JPH02281679A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH02281679A
JPH02281679A JP10243189A JP10243189A JPH02281679A JP H02281679 A JPH02281679 A JP H02281679A JP 10243189 A JP10243189 A JP 10243189A JP 10243189 A JP10243189 A JP 10243189A JP H02281679 A JPH02281679 A JP H02281679A
Authority
JP
Japan
Prior art keywords
metal film
semiconductor laser
heat sink
metal
conductive wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10243189A
Other languages
Japanese (ja)
Inventor
Masayuki Yamaguchi
山口 昌幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10243189A priority Critical patent/JPH02281679A/en
Publication of JPH02281679A publication Critical patent/JPH02281679A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To lessen conductive wires in length and number and a device in the inductance as a whole to enable it to carry out a high speed modulation of 2-5Gb/s or so by a method wherein the upper electrode of a semiconductor laser element is connected to a first metal film with a first conductive wire, and a second metal film is connected with a feed terminal by a second conductive wire. CONSTITUTION:A semiconductor laser element 4 is fixed onto a first metal film 21 through an AuSn eutectic solder 5 making its P-type semiconductor side face upward. A heat dissipating body 1 is fixed onto a conductive pedestal 6 with a PbSn solder 6. Moreover, a conductive wire 9 is connected between a feed terminal 10 and the first metal film 21, and a conductive wire 8 extending from the top of the semiconductor laser element 4 is connected to a second metal film 22. As the conductive wire 8 extending from the top of the semiconductor element 4 is connected to the second metal film 22, it becomes shorter as compared with a conventional one. By this setup, a device is lessened in inductance as a whole and able to deal with a modulation of 2-5Gb/s of so.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ボンディング・ワイヤによるインダクタンス
を低減した半導体レーザ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser device in which inductance due to bonding wires is reduced.

〔従来の技術〕[Conventional technology]

近年、半導体レーザ素子の高速化に伴い、光フアイバ通
信の伝送容量は大幅に伸びな。数年前までは、伝送容量
として400 M b / s程度であったのが、今で
は1.6Gb/sのシステムが実用化されている。数年
光の近い将来には2.4〜4.8Gb/sの高速システ
ムが計画されている。
In recent years, as semiconductor laser devices have become faster, the transmission capacity of optical fiber communications has not increased significantly. Until a few years ago, the transmission capacity was about 400 Mb/s, but now systems with a transmission capacity of 1.6 Gb/s are in practical use. A high-speed system of 2.4 to 4.8 Gb/s is planned in the near future.

ところで、半導体レーザ素子単体の周波数応答特性は大
幅に改善され、今では2〜5 G b / s程度の高
速変調が可能になったものの、半導体レーザ素子の実装
方法は、まだこの様な高速変調に適したものになってお
らず改善が必要とされる。第4図に従来の半導体レーザ
装置の構造図を示す。
Incidentally, although the frequency response characteristics of a single semiconductor laser element have been greatly improved, and high-speed modulation of about 2 to 5 Gb/s is now possible, the mounting method for semiconductor laser elements still does not support such high-speed modulation. It is not suitable for the current situation and needs improvement. FIG. 4 shows a structural diagram of a conventional semiconductor laser device.

絶縁性放熱体1の上下の面にはAuを含む金属膜2.3
が形成されており、放熱体1の上には半導体レーザ素子
4が共晶ハンダ5により固着されている。更に放熱体1
そのものは導電性台座6の上にPb5n共晶ハンダ7に
より固着されている。
Metal films 2.3 containing Au are formed on the upper and lower surfaces of the insulating heat sink 1.
A semiconductor laser element 4 is fixed on the heat sink 1 with eutectic solder 5. Furthermore, heat sink 1
It is fixed onto a conductive pedestal 6 with Pb5n eutectic solder 7.

半導体レーザ素子4は固着時のストレス等の影響を避け
るために、p−n接合面が固着部より遠い側、すなわち
上側になるように固着される。n型半導体基板を用いた
半導体レーザ素子では、固着部に接する側がn型1反対
側がp型となる。また、一般に半導体レーザ素子4のド
ライブ回路はアース(すなわち台座6)が正極となる。
The semiconductor laser element 4 is fixed so that the p-n junction surface is on the side farther from the fixed portion, that is, on the upper side, in order to avoid the effects of stress and the like during fixation. In a semiconductor laser device using an n-type semiconductor substrate, the side in contact with the fixed portion is n-type, and the opposite side is p-type. Further, in general, the drive circuit for the semiconductor laser element 4 has the ground (that is, the pedestal 6) as the positive electrode.

