JPH02283627A - Mold for forming optical glass element - Google Patents
Mold for forming optical glass elementInfo
- Publication number
- JPH02283627A JPH02283627A JP10154689A JP10154689A JPH02283627A JP H02283627 A JPH02283627 A JP H02283627A JP 10154689 A JP10154689 A JP 10154689A JP 10154689 A JP10154689 A JP 10154689A JP H02283627 A JPH02283627 A JP H02283627A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- optical glass
- glass element
- force
- element material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000005304 optical glass Substances 0.000 title claims abstract description 34
- 239000000463 material Substances 0.000 claims abstract description 35
- 239000011248 coating agent Substances 0.000 claims abstract description 14
- 238000000576 coating method Methods 0.000 claims abstract description 14
- 229910003481 amorphous carbon Inorganic materials 0.000 claims abstract description 13
- 239000001257 hydrogen Substances 0.000 claims abstract description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000000465 moulding Methods 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000000034 method Methods 0.000 abstract description 12
- 239000007789 gas Substances 0.000 abstract description 9
- 230000003647 oxidation Effects 0.000 abstract description 4
- 238000007254 oxidation reaction Methods 0.000 abstract description 4
- 239000010409 thin film Substances 0.000 abstract description 4
- 238000010884 ion-beam technique Methods 0.000 abstract description 2
- 239000010953 base metal Substances 0.000 abstract 2
- 238000007733 ion plating Methods 0.000 abstract 1
- 238000009736 wetting Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 8
- 239000000956 alloy Substances 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000009760 electrical discharge machining Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/06—Construction of plunger or mould
- C03B11/08—Construction of plunger or mould for making solid articles, e.g. lenses
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/005—Pressing under special atmospheres, e.g. inert, reactive, vacuum, clean
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/02—Press-mould materials
- C03B2215/08—Coated press-mould dies
- C03B2215/14—Die top coat materials, e.g. materials for the glass-contacting layers
- C03B2215/24—Carbon, e.g. diamond, graphite, amorphous carbon
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/66—Means for providing special atmospheres, e.g. reduced pressure, inert gas, reducing gas, clean room
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は加熱により軟化したガラスを、押圧成形するこ
とにより光学ガラス素子を成形するための成形型に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a mold for molding an optical glass element by press-molding glass softened by heating.
[従来の技術及びその問題点]
従来、光学ガラス素子は研磨工程により作られてきたが
、最近になって、加熱により光学ガラス素子材料を軟化
させ、上型及び下型間で押圧成形させることにより光学
ガラス素子を製造しようとするガラスモールド法が用い
られはしめている。[Prior art and its problems] Conventionally, optical glass elements have been made by a polishing process, but recently, methods have been developed to soften the optical glass element material by heating and press-form it between an upper mold and a lower mold. Glass molding methods are now being used to manufacture optical glass elements.
この場合、成形型としては、希望する曲面に加工した母
材に薄膜を施したものか用いられているが、母材として
は耐熱性、機械的強度、加工性等を満足させるため、超
硬合金タングステンカーバイド(WC)、ステンレス、
Ni基耐熱合金や、サーメット、炭化ケイ素(SiC)
、窒化ケイ素(SiJ<)等の各種セラミックスなどが
使用されている。また、これら母材上に耐酸化性、光学
ガラス素子との離型性、耐反応性などを目的に、窒化チ
タン(TiN)等のセラミックスや白金(pt)、金(
Au)、ロジウム(Rh)等の貴金属の被膜を施した成
形型が使用されている。In this case, the mold used is a base material that has been processed into the desired curved surface and coated with a thin film. Alloy tungsten carbide (WC), stainless steel,
Ni-based heat-resistant alloys, cermets, silicon carbide (SiC)
, various ceramics such as silicon nitride (SiJ<) are used. In addition, ceramics such as titanium nitride (TiN), platinum (PT), gold (
A mold coated with a noble metal such as Au) or rhodium (Rh) is used.
このような成形型において、光学ガラス素子の成形を繰
り返したとき1例えばTiNコーティングされたものは
、TiN自体組成が不安定であるため、酸化雰囲気中だ
と、TiNの構造組成に変化が起き、膜の性質にも影響
を及ぼし、母材との密着性、光学ガラス素子とのfa5
性か悪化するようになった。そのため、成形部の雰囲気
を厳密に非酸化性とするよう注意する必要があり、装置
の大型化をまぬがれなかった。例えば、成形部内を一旦
真空にした後、非酸化性ガスを供給するため、高温下で
のシールド法などに難点があった。When an optical glass element is repeatedly molded using such a mold, 1. For example, in the case of a TiN-coated item, the composition of TiN itself is unstable, so if it is in an oxidizing atmosphere, the structural composition of TiN will change. It also affects the properties of the film, such as adhesion with the base material and fa5 with the optical glass element.
