JPH02283651A - Concrete reinforcing material - Google Patents

Concrete reinforcing material

Info

Publication number
JPH02283651A
JPH02283651A JP10235089A JP10235089A JPH02283651A JP H02283651 A JPH02283651 A JP H02283651A JP 10235089 A JP10235089 A JP 10235089A JP 10235089 A JP10235089 A JP 10235089A JP H02283651 A JPH02283651 A JP H02283651A
Authority
JP
Japan
Prior art keywords
reinforcing
mesh
fiber
fibers
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10235089A
Other languages
Japanese (ja)
Inventor
Hiroyuki Odawara
小田原 弘之
Shinichiro Okada
慎一郎 岡田
Kazumi Ogawa
小川 和見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP10235089A priority Critical patent/JPH02283651A/en
Publication of JPH02283651A publication Critical patent/JPH02283651A/en
Pending legal-status Critical Current

Links

Landscapes

  • Knitting Of Fabric (AREA)

Abstract

PURPOSE:To obtain an inexpensive reinforcing material having excellent adhesion to concrete structure, executing properties and light-weight properties and capable of expressing reinforcing properties at a small amount by knitting a reinforcing fiber into mesh-like imitation gauze and integral bonding the structure to a resin. CONSTITUTION:The concrete reinforcing material in which a reinforcing fiber is knitted into mesh-like imitation gauze and integrated with a resin. A fiber constituting the reinforcing fiber has preferably about 5-30mu fiber size. Especially carbon fiber is preferably used as the reinforcing fiber. In the imitation gauze, warp 1 and weft 2 are alternately crossed in a form difficult to slip and have characteristics in which crimp of the fiber is small. Furthermore, although mesh intervals L of mesh like imitation gauze can be properly set according to reinforcing characteristics, mesh intervals L are preferably >=2mm, especially 8-20mm. When mesh intervals L are <2mm, amount of cement mortar filled between mesh is reduced and insufficient for reinforcing properties.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はコンクリート構造物に好適に使用されるコンク
リート補強材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a concrete reinforcing material suitably used for concrete structures.

[従来の技術と発明が解決しようとする課題]従来、壁
材、床材等(こ使用されるコンクリート構造物用補強材
として、鉄筋や金網等が知られている。しかしながら、
鉄筋等を使用すると、鯖が生じ耐久性が十分でないばか
りか、施工性も十分でなく、軽量化することが困難であ
る。
[Prior art and problems to be solved by the invention] Conventionally, wall materials, floor materials, etc. (Reinforcing bars, wire mesh, etc. are known as reinforcing materials for concrete structures used for this purpose. However,
If reinforcing steel or the like is used, not only will it cause cracking and will not have sufficient durability, but it will also not have sufficient workability, and it will be difficult to reduce the weight.

一方、コンクリート構造物の補強材として、例えば、■
炭素繊維強化プラスチック材料からなるの線状体、棒状
体や板状体(特開昭59−1.50848号公報)が提
案されている。しかしながら、この補強材では樹脂とセ
メントとの接着性が十分でなく、しかも線状等の形状で
あるため、引抜は易く、補強性が十分でない。また補強
材が線状、体等であるため、セメントモルタルの所定部
への施工性が十分でない。さらには強度を確保するには
高価な炭素繊維を多量に使用する必要があるので、経済
的でない。
On the other hand, as a reinforcing material for concrete structures, for example, ■
Linear bodies, rod-shaped bodies, and plate-shaped bodies (Japanese Unexamined Patent Publication No. 59-1.50848) made of carbon fiber-reinforced plastic materials have been proposed. However, this reinforcing material does not have sufficient adhesion between the resin and cement, and since it has a linear shape, it is easy to pull out and does not have sufficient reinforcing properties. Furthermore, since the reinforcing material is linear, solid, etc., the ease of applying cement mortar to a predetermined portion is not sufficient. Furthermore, it is not economical because it is necessary to use a large amount of expensive carbon fiber to ensure strength.

