JPH02282461A - Treatment of self-fluxing alloy for cr-mo steel tube for boiler - Google Patents

Treatment of self-fluxing alloy for cr-mo steel tube for boiler

Info

Publication number
JPH02282461A
JPH02282461A JP10167789A JP10167789A JPH02282461A JP H02282461 A JPH02282461 A JP H02282461A JP 10167789 A JP10167789 A JP 10167789A JP 10167789 A JP10167789 A JP 10167789A JP H02282461 A JPH02282461 A JP H02282461A
Authority
JP
Japan
Prior art keywords
self
fusing
fluxing alloy
electric furnace
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10167789A
Other languages
Japanese (ja)
Inventor
Masaharu Nakamori
正治 中森
Yasuji Mizuta
水田 育次
Yusuke Koyashiki
古屋敷 勇助
Koichi Kitamura
北村 幸市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10167789A priority Critical patent/JPH02282461A/en
Publication of JPH02282461A publication Critical patent/JPH02282461A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To prevent the occurrence of cracks and peeling in a self-fluxing alloy layer and to improve wear resistance by thermally spraying a self-fluxing alloy on the external surface of a Cr-Mo steel tube as a generating tube in the layer in a fluidized bed boiler and then applying fusing and cooling to the above thermally sprayed layer while controlling the temp. in an electric furnace. CONSTITUTION:A self-fluxing alloy is thermally sprayed to 0.3-1.2mm thickness on the external surface of a generating tube made of Cr-Mo steel for use in a fluidized bed boiler. This generating tube is put into an electric furnace and heated up to 600-800 deg.C by means of an acetylene burner to fuse the thermally sprayed self-fluxing alloy layer, and successively, the tube is cooled slowly, while held in the electric furnace, down to <=200 deg.C at 50-100 deg.C/hr cooling rate and then taken out from the electric furnace. By this method, the generating tube having superior wear resistance in the self-fluxing alloy layer on the external surface of the generating tube, reduced in wear due to fluidized medium, etc., in the boiler, free from the occurrence of cracks and peeling, and capable of withstanding long use can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は流動床ボイラなどの層内蒸発管を構成するCr
−Mo管への自溶性合金の処理方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a Cr
-Regarding a method of treating a self-fusing alloy to a Mo tube.

〔従来の技術〕[Conventional technology]

流動床ボイラは流動媒体(たとえば石灰石等)を燃焼室
内に適当量充填し、下部ノズルより上方に向って空気を
流入し、流動媒体である石灰石粉末等を浮上させて流動
状態を形成し、この中に燃料である粉炭等を投入して流
動媒体と接触させながら燃焼を行なうものである。
In a fluidized bed boiler, an appropriate amount of fluidized medium (for example, limestone, etc.) is filled in the combustion chamber, air is flowed upward from the lower nozzle, and the fluidized medium, such as limestone powder, is floated to form a fluidized state. Fuel such as pulverized coal is put into the combustion chamber and combustion is carried out while it is brought into contact with a fluidized medium.

この粉炭と流動媒体との混合相と接する層内蒸発管は高
温にさらされると共に、硬い流動媒体が断えず衝突する
ため激しい摩耗作用を受ける。
The intrabed evaporation tube in contact with this mixed phase of pulverized coal and fluidized medium is exposed to high temperatures and is subjected to severe abrasion due to constant collisions with the hard fluidized medium.