It started to get worse. Therefore, care must be taken to ensure that the atmosphere in the molding section is strictly non-oxidizing, and the size of the apparatus cannot be avoided. For example, there are difficulties with shielding methods under high temperatures because non-oxidizing gas is supplied after the inside of the molding section is once evacuated.
また貴金属を使用した場合、貴金属自体が軟らかいため
、成形時の光学ガラス素子材料との*擦により容易に傷
を生じてしまう、そこで特開昭62−119128号な
どで開示されているように、白金族合金に窒化物を分散
させた薄膜を使用したり、白金族合金の各貴金属の割合
を変えたりしである程度傷をおさえようとした例もみら
れるか、それにも限界があった。Furthermore, when precious metals are used, since the precious metals themselves are soft, they easily cause scratches due to friction with the optical glass element material during molding. There have been some attempts to suppress scratches to some extent by using thin films made of platinum group alloys with nitrides dispersed in them, or by changing the proportions of each noble metal in platinum group alloys, but even these efforts had their limits.
本発明は、このような従来の問題点に鑑みてなされたも
のであり、成形型表面に傷を生じることなく、耐用寿命
に優れ、かつ高精度の光学ガラス素子を再現性良く成形
するこができるような成形型を提供することをその目的
とするものである。The present invention was made in view of these conventional problems, and it is possible to mold an optical glass element with excellent durability and high precision with good reproducibility without causing scratches on the surface of the mold. The purpose is to provide a mold that can
[問題点を解決するための手段コ
上記目的のため、本発明は、光学ガラス素子材料を加熱
し、軟化後、押圧成形して光学ガラス素子を得るための
成形型であって、該成形型を母材とその上に施したコー
ティング薄膜とで構成し、該コーティング薄膜を水素を
結合させたアモルファスカーボン(a−C)としたこと
を特徴とするものである。[Means for Solving the Problems] For the above purpose, the present invention provides a mold for obtaining an optical glass element by heating an optical glass element material, softening it, and press-molding the material, the mold It is characterized in that it is composed of a base material and a thin coating film applied thereon, and the thin coating film is made of amorphous carbon (a-C) to which hydrogen is bonded.
[作用]
本発明者は、種々の研究と検詞を重ねた結果、成形型母
材表面のコーテイング膜として、水素を結合させたアモ
ルファスカーボンか優れた特性を有していることを確認
した。[Function] As a result of various studies and tests, the present inventor has confirmed that amorphous carbon to which hydrogen is bonded has excellent properties as a coating film on the surface of a mold base material.
水素を含まないアモルファスカーボンは、ガラス状カー
ボンに近く、もろくて硬度も低い。Amorphous carbon, which does not contain hydrogen, is similar to glassy carbon and is brittle and has low hardness.
これに対し、水素を結合させたアモルファスカーボンは
ダイアモンド構造をした結合(5p3)かアモルファス
中に分散するため、硬度は飛躍的に向上することになる
。On the other hand, amorphous carbon to which hydrogen is bonded has diamond-structured bonds (5p3) or is dispersed in the amorphous material, resulting in a dramatic improvement in hardness.
本発明では、成形型母材を超硬合金WC,ステンレス、
Ni基耐熱合金のいずれか1つとし、この母材を所望の
形状に研削、研磨加工後、この表面にアモルファスカー
ボンを高周波プラズマ法、イオンビーム法、イオンブレ
ーティング法、スパッタリング法のいずれかの方法、ま
たはそれらを組み合わせた方法を用いてコーティングす
る。このとき、被膜をアモルファス状態とするためにコ
ーティング条件を制御してアモルファスカーボンを0.
1終厘〜5#LII形成させる。このような成形型を使
用することにより、耐熱性、耐酸化性、光学ガラス素子
との耐謂れ性、離型性に優れ、表面硬度が高く、しかも
成形または取り扱い中に傷つけることのない成形型か得
られる。In the present invention, the mold base material is cemented carbide WC, stainless steel,
After grinding and polishing this base material into a desired shape, amorphous carbon is applied to the surface using one of the high-frequency plasma method, ion beam method, ion blating method, and sputtering method. method, or a combination thereof. At this time, in order to make the film amorphous, the coating conditions are controlled and the amorphous carbon is reduced to 0.
