解法(MetILeOrgaric 
Chemicd Vapaor Deposition
 )としてよく知られているMOCVDを用いることが
できる。
FIGS. 2(a) to 2(c) show the order of the main steps to describe the manufacturing method of this semiconductor laser device.
Parts common to those in the figure are indicated by the same reference numerals. The semiconductor laser device of the present invention having the structure shown in FIG.
Chemical Vapor Deposition
) can be used.

MOCVDは大面積のエピタキシアル膜を形成する際の
量産性や膜厚制御などの点で液相成長法より有利である
MOCVD is more advantageous than liquid phase growth in terms of mass productivity and film thickness control when forming a large-area epitaxial film.

まず例えばキャリア濃度lX10m、厚さ150μmの
n−GaAs基板10上にキャリア濃度lXl04厚さ
1 pmのn −AJo、s* Ga (Llll A
s Pa 1クラッド層U。
First, for example, on an n-GaAs substrate 10 with a carrier concentration lX10 m and a thickness 150 μm, n-AJo, s*Ga (Lllll A
s Pa 1 cladding layer U.

キャリア濃度ixtomt厚さl pmのn −A−1
3o、gv Ga (L7S As元ガイド層12.l
ヤ1J711E[I XIO”CIL−’ tx 、厚
さ0.06PmのP −AJ (Io@ Ga Q、H
As活性層13.キャリア濃度1XIQ bx  、厚
さl pmのP −A−13ast Ga 0969 
A s第2クラッド層14N!びキャリア濃度3X10
1m、厚さ0.5pmのP−Gak@キャ、1層15を
この順に気相成長させる。続いてキャップ膚となる15
の弐面に8i02膜をo、2pm厚さに被着した後、レ
ジストを塗布してフォトリソグラフイにより3μm幅の
ストライプを形成し、ストライプ以外の部分の5i02
膜を除去し8i01膜19を残した状態が第2図(]で
ある。次に5i02膜19以外の除去部分に対して光面
から深さ1.3μm程度までキヤ、1層15と第2クラ
ッド層14の途中までメサエッチングを行ない第2クラ
ッド層14とキヤ。
Carrier concentration ixtomt thickness l pm n - A-1
3o, gv Ga (L7S As original guide layer 12.l
Ya1J711E[I
As active layer 13. P-A-13ast Ga 0969 with carrier concentration 1XIQ bx and thickness l pm
A s second cladding layer 14N! and carrier concentration 3×10
One layer 15 of P-Gak@Kya having a length of 1 m and a thickness of 0.5 pm is grown in a vapor phase in this order. Next is the cap skin 15
After depositing an 8i02 film to a thickness of 2 pm on the second side of the
The state in which the film is removed and the 8i01 film 19 remains is shown in Figure 2 (]. Next, the removed portion other than the 5i02 film 19 is coated to a depth of about 1.3 μm from the optical surface, and the first layer 15 and the second layer 15 are removed. Mesa etching is performed to the middle of the cladding layer 14 and the second cladding layer 14 is removed.

プj−15からなるメサストライプ部を形成する〔第2
図(b)〕。さらに再び気相エピタキシアル成長により
メサストライプ部より屈折率が低く、キャリア濃度1x
10 1 のn−QaAs光吸収層16をメサストライ
プ以外の表面に1.3Pmの厚さに成長させ、uZn S i02膜19を除去し、最後に  /AuのP@A
’ffl極uGe 17と  /Auのn側電極18を蒸着などにより表裏
面に被潰し、第1図と同じ構造の半導体レーザ素子を得
ることができる〔第2図(C)〕。
Form a mesa stripe section consisting of
Figure (b)]. Furthermore, due to vapor phase epitaxial growth again, the refractive index is lower than that of the mesa stripe part, and the carrier concentration is 1x.
A 10 1 n-QaAs light absorption layer 16 is grown to a thickness of 1.3 Pm on the surface other than the mesa stripe, the uZnSi02 film 19 is removed, and finally the /Au P@A
By covering the front and back surfaces of the uGe 17 and /Au n-side electrodes 18 by vapor deposition or the like, a semiconductor laser device having the same structure as that shown in FIG. 1 can be obtained [FIG. 2(C)].

かくして得られた本発明の半導体レーザ素子は発振波長
830 nmにおいてしきい値電流30〜40 mAで
室温連d発振し、基本横モード発振の最大光出力は15
0mWを示した。
The thus obtained semiconductor laser device of the present invention oscillates continuously at room temperature with a threshold current of 30 to 40 mA at an oscillation wavelength of 830 nm, and has a maximum optical output of 15 in fundamental transverse mode oscillation.
It showed 0 mW.