また■ガラス繊維、炭素繊維等の繊維束を格子状とし、
樹脂材料で結束し、かつ繊維束の交差部を一方向に延在
する繊維群と他方向に延在する繊維群とを3層以上に積
層した断面形状を有するコンクリート補強部材(特開昭
82−153449号公報)が提案されている。この補
強部材では、交差部で繊維群を積層しているため、段差
がなくコンクリートの厚さを均一にできる。また繊維と
樹脂材料とからなるため、軽量で一体性がよい等の利点
を有している。しかしながら、交差部を積層構造とする
必要があるため、製造時の作業性が十分でなく、コスト
高となる。しかも交差部の繊維がずれ易い積層形態であ
るため、交差部の接着強度が十分でなく、繊維本来の強
度を発現させるのが困難である。
In addition, fiber bundles such as glass fiber and carbon fiber are made into a lattice,
Concrete reinforcing member bound with a resin material and having a cross-sectional shape in which fiber groups extending in one direction and fiber groups extending in the other direction are laminated in three or more layers at intersections of fiber bundles (JP-A-82 -153449) has been proposed. In this reinforcing member, the fiber groups are laminated at the intersections, so there are no steps and the thickness of the concrete can be made uniform. Furthermore, since it is made of fiber and resin material, it has the advantage of being lightweight and having good integrity. However, since the intersections need to have a laminated structure, the workability during manufacturing is not sufficient and the cost is high. Furthermore, since the laminated form is such that the fibers at the intersections are easily displaced, the adhesive strength at the intersections is insufficient and it is difficult to bring out the original strength of the fibers.

また■補強用繊維で絡み織りの網状体とし、該網状体を
合成樹脂及び反応性共重合体ラテックスで被覆処理した
セメントモルタル成形体(特開昭83−111045号
公報参照)も提案されている。この補強材は、網状体が
絡み織り組織を有しているため、施工現場での作業性に
優れている。しかしながら、第2図に示されるように、
縦糸繊維(11)が横糸繊維(12)に絡んだ組織であ
るため、縦糸繊維(11)が横糸繊維(12)の軸方向
に移動し易く、交点での接着強度が十分でない。しかも
、繊維がクリンプ、すなわち波うったり、皺が寄ったり
、歪んだりし晶いので、応力伝達性が十分でなく、繊維
本来の強度を有効に利用できず、補強効果が十分でない
。またセメントモルタルとの接着性を高めるには、網状
体を樹脂と特定の反応性ラテックスとで順次被覆処理す
る必要があるので、コスト高となる。
In addition, a cement mortar molded article (see Japanese Patent Application Laid-open No. 83-111045) has also been proposed, in which a mesh-like body is made of reinforcing fibers and the network body is coated with a synthetic resin and a reactive copolymer latex. . This reinforcing material has excellent workability at the construction site because the net-like body has a woven structure. However, as shown in Figure 2,
Since the warp fibers (11) are entangled with the weft fibers (12), the warp fibers (11) tend to move in the axial direction of the weft fibers (12), and the adhesive strength at the intersection is insufficient. Moreover, since the fibers are crimped, that is, wavy, wrinkled, or distorted, they do not have sufficient stress transmission properties, cannot effectively utilize the inherent strength of the fibers, and do not have a sufficient reinforcing effect. Furthermore, in order to improve the adhesion to cement mortar, it is necessary to sequentially coat the network with a resin and a specific reactive latex, which increases costs.

本発明の目的は、コンクリート構造物に対する付着力、
施工性及び軽量性に優れると共に繊維本来の強度を有効
に発現でき、少量にて優れた補強性を発現する安価なコ
ンクリート補強材を提供することにある。
The purpose of the present invention is to improve adhesion to concrete structures,
The object of the present invention is to provide an inexpensive concrete reinforcing material that is excellent in workability and lightness, can effectively express the strength inherent in fibers, and exhibits excellent reinforcing properties even in a small amount.

[発明の構成] 本発明は、補強繊維がメツシュ状の模紗織り組織に編成
され、かつ樹脂で一体化しているコンクリート補強材に
より、上記課題を解決するものである。
[Structure of the Invention] The present invention solves the above problems with a concrete reinforcing material in which reinforcing fibers are knitted into a mesh-like patterned structure and are integrated with resin.