Form 1 to 5 #LII. By using such a mold, it is possible to create a mold that has excellent heat resistance, oxidation resistance, resistance to optical glass elements, mold releasability, high surface hardness, and does not get damaged during molding or handling. or can be obtained.
成形型母材としては超硬合金WC、ステンレス、 Ni
基耐熱合金が好ましい。The mold base materials are cemented carbide WC, stainless steel, and Ni.
Base heat-resistant alloys are preferred.
成形型母材を上記材料に限ったのは、これらの材料は、
研磨加工にて表面粗さをかなり小さくさせることが可能
で(R■axmo1口2≧終朧以下)、被膜との密着力
が高くなるためてあり、セラミック等では細かなボイド
が残留し、密着力も弱まるためである。The reason why we limited the mold base material to the above materials is that these materials are
It is possible to significantly reduce the surface roughness by polishing (R x axmo 1 mouth 2 ≧ no more than 0.000), which increases the adhesion with the coating, and with ceramics etc., fine voids remain and the adhesion becomes difficult. This is because the power also weakens.
また、膜厚については、0.1鉢鳳以下だと高温下ては
母材表面の酸化が被膜だけでは抑えきれずに徐々に表面
が悪化してくるし、 5ル■以上になると表面の精密な
面形状を崩す恐れがあるためOjμs 〜51Lsとし
た。Regarding the film thickness, if it is less than 0.1 mm, the oxidation of the base material surface cannot be suppressed by the film alone at high temperatures, and the surface will gradually deteriorate, and if it is more than 5 mm, the surface precision will deteriorate. Since there is a risk of destroying the surface shape, it is set to Ojμs to 51Ls.
以下、この発明の実施例を図面を参考にしながら説明す
る。Embodiments of the present invention will be described below with reference to the drawings.
[実施例]
第1図は本発明の成形型を用いた光学ガラス素子成形装
置の概略図である0図中3は下平。[Example] Fig. 1 is a schematic diagram of an optical glass element molding apparatus using the mold of the present invention. 3 in Fig. 0 is a lower flat.
4は上型であり、上型4はシリンダー8によって昇降可
能となっている。また12はシールドボックス、9は雰
囲気ガス供給口、7は光学ガラス素子材料5を加熱する
ためのヒーターlOは熱電対である。4 is an upper mold, and the upper mold 4 can be raised and lowered by a cylinder 8. Further, 12 is a shield box, 9 is an atmospheric gas supply port, and 7 is a heater lO for heating the optical glass element material 5, which is a thermocouple.
第3図はここで使用した成形型の拡大図な示したもので
ある。この実施例では母材lとして超硬合金WCを使用
し、その表面に水素を結合させたアモルファスカーボン
を高周波プラズマ法でコーティングした。FIG. 3 is an enlarged view of the mold used here. In this example, cemented carbide WC was used as the base material 1, and amorphous carbon to which hydrogen was bonded was coated on the surface using a high-frequency plasma method.
成形型の製作として、まず放電加工後、超精密旋盤にて
所望の形状に加工し、ダイヤモンド研磨剤で研磨し、表
面粗さ0.0IJLIIに仕上げた。この母材上にメタ
ンガス(C1,)を原料として、ガス圧を10Paに保
ち、 2,3MHzの高周波グロー放電下でアモルフ
ァスなカーボンを堆積させ、厚さ 1,0IL−の被膜
2を形成させた。このときの被膜2のビッカース硬度は
4000Kg/−鳳2であった。To manufacture the mold, first, it was subjected to electrical discharge machining, then processed into the desired shape using an ultra-precision lathe, and polished with a diamond abrasive to give a surface roughness of 0.0IJLII. Using methane gas (C1,) as a raw material, amorphous carbon was deposited on this base material under high-frequency glow discharge at 2.3 MHz while keeping the gas pressure at 10 Pa to form a coating 2 with a thickness of 1.0 IL-. . The Vickers hardness of the coating 2 at this time was 4000 kg/-2.
成形方法としては、まず下型3上に球状に研磨加工した
光学ガラス素子材料F2(小原光学硝子製)5をのせ、
ヒーター7を使用し、480℃まで加熱した。ここで型
温度は熱電対lOによって測定した。また加熱中は成形
型の酸化による悪化を抑えるために雰囲気ガス供給口9
より非酸化性である窒素ガスを流入した。As for the molding method, first, an optical glass element material F2 (manufactured by Ohara Optical Glass) 5 polished into a spherical shape is placed on the lower mold 3.