また本発明の素子構造では元ガイド層12は活性層13
とKlクラッド層11.第2クラッド層14のいずれか
一方のクラッド層との間に設ければよいから、第3図の
ように構成することができる。第3図は第1図と同様の
模式断面図であり、共通部分を同一符号で表わしである
が、第1図と異なる点は第1図とは逆導電型の光ガイド
層12aを活性層13と第2クラッド層14aとの間す
なわち活性層13の上に配置し、メサストライプ部は光
ガイド層12a。
Further, in the device structure of the present invention, the original guide layer 12 is the active layer 13.
and Kl cladding layer 11. Since it is sufficient to provide it between the second cladding layer 14 and either one of the cladding layers, the structure as shown in FIG. 3 can be achieved. FIG. 3 is a schematic cross-sectional view similar to FIG. 1, and common parts are denoted by the same reference numerals. However, the difference from FIG. 13 and the second cladding layer 14a, that is, on the active layer 13, and the mesa stripe portion is the optical guide layer 12a.

第2クラッド層14a、キャップ膚15により形成して
いることである。
It is formed by the second cladding layer 14a and the cap skin 15.

第3図の素子構造についても製造方法は第1図の場合と
基本的に同じであり、はじめ基板10上に各層を第3図
の順に気相成長させ、第2図ら)ζこ相当する過程で光
ガイド層12aの途中までメサエ。
The manufacturing method for the device structure shown in FIG. 3 is basically the same as that shown in FIG. 1. First, each layer is grown on the substrate 10 in the order shown in FIG. Mesae to the middle of the light guide layer 12a.

チングを行なってメサストライプ部を形成した後、光吸
収層16を埋め込んだものである。この構造のものは第
1図に示したような光ガイド層12を活性層13の下に
設けた構造のものと同様の特性を有するが、光吸収層1
6側に光がしみ出し、水平高次モード発振に損失を与え
、高次モードの発生を抑制するという効果は太き(なる
After forming a mesa stripe portion by etching, a light absorption layer 16 is embedded. This structure has the same characteristics as the structure in which the light guide layer 12 is provided below the active layer 13 as shown in FIG.
The light seeps into the 6 side, causing loss to the horizontal higher-order mode oscillation, and the effect of suppressing the generation of higher-order modes is significant.

〔発明の効果〕〔Effect of the invention〕

光ガイド層とリプ導波路をもつ屈折ぶ導波減半導体レー
ザ素子は従来VJを形成する液相成長法により製造され
ていたが、薄膜の厚さ制御が容易で大面積の素子を得る
のに有利な気相成長法の適用を可能とするV溝のない構
造として本発明では実施例で述べたように、光ガイド層
を活性層の上下いずれかぜと配し、活性層より上部に位
置する各層からなるメサストライプ部を形成し、その両
側面にメサストライプ部とは逆の導電型をもつ光吸収層
を設けて、導波路に相当するメサストライプ部とこれ以
外の領域とに屈折率差を持たせる構造とし、さらに光ガ
イド層およびその他の各層の厚さ、組成比を適切に定め
たことにより、基本横モード発振で高出力を有する半導
体レーザ素子を得ることができた。
A refractive waveguide-decreasing semiconductor laser device having an optical guide layer and a lip waveguide has conventionally been manufactured by a liquid phase growth method that forms a VJ, but it is easy to control the thickness of the thin film and to obtain a large-area device. As described in the embodiment, in the present invention, as a structure without a V-groove that enables the application of the advantageous vapor phase growth method, a light guide layer is disposed either above or below the active layer, and is located above the active layer. A mesa stripe section consisting of each layer is formed, and a light absorption layer with a conductivity type opposite to that of the mesa stripe section is provided on both sides of the mesa stripe section, so that there is a difference in refractive index between the mesa stripe section corresponding to the waveguide and the other regions. By creating a structure in which the optical guide layer and the other layers have a structure having the following properties and by appropriately determining the thickness and composition ratio of the optical guide layer and other layers, it was possible to obtain a semiconductor laser device having high output power in fundamental transverse mode oscillation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体レーザ素子の模式断面図、第2
図はその主な製造工程図、第3図は第1図とは光ガイド
層の配置が異なる本発明の半導体レーザ素子の模式断面
図、第4図は光ガイド層を有する従来の屈折率導波型半
導体レーザ素子の模式断面図である。 1、lO・・・基板、3.11・・・第1クラッド膚、
4.12゜12a・・・光ガイド層、5.13・・・活
性層、6.14.14a・・・第2クラッド層、7.1
5・・・キャップ層、8.9.17゜18・・・電極、
16・・・光吸収層、19・・・8i02膜。 番 Z 図
FIG. 1 is a schematic cross-sectional view of the semiconductor laser device of the present invention, and FIG.
Figure 3 is a schematic cross-sectional view of the semiconductor laser device of the present invention in which the arrangement of the light guide layer is different from that in Figure 1, and Figure 4 is a diagram of the conventional refractive index guide having a light guide layer. FIG. 2 is a schematic cross-sectional view of a wave-type semiconductor laser device. 1. IO...substrate, 3.11... first clad skin,
4.12゜12a... Light guide layer, 5.13... Active layer, 6.14.14a... Second cladding layer, 7.1
5... Cap layer, 8.9.17°18... Electrode,
16...Light absorption layer, 19...8i02 film. Number Z diagram