補強繊維を構成する繊維としては、例えば、ポリアクリ
ロニトリル、フェノール樹脂、レーヨン等の高分子繊維
、石油又は石炭系ピッチ等を素材とする炭素繊維;耐ア
ルカリガラス繊維;芳香族ポリアミド繊維;高強度ビニ
ロン繊維;ポリエーテルスルホン繊維等が例示される。
Examples of fibers constituting the reinforcing fibers include polymer fibers such as polyacrylonitrile, phenol resin, and rayon; carbon fibers made from petroleum or coal-based pitch; alkali-resistant glass fibers; aromatic polyamide fibers; and high-strength vinylon. Fibers; examples include polyether sulfone fibers.

上記補強繊維は少なくとも一種使用され、該繊維は、繊
維径5〜30μ−等適宜の繊維径を有するものが好まし
い。
At least one type of reinforcing fiber is used, and the fiber preferably has an appropriate fiber diameter, such as a fiber diameter of 5 to 30 μm.

これらの補強繊維のうち炭素繊維が好ましい。なお、炭
素繊維とは炭化又は黒鉛化された繊維を言い、1500
℃程度以上の高温で焼成したものは結晶構造が黒鉛化し
ていないときでも黒鉛化の概念に含める。補強繊維とし
て炭素繊維を用いると、電磁波に対するシールド性を付
与できる。
Among these reinforcing fibers, carbon fibers are preferred. Note that carbon fiber refers to carbonized or graphitized fiber, and has a
Items fired at high temperatures of approximately ℃ or higher are included in the concept of graphitization even if the crystal structure is not graphitized. When carbon fiber is used as the reinforcing fiber, shielding properties against electromagnetic waves can be provided.

補強繊維は、構造物に対する補強効果を高めるため、引
張弾性率5X103hf/−以上の繊維が好ましい。
The reinforcing fibers preferably have a tensile modulus of 5×10 3 hf/- or more in order to enhance the reinforcing effect on the structure.

なお、補強繊維は通常500〜300(10本程度のフ
ィラメントで構成されている。補強繊維は通常0゜1〜
10M1好ましくは0.5〜5M程度である。
The reinforcing fibers are usually composed of 500 to 300 filaments (approximately 10 filaments).
10M1, preferably about 0.5 to 5M.

上記補強繊維束は、メツシュ状の模紗織り組織に編成さ
れている。この模紗織り組織は、第1図に示されるよう
に、縦糸繊維(1)と横糸繊維■とがずれにくい形態で
交互に交差しており、繊維のクリンプが小さいという特
徴を有する。なお、上記°メツシュ状模紗織り組織のメ
ツシュ間隔りは補強性能に応じて適宜設定できるが、メ
ツシュ間隔L= 2 mm以上、特にL−8〜20m+
n程度が好ましい。
The reinforcing fiber bundle is knitted into a mesh-like patterned texture. As shown in FIG. 1, this patterned weave structure is characterized in that warp fibers (1) and weft fibers (2) alternately intersect with each other in a manner that prevents them from slipping, and the crimp of the fibers is small. Note that the mesh spacing of the above-mentioned mesh-like gauze structure can be set appropriately depending on the reinforcing performance, but the mesh spacing L = 2 mm or more, especially L-8 to 20 m+
About n is preferable.

メツシュ間隔りが2m未満であるとメツシュ間に充填さ
れるセメントモルタルの量が少なく補強性が十分でない
。なお、用いる補強繊維の太さ、強度や、メツシュ間隔
等を調整することにより、補強性を制御することができ
る。また上記メツシュ状補強材では、縦糸繊維(1)と
横糸繊維(2)との間にセメントモルタルマトリックス
を充填できるので、コンクリートと補強材との接着′力
が大幅に向上する。模紗織り組織の縦糸繊維(1)及び
横糸繊維(2)は規則的に編成されていてもよく、不規
則に編成されていてもよい。また縦糸繊維と横糸繊維の
本数は、特に限定されず、補強性等に応じて適宜設定で
きる。
If the mesh spacing is less than 2 m, the amount of cement mortar filled between the meshes will be small and the reinforcing properties will not be sufficient. Note that the reinforcing properties can be controlled by adjusting the thickness, strength, mesh spacing, etc. of the reinforcing fibers used. Furthermore, in the mesh-like reinforcing material, since the cement mortar matrix can be filled between the warp fibers (1) and the weft fibers (2), the adhesive force between the concrete and the reinforcing material is greatly improved. The warp fibers (1) and weft fibers (2) of the patterned texture may be regularly knitted or irregularly knitted. Further, the numbers of warp fibers and weft fibers are not particularly limited, and can be appropriately set depending on reinforcing properties and the like.