従って、半導体レーザ素子4の上側電極と台座6との間
を電気的に導通させるため、導電性ワイヤ8が両者の間
に設けられている。更に、給電用端子10から放熱体1
の上面の金属膜2には導電性ワイヤ9が接続されている
Therefore, in order to establish electrical continuity between the upper electrode of the semiconductor laser element 4 and the pedestal 6, a conductive wire 8 is provided between the two. Furthermore, from the power supply terminal 10 to the heat sink 1
A conductive wire 9 is connected to the metal film 2 on the top surface.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の半導体レーザ装置の問題点は導電性ワイ
ヤ8.9が長いために生じるインダクタンスが大きくな
り2〜5Gb/β程度の高速変調が困難なことである。
The problem with the conventional semiconductor laser device described above is that the conductive wire 8.9 is long, resulting in a large inductance, making it difficult to perform high-speed modulation of about 2 to 5 Gb/β.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による半導体レーザ装置は、絶縁性放熱体の上面
に互いに分割された第1の金属膜と第2の金属膜とを有
し、前記第1の金属膜は前記放熱体の側面及び裏面に連
続して形成されており、第2の金属膜上に共晶合金によ
り半導体レーザ素子が固着されており前記放熱体は導電
性台座の上に固着されており、前記半導体レーザ素子の
上側電極と前記第1の金属膜とは第1導電性ワイヤによ
り接続され、前記第2の金属膜は給電用端子に第2の導
電性ワイヤにより接続されていることを特徴とする。
The semiconductor laser device according to the present invention has a first metal film and a second metal film separated from each other on the upper surface of the insulating heat sink, and the first metal film is arranged on the side and back surfaces of the heat sink. The semiconductor laser element is fixed on the second metal film by a eutectic alloy, the heat sink is fixed on the conductive base, and the upper electrode of the semiconductor laser element and the heat sink are fixed on the second metal film. The first metal film is connected to a first conductive wire, and the second metal film is connected to a power supply terminal by a second conductive wire.

また本発明による半導体レーザ装置は、絶縁性放熱体の
上面に互いに分割された第1.第2の金属膜を有し、前
記放熱体の下面には互いに分割された第3.第4の金属
膜を有し、前記第1と第3の金属膜、前記第2の第4の
金属膜はそれぞれ前記放熱体側面を経由して連続してお
り、前記第2の金属膜の上には共晶合金により半導体レ
ーザ素子が固着されており、前記半導体レーザ素子の上
側電極と前記第1の金属膜とは導電性ワイヤにより接続
され、前記放熱体は絶縁性台座の上に形成された第1.
第2の金属配線の上に、前記第3の金属膜と前記第1の
金属配線とが接触し、更に前記第4の金属膜と前記第2
の金属配線とが接触するように固着されていることを特
徴とする。
Further, in the semiconductor laser device according to the present invention, there is provided a first semiconductor laser device on the upper surface of the insulating heat sink. A third metal film is provided on the bottom surface of the heat sink, and a third metal film is provided on the lower surface of the heat sink. a fourth metal film, the first and third metal films, the second and fourth metal films are each continuous via the side surface of the heat sink, and the second metal film is continuous with the second metal film; A semiconductor laser element is fixed thereon by a eutectic alloy, the upper electrode of the semiconductor laser element and the first metal film are connected by a conductive wire, and the heat sink is formed on an insulating pedestal. The first thing that was done was
The third metal film and the first metal wiring are in contact with each other on the second metal wiring, and the fourth metal film and the second metal wiring are in contact with each other.
It is characterized by being fixed so that it is in contact with the metal wiring.