このような激しい摩耗から層内蒸発管を保護するため、
従来ではMiCr合金やセラミックの溶射及び自溶性合
金の処理を行っている。
To protect the intralayer evaporation tube from such severe wear,
Conventionally, thermal spraying of MiCr alloys and ceramics and treatment of self-fluxing alloys have been carried out.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、Nior合金の溶射では耐摩耗性の付与
が不十分であプ、またセラミック溶射ではボイラの起動
・停止にともない、管材であるCr−Mo鋼との熱伸び
差の違いにより剥離を生じる欠点がある。さらに自溶性
合金の処理では従来、自溶性合金溶射後のフュージング
処理は大気中でアセチレンバーナで直接加熱する方法を
とっているため、フュージングの管の冷却速度が著しく
早くなり、自溶性合金処理層にしばしばクラックが発生
し、これが実用時腐食の起点とカり管破損の原因とがる
欠点がある。また、フュージング後の管冷却速度の調整
が不十分なため、管材に組織変化を生じて著しく硬化し
、脆くなる欠点がある。
However, Nior alloy thermal spraying does not provide sufficient wear resistance, and ceramic thermal spraying has the drawback that it peels off due to the difference in thermal elongation with the Cr-Mo steel pipe material when the boiler starts and stops. There is. Furthermore, conventionally, in the treatment of self-fusing alloys, the fusing treatment after thermal spraying of self-fusing alloys is performed by heating directly with an acetylene burner in the atmosphere, so the cooling rate of the fusing tube is significantly faster, and the self-fusing alloy treatment layer The drawback is that cracks often occur in the pipes, which can be the starting point for corrosion and damage to the pipe during practical use. Furthermore, because the tube cooling rate after fusing is insufficiently adjusted, the tube material undergoes structural changes and becomes extremely hardened and brittle.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは従来のCr−Mo鋼管への自溶性合金処理
の欠点を解決すべく研究を進める中で、Cr−Mo鋼管
へ自溶性合金を溶射した後、電気炉中で温度管理を行い
つつ、フュージング及び冷却を行うととによって満足す
べき結果が得られることを見出した。
While conducting research to solve the drawbacks of conventional self-fusing alloy treatment for Cr-Mo steel pipes, the present inventors sprayed a self-fluxing alloy onto Cr-Mo steel pipes and then controlled the temperature in an electric furnace. However, it has been found that satisfactory results can be obtained by performing fusing and cooling.

本発明は上記の知見に基づいて完成されたものであって
、ボイラ用Cr−Mo鋼管の外表面に自溶性合金をα3
〜1.21厚さに溶射した後、600℃〜800℃に保
ったt気炉中でアセチレンバーナにより自溶性合金のフ
ュージングを行うとともに、フュージング完了後も電気
炉中に保ちつつ、50〜100℃/Hrで200℃以下
まで冷却した後、[9C炉中より取出すことを特徴とす
るボイラ用Cr−Mo鋼管への自溶性合金の処理方法で
ある。
The present invention has been completed based on the above findings, and consists of applying a self-fusing alloy to the outer surface of a Cr-Mo steel tube for boilers.
After thermal spraying to a thickness of ~1.21 mm, the self-fusing alloy is fused with an acetylene burner in an air furnace maintained at 600 to 800 °C, and even after fusing is completed, it is maintained in an electric furnace to a thickness of 50 to 100 mm. This is a method for treating a self-fluxable alloy on a Cr-Mo steel pipe for a boiler, which is characterized in that the steel tube is cooled to 200° C. or lower at a rate of °C/Hr and then taken out from a 9C furnace.

本発明においては、自溶性合金としてJISusy−y
l−1,m5F−N1−2. MsF−N1−4(何れ
もNi−0r−131−Bよりなり、Criが異なる)
In the present invention, JISusy-y is used as a self-fusing alloy.
l-1, m5F-N1-2. MsF-N1-4 (all made of Ni-0r-131-B, Cri different)
.

Jより MSFOol(Co−Ni−Cr−8i−B)
など、任意のものが使用しうる。
MSFOol (Co-Ni-Cr-8i-B) from J.
etc., any one can be used.

〔作用〕[Effect]

(1)  自溶性合金処理層は硬く、かつ耐エロージヨ
ン性に優れており、流動媒体及び粉炭の衝突による摩耗
を阻止できるだけでなく、その熱伝導率が周壁管を構成
する材料の低合金と同等であり、周壁管の熱伝導性を損
なうことがない。
(1) The self-fusing alloy treatment layer is hard and has excellent erosion resistance, which not only prevents wear caused by collisions between fluid media and powdered coal, but also has thermal conductivity equivalent to that of the low alloy material that makes up the peripheral wall tube. Therefore, the thermal conductivity of the peripheral wall tube is not impaired.

(2)  フュージング及びその後の熱処理において、
降温速度を50〜b るため、自溶性合金溶射層にクラックや剥離尋の発生は
なく、また管材質の組織変化もな込ため、管材の機械的
特性を損うことがない。
(2) In fusing and subsequent heat treatment,
Since the cooling rate is reduced by 50 to 50 b, no cracks or peeling occur in the sprayed self-fluxing alloy layer, and structural changes in the tube material are also smoothed out, so the mechanical properties of the tube material are not impaired.