上記縦糸繊維(1)と横糸繊維(2)とは異種の繊維で
構成されていてもよい。その際、縦糸繊維(1)、横糸
繊維(2の一方に炭素繊維を用い、他方に安価な繊維を
用いてもよい。またメツシュ状摸紗織り組織の目ずれを
防止するため、例えば、ナイロン繊維、ポリエステル繊
維等で目止めしてもよい。
The warp fibers (1) and weft fibers (2) may be composed of different types of fibers. In this case, carbon fiber may be used for one of the warp fibers (1) and the weft fibers (2), and an inexpensive fiber may be used for the other.Also, in order to prevent the misalignment of the mesh-like gauze structure, for example, nylon It may be sealed with fiber, polyester fiber, etc.

そして、上記模紗織り組織の編成物は、熱硬化性樹脂ま
たは熱可塑性樹脂で一体化している。上記樹脂としては
、エポキシ樹脂、フェノール樹脂、ビニルエステル樹脂
、ジアリルフタレート樹脂、不飽和ポリエステル樹脂、
熱硬化性アクリル樹脂、ポリウレタン樹脂、ポリイミド
等の熱硬化性樹脂;ポリアセタール、ポリスルホン、ポ
リエーテルスルホン、ポリフェニレンスルフィド、ポリ
フェニレンオキサイド、ボリアリレート、芳香族ポリア
ミドなどの熱可塑性樹脂が例示される。上記樹脂は一種
または二種以上使用される。これらの樹脂のうち熱硬化
性樹脂、特にセメントのアルカリ成分による特性の劣化
が小さなエポキシ樹脂、フェノール樹脂等が好ましい。
The knitted fabric having the above-mentioned patterned weave structure is integrated with a thermosetting resin or a thermoplastic resin. The above resins include epoxy resin, phenol resin, vinyl ester resin, diallyl phthalate resin, unsaturated polyester resin,
Examples include thermosetting resins such as thermosetting acrylic resins, polyurethane resins, and polyimides; thermoplastic resins such as polyacetal, polysulfone, polyethersulfone, polyphenylene sulfide, polyphenylene oxide, polyarylate, and aromatic polyamide. One or more of the above resins may be used. Among these resins, thermosetting resins, particularly epoxy resins, phenol resins, and the like whose properties are less likely to be degraded by the alkaline components of cement, are preferred.

なお、熱硬化性樹脂を使用する場合、樹脂の種類に応じ
た硬化剤が使用される。熱硬化性樹脂の硬化は、通常、
室温〜200℃程度の温度で行なうことができる。
Note that when using a thermosetting resin, a curing agent is used depending on the type of resin. Curing of thermosetting resins is usually done by
It can be carried out at a temperature of about room temperature to 200°C.

前記繊維に対する樹脂の含浸量は、体積含有率30〜8
0%程度が好ましい。含浸率が30%未満であると、繊
維の一体性及び補強効果が低下し、80%を越えると、
複合化が難しく、また十分な交差点強度を得ることがで
きず、補強効果が低下する。
The amount of resin impregnated into the fibers is a volume content of 30 to 8.
Approximately 0% is preferable. If the impregnation rate is less than 30%, the integrity and reinforcing effect of the fiber will decrease, and if it exceeds 80%,
It is difficult to combine, and it is not possible to obtain sufficient intersection strength, reducing the reinforcing effect.

なお、上記樹脂の含浸は、慣用の方法、例えば樹脂溶液
中に編成物を浸漬したり、樹脂溶液を塗布する方法等で
行なうことができ、樹脂を乾燥させ、硬化させることに
より一体化した補強材が得られる。なお、上記硬化は、
熱硬化性樹脂の架橋硬化に限らず、熱可塑性樹脂の固化
をも含む意味に用いる。補強材はメツシュ状に模紗織す
した後、編成物を樹脂で一体化したり、予め繊維に樹脂
を含浸させた後、メツシュ状に模紗織すしてもよい。
The impregnation with the above resin can be carried out by a conventional method, for example, by dipping the knitted article in a resin solution or by applying a resin solution, and by drying and curing the resin, an integrated reinforcement can be obtained. wood is obtained. In addition, the above curing is
The term is used to include not only the crosslinking and curing of thermosetting resins, but also the solidification of thermoplastic resins. The reinforcing material may be woven into a mesh shape and then integrated with a resin, or the fibers may be impregnated with a resin in advance and then woven into a mesh shape.