Heater 7 was used to heat up to 480°C. Here, the mold temperature was measured by a thermocouple IO. Also, during heating, the atmosphere gas supply port 9 is
Nitrogen gas, which is more non-oxidizing, was introduced.
所定温度に達した後、第2図に示すようにシリンダー8
を降ろし、上型4と下型3及び胴型6の間で光学ガラス
素子材料5を約100Kg/cm”の圧力で抑圧成形し
た。After reaching the predetermined temperature, the cylinder 8
was lowered, and the optical glass element material 5 was press-molded between the upper mold 4, the lower mold 3, and the body mold 6 at a pressure of about 100 kg/cm''.
その後、冷却し、成形部温度が光学ガラス素材の転移点
を下回った時点(430℃)で圧力を抜き、シリンダー
8を上昇させて成形品である光学ガラス素子11(第4
図参照)を取り出した。Thereafter, it is cooled, and when the temperature of the molded part falls below the transition point of the optical glass material (430°C), the pressure is released, and the cylinder 8 is raised to form the optical glass element 11 (fourth
(see figure) was taken out.
以上の実験を繰り返したが、成形型表面に傷を生じるこ
ともなく2高精度の光学ガラス素子を再現性良く成形す
ることが可能であった。The above experiment was repeated, and it was possible to mold two high-precision optical glass elements with good reproducibility without causing any scratches on the surface of the mold.
11文1遺
下型3には第1実施例と同様に母材lに超硬合金WCを
用い、その上に水素を結合させたアモルファスカーボン
を1.0μ■被覆した成形型を使用した。また上型4に
は母材として5O3420を用い、研削、研磨加工後、
イオンビームスパッタリング法にてアモルファスなカー
ボンを厚さ2.0%−被覆させた成形型を使用した。11 As in the first embodiment, the mold 3 used was a mold in which cemented carbide WC was used as the base material 1, and 1.0 .mu.m of amorphous carbon bonded with hydrogen was coated thereon. In addition, 5O3420 is used as the base material for the upper mold 4, and after grinding and polishing,
A mold coated with amorphous carbon to a thickness of 2.0% by ion beam sputtering was used.
このときのガス圧は10−’Paで700Vの電圧下で
コーティングした・
成形方法については第1実施例と同様で、光学ガラス素
材としてLF5(小原光学硝子製)を使用し、540℃
にて成形した。成形後430℃となるまで冷却し、その
後圧力を抜き、成形品である光学ガラス素子11を取り
出した。At this time, the gas pressure was 10-'Pa and the coating was applied under a voltage of 700V.The molding method was the same as in the first example, and LF5 (manufactured by Ohara Optical Glass Co., Ltd.) was used as the optical glass material, and the coating was heated at 540°C.
It was molded in. After molding, it was cooled to 430° C., and then the pressure was released, and the optical glass element 11, which was a molded product, was taken out.
その結果、成形型表面に傷を生じることなく、高精度の
光学ガラス素子を再現性良く成形することが可能であっ
た。As a result, it was possible to mold a highly accurate optical glass element with good reproducibility without causing any scratches on the surface of the mold.
[発明の効果]
以上述べたように1本発明の成形型によれば、成形母材
の表面に水素を結合させたアモルファスカーボンのコー
チイブ被膜を形成し、好ましくは母材として超硬合金w
C,ステンレス、Ni基耐熱合金を使用することにより
、耐熱性、耐酸化性、光学ガラス素子との耐濡れ性、離
型性に優れていることはもちろんのこと、表面硬度が高
いため成形型表面に傷を生じることなかなく、成形型の
寿命が延びるという効果が得られる。[Effects of the Invention] As described above, according to the mold of the present invention, a coachib coating of amorphous carbon to which hydrogen is bonded is formed on the surface of the molding base material, and preferably cemented carbide w is used as the base material.
By using C, stainless steel, and Ni-based heat-resistant alloys, it not only has excellent heat resistance, oxidation resistance, wettability with optical glass elements, and mold releasability, but also has high surface hardness that makes it easy to mold. The effect is that the life of the mold is extended without causing any scratches on the surface.