(3)  本発明ではフュージング時の電気炉の温度を
600〜800℃としてbるが、600℃以下でけ自溶
性合金をフュージングするに必要な温度(1ooo〜1
100℃)に加熱するために時間を要するとともに、フ
ュージング後、600℃まで比較的早く降温するため、
しばしばコーティング層に割れが発生する。
(3) In the present invention, the temperature of the electric furnace during fusing is set at 600 to 800°C, but the temperature required for fusing a self-fusing alloy at 600°C or lower (1ooo to 1
It takes time to heat up to 100℃, and the temperature drops to 600℃ relatively quickly after fusing, so
Cracks often occur in the coating layer.

又、it電気炉温度を800℃以上とした場合、フュー
ジング時、過熱され易く、コーティング層及び管材に悪
影響を与える。
Furthermore, if the IT electric furnace temperature is 800° C. or higher, it is likely to be overheated during fusing, which will adversely affect the coating layer and the tube material.

(4)  さらに、本発明では自溶性合金層の厚さを0
.3〜1.2mとしたが、α31111以下では実缶で
耐摩耗性を発揮するには不十分であり、また1、2m以
上に厚く溶射した場合、しばしばコーティング層に割れ
等を発生する。
(4) Furthermore, in the present invention, the thickness of the self-fusing alloy layer is 0.
.. The thickness was set at 3 to 1.2 m, but if it is less than α31111, it is insufficient to exhibit wear resistance in actual cans, and if it is thermally sprayed thicker than 1 or 2 m, cracks etc. often occur in the coating layer.

〔実施例〕〔Example〕

本発明の一実施例として、Cr−Mo鋼管として、J工
5STBA24鋼管(50×4000 ×6ff ) 
ヘJ工8 M81F−Ni−4自溶性合金(Nt−Cr
−81−B系)の処理を行った結果を示す。
As an embodiment of the present invention, a J-engineering 5STBA24 steel pipe (50 x 4000 x 6ff) is used as a Cr-Mo steel pipe.
He J Engineering 8 M81F-Ni-4 self-fluxing alloy (Nt-Cr
-81-B series) processing results are shown.

すなわち、第1表に示すように、マスキング、ブラスト
、溶射を通常の方法で行った後、700℃に保った電気
炉中でフュージングを行い、その後50℃/Hrで降温
し、200℃以下に々つた時点で炉中より取出した。こ
れら溶射後のフュージング及び徐冷処理時の温度管理図
を第1図に示した。本発明による自溶性合金処理層は浸
透探傷検査による検査においても割れ等の発生は全く検
出されなかった。さらに、その一部を切断調査したが、
自溶性合金層及び管材との境界にも空孔、異物は認めら
れなかった。また、管材にも組織的異常はなく、硬度1
50〜180mHvと特に硬化する傾向はみられなかっ
た。これに対し、従来法ではしばしば硬度が200〜4
00 mHvと上昇(脆化)した。
That is, as shown in Table 1, after masking, blasting, and thermal spraying are performed in the usual manner, fusing is performed in an electric furnace maintained at 700°C, and then the temperature is lowered at a rate of 50°C/hour to 200°C or less. It was taken out from the furnace when it reached its final stage. A temperature control chart during the fusing and slow cooling treatments after thermal spraying is shown in FIG. In the self-fusing alloy treated layer according to the present invention, no cracks or the like were detected at all when inspected by penetrant testing. Furthermore, we cut and investigated a part of it.
No pores or foreign matter were observed at the boundary between the self-fusing alloy layer and the pipe material. In addition, there were no structural abnormalities in the pipe material, and the hardness was 1.
No particular tendency to harden was observed at 50 to 180 mHv. In contrast, conventional methods often have a hardness of 200 to 4
00 mHv (embrittlement).