本発明の補強材は、メツシュ状の模紗織り組織の編成物
が樹脂で一体化しているため、軽量であり、セメントモ
ルタルとの付着性に優れている。
The reinforcing material of the present invention is lightweight and has excellent adhesion to cement mortar because the mesh-like patterned fabric is integrated with resin.

またいずれの方向の応力に対しても変形が少なく、応力
伝達性及び施工性に優れている。またクリンプの小さな
模紗織り組織であるため、補強繊維自体の強度を効率的
に発現させることができる。特に従来の絡み織り組織の
補強材と比較して繊維の交点部の接着強度に著しく優れ
ている。従って、少量にて補強性を向上でき、補強性に
優れている。
In addition, there is little deformation due to stress in any direction, and it has excellent stress transferability and workability. Moreover, since it is a patterned weave structure with small crimps, the strength of the reinforcing fibers themselves can be efficiently expressed. In particular, it has significantly superior adhesive strength at the intersections of fibers compared to conventional reinforcing materials with a woven structure. Therefore, reinforcing properties can be improved even with a small amount, and the reinforcing properties are excellent.

なお、補強材は、コンクリートとの親和性を高めるため
、シランカップリング剤、チタンカップリング剤等で表
面処理してもよく、さらには、その表面に砂を付着した
り研磨したりすることにより凹凸部を形成してもよい。
In addition, in order to increase the compatibility with concrete, the surface of the reinforcing material may be treated with a silane coupling agent, a titanium coupling agent, etc. Furthermore, the surface of the reinforcing material may be treated with sand or polished. An uneven portion may be formed.

本発明の補強材は、例えばポルトランドセメント、早強
ポルトランドセメント、アルミナセメント、急硬高強度
セメント、焼きセラコラ等の自硬性セメント;石灰スラ
グセメント、高炉セメント等の水硬性セメント;混合セ
メント等のセメントに適用することができる。また上記
セメントは骨材、凝結遅延剤、効果促進剤、減水剤、凝
固剤、増粘剤、発泡剤、防水剤等を含有していてもよい
The reinforcing material of the present invention includes, for example, self-hardening cements such as Portland cement, early-strength Portland cement, alumina cement, rapidly hardening high-strength cement, and calcined ceracola; hydraulic cements such as lime slag cement and blast furnace cement; and cements such as mixed cements. It can be applied to The cement may also contain aggregates, setting retarders, effect accelerators, water reducing agents, coagulants, thickeners, foaming agents, waterproofing agents, and the like.

なお、補強材のコンクリートへの埋設は、従来慣用の方
法で行なうことができる。
Incidentally, the reinforcing material can be buried in concrete by a conventional method.

[発明の効果] 以上のように、本発明のコンクリート補強材によれば、
補強繊維がメツシュ状の模紗織り組織に編成され、かつ
樹脂で一体化しているので、安価で、コンクリート構造
物に対する付着力、施工性及び軽量性に優れると共に繊
維本来の強度を有効に発現でき、少量にて著しく大きな
補強性を示す。
[Effect of the invention] As described above, according to the concrete reinforcing material of the present invention,
Since the reinforcing fibers are organized into a mesh-like patterned structure and integrated with resin, it is inexpensive, has excellent adhesion to concrete structures, is easy to construct, and is lightweight, and can effectively express the original strength of the fibers. , shows remarkable reinforcing properties even in small amounts.

[実施例] 以下に、実施例に基づいて本発明をより詳細に説明する
[Examples] The present invention will be described in more detail below based on Examples.

実施例1 メソフェースピッチを溶融紡糸し、不融化した後、窒素
ガス雰囲気中、温度1200℃で焼成した後、表面処理
とサイジング剤付与処理とを行ない、フィラメント数2
000本からなるピッチ系炭素繊維を得た。この炭素繊
維は引張強度200kIjf/nd、引張弾性率18 
X 103k11f / mJであった。
Example 1 Mesoface pitch was melt-spun, made infusible, fired at a temperature of 1200°C in a nitrogen gas atmosphere, and then subjected to surface treatment and sizing agent application treatment, resulting in a filament number of 2.
000 pitch-based carbon fibers were obtained. This carbon fiber has a tensile strength of 200kIjf/nd and a tensile modulus of 18
X 103k11f/mJ.