〔実施例〕〔Example〕

以下に本発明について図面を用いて詳細に説明する。第
1図は本発明の第1の実施例である半導体レーザ装置の
構造図である。ボロン・ナイトライド(BN)からなる
絶縁性放熱体1の上面にAuを含む第1の金属膜21と
、これとは電気的に分離された第2の金属膜22とが設
けられており、第2の金属膜22は放熱体1の側面及び
裏面にまで連続して形成されている。半導体レーザ素子
4はAuSn共晶ハンダ5により第1の金属膜21上に
p型半導体側が上になるように固着されている。放熱体
lはPb5nハンダ7により導電性台座6の上に固着さ
れている。更に、給電用端子10と第1の金属膜21の
間には導電性ワイヤ9が接続され、更に半導体レーザ素
子4の上からの導電性ワイヤ8は第2の金属膜22に接
続されている。
The present invention will be explained in detail below using the drawings. FIG. 1 is a structural diagram of a semiconductor laser device according to a first embodiment of the present invention. A first metal film 21 containing Au and a second metal film 22 electrically isolated from this are provided on the upper surface of an insulating heat sink 1 made of boron nitride (BN). The second metal film 22 is continuously formed on the side and back surfaces of the heat sink 1. The semiconductor laser element 4 is fixed onto the first metal film 21 by AuSn eutectic solder 5 with the p-type semiconductor side facing upward. The heat sink l is fixed onto the conductive base 6 with Pb5n solder 7. Further, a conductive wire 9 is connected between the power supply terminal 10 and the first metal film 21, and a conductive wire 8 from above the semiconductor laser element 4 is connected to the second metal film 22. .

従来例で示した半導体レーザ装置では、半導体レーザ素
子4からのワイヤ8が台座6に接続されるため比較的長
くなっていた。これに対し、本実施例による半導体レー
ザ装置では、半導体レーザ素子4からのワイヤ8は第2
の金属膜22に接続されているなめ、ワイヤ8の長さは
従来例に比べ短くなる。具体的に言えば、放熱体1の横
幅が1mmであるので、ワイヤ8の長さは、従来例では
1.2mm、本実施例では0.3mm程変ヒケる。これ
により装置全体のインダクタンスは従来の2nHから0
.8nHに低減され、2.4G b / s程度の変調
が可能となった。
In the semiconductor laser device shown in the conventional example, the wire 8 from the semiconductor laser element 4 is connected to the pedestal 6 and is therefore relatively long. On the other hand, in the semiconductor laser device according to this embodiment, the wire 8 from the semiconductor laser element 4 is
Since the wire 8 is connected to the metal film 22, the length of the wire 8 is shorter than that of the conventional example. Specifically, since the width of the heat sink 1 is 1 mm, the length of the wire 8 varies by about 1.2 mm in the conventional example and by about 0.3 mm in this embodiment. This reduces the inductance of the entire device from 2 nH to 0.
.. It was reduced to 8 nH, making it possible to modulate around 2.4 Gb/s.

第2図に本発明の第2の実施例の半導体レーザ装置の構
造図を示す。ボロン・ナイトライドからなる絶縁性放熱
体1の上面に第1.第2のAuを含む金属膜31.32
が設けられており、それぞれの金属膜は互いに接続する
ことなく放熱体1の裏側にまで連続して形成されている
。第2の金属M32の上には半導体レーザ素子4がAu
Sn共晶ハンダ5により固着されている。放熱体1はセ
ラミックからなる絶縁性台座30の上の金属配線33.
34の上に、第1の金属[31と金属配線33とが接触
し更に第2の金属膜32と金属配線34とが接触する様
にPb5nハンダ7により固着されている。半導体レー
ザ素子4の上側電極から第1の金属膜31へは導電性ワ
イヤ8が接続されている。
FIG. 2 shows a structural diagram of a semiconductor laser device according to a second embodiment of the present invention. On the upper surface of the insulating heat sink 1 made of boron nitride, a first. Second metal film 31,32 containing Au
are provided, and the respective metal films are continuously formed up to the back side of the heat sink 1 without being connected to each other. The semiconductor laser element 4 is made of Au on the second metal M32.
It is fixed with Sn eutectic solder 5. The heat sink 1 consists of metal wiring 33 on an insulating pedestal 30 made of ceramic.
34, the first metal film 31 and the metal wiring 33 are fixed to each other with Pb5n solder 7 so that the second metal film 32 and the metal wiring 34 are in contact with each other. A conductive wire 8 is connected from the upper electrode of the semiconductor laser element 4 to the first metal film 31 .

本実施例による半導体レーザ装置では、導電性ワイヤの
数が一本で済み、かつワイヤ8の長さが第1の実施例と
同様の理由により、従来よりも短くできるため、インダ
クタンスは大幅に小さくなり、おおよそ0.3nHとな
った。更に、4.8G b / sの良好なパルス変調
が可能となった。
In the semiconductor laser device according to this embodiment, the number of conductive wires is only one, and the length of the wire 8 can be made shorter than the conventional one for the same reason as the first embodiment, so the inductance is significantly reduced. The value was approximately 0.3 nH. Furthermore, good pulse modulation of 4.8 Gb/s has become possible.