第  1  表 ボイラ用Cr−Mom管への自溶性合金の処理手順鋼管
の検査 マスキング グリッドプラスト マスキング除去 自溶性合金溶射:アセチレン溶射 膜厚 a3〜1.2關 (6)を気炉中へ設置:温度70(Ic(7)  フュ
ージング:アセチレンバーナ 1000〜1100℃(
8)  電気炉中にて700℃まで放冷(9)徐冷 5
0〜b αIf気炉中より取出し:200℃以下αM 検査 また、第2表に本発明の上記実施例による処理後の基材
硬さの変化を示したが、無処理品と比較して特に著しb
硬度の上昇はなく、組織的な異常がないことが確認され
た。なお、第2表中の数値(1,2,3及び1’、 2
’、 3’、 4’ )及び数値(α1.α2)は、第
2図に示したコーチインク層、基材の測定位置及び測定
間隔を示す。
Table 1 Processing procedure for self-fusing alloys on Cr-Mom tubes for boilers Steel pipe inspection Masking grid Plast Masking removal Self-fusing alloy thermal spraying: Acetylene thermal spraying Film thickness a3-1.2 Installation of pipe (6) in the air furnace: Temperature 70 (Ic(7)) Fusing: Acetylene burner 1000-1100℃ (
8) Allow to cool to 700℃ in electric furnace (9) Slow cooling 5
0 to b αIf Taken out from the air furnace: 200°C or less Author b
There was no increase in hardness, and it was confirmed that there were no structural abnormalities. In addition, the numerical values in Table 2 (1, 2, 3 and 1', 2
', 3', 4') and numerical values (α1, α2) indicate the measurement positions and measurement intervals of the coach ink layer and the base material shown in FIG.

第  2  表 自溶性合金(:JXB  MSP−Ni−4)溶射フュ
ージング後の試験片硬さ測定結果 また、第3図に本発明による耐摩耗性向上効果と、無処
理及び従来法(自溶性合金を溶射後、アセチレンバーナ
を用いて溶射面を加熱溶融する方法)の耐摩耗性とを比
較した結果を示す。
Table 2 Test piece hardness measurement results after thermal spray fusing of self-fusing alloy (JXB MSP-Ni-4). Figure 3 shows the wear resistance improvement effect of the present invention, and the results of no treatment and conventional method (self-fusing alloy). The following shows the results of comparing the abrasion resistance of a method in which the sprayed surface is heated and melted using an acetylene burner after thermal spraying.

試験法はアルミナ粒子によりブラスト圧力5kg/cM
” 、プラスト角度30’で行った。第3図より本発明
方法が優れた耐摩耗性を示すことが明らかである。
The test method uses alumina particles at a blasting pressure of 5 kg/cM.
'', with a plast angle of 30'. It is clear from FIG. 3 that the method of the present invention exhibits excellent wear resistance.

〔発明の効果〕〔Effect of the invention〕

本発明によ如流動層内蒸発管であるcr−Mo W4管
の外表面K、耐摩耗性に優れた自溶性合金溶射層を割れ
、剥離などの発生なく形成することができる。フュージ
ング及びその後の冷却速度を十分に調整しているため、
管基材の組織変化、機械的特性を防止することができる
According to the present invention, a self-fluxing alloy sprayed layer with excellent wear resistance can be formed on the outer surface K of a cr-Mo W4 tube, which is an evaporation tube in a fluidized bed, without cracking or peeling. Because the fusing and subsequent cooling rates are well adjusted,
Tissue changes and mechanical properties of the tube base material can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

tIc1図は本発明の一実施例の温度管理条件を図示し
た図表、第2図は本発明の実施例で得られた自溶性合金
コーティング層及び基材の試験片の硬さ測定点の説明図
、第3図は本発明によって得られた蒸発管の耐摩耗性の
向上を立証する図表である。
Figure tIc1 is a diagram illustrating the temperature control conditions of an example of the present invention, and Figure 2 is an explanatory diagram of hardness measurement points of the test piece of the self-fluxing alloy coating layer and base material obtained in the example of the present invention. , FIG. 3 is a chart proving the improvement in wear resistance of the evaporator tube obtained by the present invention.