第1図は本発明の成形型を使用した光学ガラス素子成形
装置の概略断面図、第2図は同装置の押圧成゛形中の状
態を示す概略断面図、第3図は本発明の成形型の拡大図
、第4図は成形された光学ガラス素子の概略図である。
図中、1は成形型母材、2はコーティング被膜、3は下
型、4は上型、5は光学ガラス素子材料、6は胴型、7
はヒーター、8はシリンダ9は雰囲気ガス供給0.10
は熱電対、11は成形された光学ガラス素子である。
特許出願人 旭光学工業株式会社
出願代理人 弁理士 西野 茂美
第
図
第
図
第
図
第
図FIG. 1 is a schematic cross-sectional view of an optical glass element molding apparatus using the mold of the present invention, FIG. An enlarged view of the mold, FIG. 4, is a schematic diagram of the molded optical glass element. In the figure, 1 is a mold base material, 2 is a coating film, 3 is a lower mold, 4 is an upper mold, 5 is an optical glass element material, 6 is a body mold, 7
is the heater, 8 is the cylinder 9 is the atmospheric gas supply 0.10
is a thermocouple, and 11 is a molded optical glass element. Patent applicant: Asahi Optical Industry Co., Ltd. Application agent: Patent attorney Shigemi Nishino
Claims (1)
学ガラス素子を得るための成形型であって、該成形型を
母材とその上に施したコーティング薄膜とで構成し、該
コーティング薄膜を水素を結合させたアモルファスカー
ボンとしたことを特徴とする光学ガラス素子成形用の成
形型。A mold for obtaining an optical glass element by heating and softening an optical glass element material and press-molding the material, the mold comprising a base material and a thin coating film applied thereon, A mold for forming an optical glass element, characterized in that it is made of amorphous carbon to which hydrogen is bonded.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10154689A JPH02283627A (en) | 1989-04-24 | 1989-04-24 | Mold for forming optical glass element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10154689A JPH02283627A (en) | 1989-04-24 | 1989-04-24 | Mold for forming optical glass element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02283627A true JPH02283627A (en) | 1990-11-21 |
Family
ID=14303438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10154689A Pending JPH02283627A (en) | 1989-04-24 | 1989-04-24 | Mold for forming optical glass element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02283627A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5676723A (en) * | 1992-06-25 | 1997-10-14 | Canon Kabushiki Kaisha | Mold for forming an optical element |
US5711780A (en) * | 1992-06-08 | 1998-01-27 | Canon Kabushiki Kaisha | Mold for molding optical element |
WO1999047346A1 (en) * | 1998-03-13 | 1999-09-23 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Device for moulding flowable solids |
-
1989
- 1989-04-24 JP JP10154689A patent/JPH02283627A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5711780A (en) * | 1992-06-08 | 1998-01-27 | Canon Kabushiki Kaisha | Mold for molding optical element |
US5855641A (en) * | 1992-06-08 | 1999-01-05 | Canon Kabushiki Kaisha | Mold for molding optical element |
US5676723A (en) * | 1992-06-25 | 1997-10-14 | Canon Kabushiki Kaisha | Mold for forming an optical element |
WO1999047346A1 (en) * | 1998-03-13 | 1999-09-23 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Device for moulding flowable solids |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02283627A (en) | Mold for forming optical glass element | |
JPS61281030A (en) | Mold for molding optical element | |
JPH0421608B2 (en) | ||
JP3630375B2 (en) | Mold for glass molding | |
JPS63103836A (en) | Mold for molding optical glass element | |
JP4822833B2 (en) | Optical glass element mold | |
JPH11268920A (en) | Forming mold for forming optical element and its production | |
JP2621010B2 (en) | Mold for metal plastic working | |
JPS60264330A (en) | Mold for press molding of optical glass element | |
JPH04265234A (en) | Forming die for optical glass element | |
JP3851383B2 (en) | Optical glass element press mold and method of manufacturing the same | |
JP4262312B2 (en) | Mold for optical glass element | |
JPS63297230A (en) | Molding mold for glass moldings | |
JPH01111738A (en) | Molding die for molded glass | |
JPS63166729A (en) | Production of optical glass element | |
JPH0572336B2 (en) | ||
JPS6355126A (en) | Mold for press-forming of optical glass element | |
JPH0329012B2 (en) | ||
JPS62292637A (en) | Production of optical glass element | |
JP2746440B2 (en) | Mold for optical element molding | |
JPH0710561A (en) | Die for molding optical device | |
JPH0226842A (en) | Metal mold for molding glass | |
JP2964367B2 (en) | Mold for optical element molding | |
JPS60180926A (en) | Mold for press-molding highly accurate glass molded article | |
JPH0579611B2 (en) |