Claims (1)

【特許請求の範囲】[Claims] 1)一導電型半導体基板の一主面上に気相成長法により
積層形成される一導電型第1クラッド層、逆導電型活性
層、逆導電型第2クラッド層および一導電型キャップ層
のうちの前記活性層と前記第1、第2クラッド層のいず
れか一方との間にそのクラッド層と同じ導電型の光ガイ
ド層を有し、前記活性層より上部に位置する各層によっ
て形成したメサストライプ部のレーザ光進行方向と平行
な両側面に、メサストライプ部とは反対の導電型をもつ
光吸収層を備えたことを特徴とする半導体レーザ素子。
1) A first cladding layer of one conductivity type, an active layer of opposite conductivity type, a second cladding layer of opposite conductivity type, and a cap layer of one conductivity type, which are laminated on one main surface of a semiconductor substrate of one conductivity type by a vapor phase growth method. A mesa having a light guide layer of the same conductivity type as the cladding layer between the active layer and either the first or second cladding layer, and formed by each layer located above the active layer. A semiconductor laser device characterized in that a light absorption layer having a conductivity type opposite to that of the mesa stripe portion is provided on both side surfaces of the stripe portion parallel to the direction in which the laser light travels.
JP17844588A 1988-07-18 1988-07-18 Semiconductor laser element Pending JPH0228388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17844588A JPH0228388A (en) 1988-07-18 1988-07-18 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17844588A JPH0228388A (en) 1988-07-18 1988-07-18 Semiconductor laser element

Publications (1)

Publication Number Publication Date
JPH0228388A true JPH0228388A (en) 1990-01-30

Family

ID=16048648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17844588A Pending JPH0228388A (en) 1988-07-18 1988-07-18 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPH0228388A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010095575A (en) * 2000-04-11 2001-11-07 김징완 Apparatus for automatic correction and measuring set state of automatic welder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010095575A (en) * 2000-04-11 2001-11-07 김징완 Apparatus for automatic correction and measuring set state of automatic welder

Similar Documents

Publication Publication Date Title
US4835788A (en) Distributed feedback semiconductor laser
JPH0228388A (en) Semiconductor laser element
JPS61102086A (en) Semiconductor laser
JPS641952B2 (en)
JPS5911690A (en) Semiconductor laser device
JPH0228389A (en) Semiconductor laser element
JPS5834988A (en) Manufacture of semiconductor laser
JPS6342871B2 (en)
JPS6318874B2 (en)
JPS61220392A (en) Semiconductor light-emitting element
JPS5864085A (en) Semiconductor laser and manufacture thereof
JPS6297384A (en) Semiconductor laser device
JPS61244082A (en) Semiconductor laser device
JPS6142188A (en) Semiconductor laser device
JPS5967680A (en) Photo bi-stable element
JPS62165389A (en) Semiconductor laser
JPS5871681A (en) Semiconductor laser element
JPS61112391A (en) Semiconductor laser device
JPS5858783A (en) Semiconductor laser
JPS5913386A (en) Two dimentionally emitting semiconductor laser
JPS6196790A (en) Semiconductor laser
JPH02192786A (en) Semiconductor light-emitting device
JPS6117157B2 (en)
JPS6120388A (en) Semiconductor laser
JPS6355231B2 (en)