得られた炭素繊維を用い、メツシュ間隔1.6 mmの
メツシュ状に模紗織りして目付100 g / m2の
編成物を得た。またビスフェノールA型エポキシ樹脂(
油化シェル社製、商品名エピコート1001)と硬化剤
としてのジシアンジアミド(日本カーバイド社製)とを
メタノール/メチルエチルケトン混合溶媒に溶解し、約
50重量%の樹脂溶液を調製し、この樹脂溶液に前記模
紗織り組織の編成物を浸漬し、乾燥した後、温度1 ’
80 ’Cで2時間硬化させてメツシュ状の複合材であ
る補強材を得た。なお、補強材の繊維体積含有率は約4
0体積%であった。
The obtained carbon fibers were woven in a mesh pattern with a mesh spacing of 1.6 mm to obtain a knitted fabric with a basis weight of 100 g/m2. Also, bisphenol A type epoxy resin (
(manufactured by Yuka Shell Co., Ltd., trade name Epicote 1001) and dicyandiamide (manufactured by Nippon Carbide Co., Ltd.) as a curing agent are dissolved in a methanol/methyl ethyl ketone mixed solvent to prepare an approximately 50% by weight resin solution. After soaking and drying the knitted fabric of Mosaori tissue, the temperature is 1'.
The reinforcing material was cured at 80'C for 2 hours to obtain a mesh-like composite reinforcing material. The fiber volume content of the reinforcing material is approximately 4
It was 0% by volume.

早強ポルトランドセメントと細骨材との゛重量割合が早
強ポルトランドセメント/細骨材−1l2重量比、早強
ポルトランドセメントと水との重量割合が早強ポルトラ
ンドセメント/水−110゜65からなるセメントマト
リックス中に、上記メツシュ状補強材を充填し、水中養
生後、材冷7日間でセメント複合材を得た。なお、炭素
繊維の体積含有率は0.2%であった。また試験片の寸
法は40 am X 10 C1l X 3 onであ
り、メツシュ状補強材をi p+))かぶり5Mの位置
に配置した。
The weight ratio of early-strength Portland cement to fine aggregate is early-strength Portland cement/fine aggregate-1l2, and the weight ratio of early-strength Portland cement to water is early-strength Portland cement/water-110°65. The above-mentioned mesh-like reinforcing material was filled into a cement matrix, and after curing in water, a cement composite material was obtained by cooling the material for 7 days. Note that the volume content of carbon fiber was 0.2%. Further, the dimensions of the test piece were 40 am x 10 C1l x 3 on, and the mesh-like reinforcement material was placed at a position of i p+)) cover 5M.

実施例2 メツシュ状補強材2 plyを充填する以外、実施例1
と同様にしてセメント複合材を作製した。なお、炭素繊
維の体積含有率は0.4%であった。
Example 2 Mesh-like reinforcement material 2 Example 1 except for filling with ply
A cement composite material was prepared in the same manner. Note that the volume content of carbon fiber was 0.4%.

比較例1 メツシュ状補強材を充填することなく、実施例1と同様
にしてセメント材を作製した。
Comparative Example 1 A cement material was produced in the same manner as in Example 1 without being filled with mesh-like reinforcing material.

比較例2 実施例1で用いた炭素繊維を第2図に示されるように絡
み織りし、メツシュ間隔16鴫のメツシュ状編成物を作
製した。次いで、実施例1と同様にして樹脂を含浸させ
、メツシュ状補強材を得た後、該補強材をセメント中に
1 ply充填し、セメント複合材を得た。なお、炭素
繊維の体積含有率は0.2%であった。
Comparative Example 2 The carbon fibers used in Example 1 were interwoven as shown in FIG. 2 to produce a mesh-like knitted fabric with a mesh spacing of 16 squares. Next, resin was impregnated in the same manner as in Example 1 to obtain a mesh-like reinforcing material, and 1 ply of the reinforcing material was filled in cement to obtain a cement composite material. Note that the volume content of carbon fiber was 0.2%.