Claims (1)

【特許請求の範囲】[Claims] ボイラ用Cr−Mo鋼管の外表面に自溶性合金を0.3
〜1.2mm厚さに溶射した後、600℃〜800℃に
保つた電気炉中でアセチレンバーナにより自溶性合金の
フユージングを行うとともに、フユージング完了後も電
気炉中に保ちつつ、50〜100℃/Hrで200℃以
下まで冷却した後、電気炉中より取出すことを特徴とす
るボイラ用Cr−Mo鋼管への自溶性合金の処理方法。
0.3% of self-fusing alloy is applied to the outer surface of Cr-Mo steel pipe for boiler.
After thermal spraying to a thickness of ~1.2 mm, the self-fusing alloy is fusing with an acetylene burner in an electric furnace kept at 600 to 800 °C, and even after fusing is completed, it is heated to 50 to 100 °C while being kept in the electric furnace. A method for treating a self-fusing alloy on a Cr-Mo steel pipe for a boiler, the method comprising cooling the steel pipe to 200°C or less at a temperature of 200°C or less at a temperature of 200°C or less and then taking it out from an electric furnace.
JP10167789A 1989-04-24 1989-04-24 Treatment of self-fluxing alloy for cr-mo steel tube for boiler Pending JPH02282461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10167789A JPH02282461A (en) 1989-04-24 1989-04-24 Treatment of self-fluxing alloy for cr-mo steel tube for boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10167789A JPH02282461A (en) 1989-04-24 1989-04-24 Treatment of self-fluxing alloy for cr-mo steel tube for boiler

Publications (1)

Publication Number Publication Date
JPH02282461A true JPH02282461A (en) 1990-11-20

Family

ID=14306982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10167789A Pending JPH02282461A (en) 1989-04-24 1989-04-24 Treatment of self-fluxing alloy for cr-mo steel tube for boiler

Country Status (1)

Country Link
JP (1) JPH02282461A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222511A (en) * 1992-02-17 1993-08-31 Kubota Corp Manufacture of outer surface thermal-sprayed tube
US6082444A (en) * 1997-02-21 2000-07-04 Tocalo Co., Ltd. Heating tube for boilers and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222511A (en) * 1992-02-17 1993-08-31 Kubota Corp Manufacture of outer surface thermal-sprayed tube
US6082444A (en) * 1997-02-21 2000-07-04 Tocalo Co., Ltd. Heating tube for boilers and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US4457948A (en) Quench-cracked ceramic thermal barrier coatings
Ramaswamy et al. Thermal shock characteristics of plasma sprayed mullite coatings
JP4546867B2 (en) Water-cooled steel pipe structure with excellent corrosion resistance and wear resistance and its manufacturing method
JPS5996273A (en) Formation of heat resistant coating layer
JPH02282461A (en) Treatment of self-fluxing alloy for cr-mo steel tube for boiler
US7429174B2 (en) Clean atmosphere heat treat for coated turbine components
CN101585988B (en) High-temperature resistant coating and preparation method thereof
JP3001363B2 (en) Method of forming metal spray coating
JP2718734B2 (en) Steel pipe for boiler which is resistant to sulfidation corrosion and erosion
JP3150697B2 (en) Method of producing a protective layer on a metal wall exposed to a hot gas
JPH0975832A (en) Boiler tube with corrosion-resistant and wear-resistant surface flame-sprayed layer
JP3481055B2 (en) Manufacturing method of corrosion resistant heat transfer tube
JP2008174787A (en) Method for forming thermal spray coating
JP3576479B2 (en) Water-cooled steel structure
JPS5934230B2 (en) Metal surface treatment method
JP7044328B2 (en) A method for producing a Ni—Fe-based alloy powder and an alloy film using the Ni—Fe-based alloy powder.
JP3032341B2 (en) Manufacturing method of wear-resistant heat transfer tube
JP6697802B2 (en) Method for manufacturing self-fluxing alloy outer surface cladding tube having curved portion
RU2115740C1 (en) Method of preparation for operation of blast-furnace tuyere
JPH0347979A (en) Formation of glass coating film on metal surface
SU1475973A1 (en) Method of producing coatings
JPS606216A (en) Guide shoe for making pipe
RU2058871C1 (en) Method for laser treatment of refractory parts
JPS6326335A (en) Far infrared ray radiator and its production
JPH01268853A (en) Method for preventing creep embrittlement of apparatus used in creep temperature range