そして、各実施例及び比較例で得られた試験片を、スパ
ン間距離303、上支点10C11の3等分荷重による
4点曲げ試験に供した。また各実施例及び比較例2で得
られたメツシュ状補強材の交点部の接着強度を引張試験
法で測定した。結果を表に示す。
Then, the test pieces obtained in each example and comparative example were subjected to a four-point bending test with a span distance of 303 and a load divided into three equal parts at the upper support point 10C11. Furthermore, the adhesive strength at the intersection of the mesh-like reinforcing materials obtained in each Example and Comparative Example 2 was measured by a tensile test method. The results are shown in the table.

(以下、余白) 表より明らかなように、実施例で用いたメツシュ状補強
材は比較例2のものに比べて曲げ強度、たわみ性及び交
点接着強度が著しく大きく、少量にて補強性を高めるこ
とができた。
(Hereinafter, blank space) As is clear from the table, the mesh-like reinforcing material used in Examples has significantly greater bending strength, flexibility, and intersection adhesive strength than those in Comparative Example 2, and even a small amount can improve reinforcing properties. I was able to do that.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の模紗織り組織の一例を示す組織図、 第2図は従来の補強材の絡み゛織り組織を示す組織図で
ある。
FIG. 1 is an organization chart showing an example of the patterned weave structure of the present invention, and FIG. 2 is an organization chart showing an entwined weave structure of a conventional reinforcing material.

Claims (1)

【特許請求の範囲】 1、補強繊維がメッシュ状の模紗織り組織に編成され、
かつ樹脂で一体化していることを特徴とするコンクリー
ト補強材。 2、補強繊維が炭素繊維である請求項1記載のコンクリ
ート補強材。
[Claims] 1. The reinforcing fibers are organized into a mesh-like patterned structure,
A concrete reinforcing material characterized by being integrated with resin. 2. The concrete reinforcing material according to claim 1, wherein the reinforcing fibers are carbon fibers.
JP10235089A 1989-04-21 1989-04-21 Concrete reinforcing material Pending JPH02283651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10235089A JPH02283651A (en) 1989-04-21 1989-04-21 Concrete reinforcing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10235089A JPH02283651A (en) 1989-04-21 1989-04-21 Concrete reinforcing material

Publications (1)

Publication Number Publication Date
JPH02283651A true JPH02283651A (en) 1990-11-21

Family

ID=14325032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10235089A Pending JPH02283651A (en) 1989-04-21 1989-04-21 Concrete reinforcing material

Country Status (1)

Country Link
JP (1) JPH02283651A (en)

Similar Documents

Publication Publication Date Title
JP3286270B2 (en) Reinforcement mesh fabric and method of material reinforcement
EP0206591B1 (en) Reinforcing structural material and reinforced structure reinforced therewith
CA2127266C (en) Fiber-reinforced plastic bar and production method thereof
JPH10168699A (en) Composite fiber material and its production
JPH02283651A (en) Concrete reinforcing material
Halvaei Fibers and textiles reinforced cementitious composites
US4546032A (en) Fiber reinforced carbon/carbon composite structure with tailored directional shear strength properties
JPH11165311A (en) Fiber reinforced concrete material and its manufacture
JPH084284Y2 (en) Concrete structure
JPS63197751A (en) Carbon fiber reinforced inorganic board
JPH02216270A (en) Structural material and production thereof
JP2787368B2 (en) Method for producing reticular molded body reinforced inorganic molded body
JP2829762B2 (en) Manufacturing method of reticulated molded body
JPH0520537B2 (en)
JPH0415190B2 (en)
JP2735293B2 (en) Inorganic moldings reinforced with reticulated moldings
JPH0671801A (en) Reinforcing material and its manufacture
JPH0768739B2 (en) Long fiber reinforced cement-based material
JPH042876A (en) Reinforcing carbon fiber mesh and preparation thereof
JPH05311536A (en) Netty fibrous structure
JPH07100357B2 (en) Fiber reinforced cement mortar molding
JPH0733507A (en) Panel material
JPH0726343Y2 (en) Carbon fiber reinforced inorganic board
JPH0585801A (en) Fiber-reinforced inorganic molding and its production
JPH0768740B2 (en) Fiber reinforced cement-based material