本実施例では、放熱体1を固着する台座3oとして、金
属配線33.34を形成した絶縁性の台座30が必要と
なる。この台座は従来にない特殊なものであるため、こ
こでその−例を示す。第3図は、第2の実施例で示した
半導体レーザ装置用の台座(キャリア)部の構造図であ
る。L型の金属台40と、セラミックからなる絶縁性台
座3゜と、給電用の金属リード41とがら構成されてい
る。絶縁性台座30の上には、金属台4oがら連続した
金属配線33と、金属リード41がら連続した金属配線
34とが、中央で互いに対向するように形成されている
。金属配線33と34が互いに対向して形成された部分
に、半導体レーザ素子が固着される放熱体1を第3図中
の点線で示したように配置することにより、第2の実施
例で示した半導体レーザ装置が得られる。
In this embodiment, an insulating pedestal 30 on which metal wiring 33, 34 is formed is required as the pedestal 3o to which the heat sink 1 is fixed. Since this pedestal is unique and unprecedented, an example will be shown here. FIG. 3 is a structural diagram of a pedestal (carrier) portion for a semiconductor laser device shown in the second embodiment. It consists of an L-shaped metal pedestal 40, an insulating pedestal 3° made of ceramic, and a metal lead 41 for power supply. On the insulating pedestal 30, a metal wiring 33 continuous from the metal base 4o and a metal wiring 34 continuous from the metal lead 41 are formed so as to face each other at the center. By arranging the heat sink 1 to which the semiconductor laser element is fixed in the portion where the metal wirings 33 and 34 are formed facing each other as shown by the dotted line in FIG. A semiconductor laser device is obtained.

なお、本発明の実施例で示した半導体レーザ装置では、
絶縁性放熱体1の材質として、ボロン・ナイトライドを
用いたが、絶縁物質としては、高抵抗のシリコン、酸化
ベリリウム、ダイアモンド等であってもよい。
Note that in the semiconductor laser device shown in the embodiment of the present invention,
Although boron nitride was used as the material for the insulating heat sink 1, the insulating material may also be high-resistance silicon, beryllium oxide, diamond, or the like.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明による半導体レーザ装置で
は導電性ワイヤの長さが短くなり、更にその本数も従来
よりも減らすことが可能であるため、装置全体のインダ
クタンスが減少し、2〜5 G b / s程度の高速
変調が可能になった。
As explained above, in the semiconductor laser device according to the present invention, the length of the conductive wire is shortened, and the number of conductive wires can also be reduced compared to the conventional one, so the inductance of the entire device is reduced, and the inductance is 2 to 5 G. High-speed modulation on the order of b/s has become possible.

例として示した半導体レーザ装置の構造図である。FIG. 2 is a structural diagram of a semiconductor laser device shown as an example.

1・・・絶縁性放熱体、2,3,21,22.3132
・・・金属膜、4・・・半導体レーザ素子、5,7・・
・共晶合金ハンダ、6・・・導電性台座、8.9・・・
導電性ワイヤ、10・・・給電用端子、3o・・・絶縁
性台座、33.34・・・金属配線、4o・・・金属台
、41・・・金属リード。
1... Insulating heat sink, 2, 3, 21, 22.3132
...Metal film, 4...Semiconductor laser element, 5,7...
・Eutectic alloy solder, 6... Conductive pedestal, 8.9...
Conductive wire, 10... Power supply terminal, 3o... Insulating pedestal, 33.34... Metal wiring, 4o... Metal stand, 41... Metal lead.

Claims (1)

【特許請求の範囲】 1、絶縁性放熱体の上面に互いに分割された第1の金属
膜と第2の金属膜とを有し、前記第1の金属膜は前記放
熱体の側面及び裏面に連続して形成されており、第2の
金属膜上に共晶合金により半導体レーザ素子が固着され
ており前記放熱体は導電性台座の上に固着されており、
前記半導体レーザ素子の上側電極と前記第1の金属膜と
は第1導電性ワイヤにより接続され、前記第2の金属膜
は給電用端子に第2の導電性ワイヤにより接続されてい
ることを特徴とする半導体レーザ装置。 2、絶縁性放熱体の上面に互いに分割された第1、第2
の金属膜を有し、前記放熱体の下面には互いに分割され
た第3、第4の金属膜を有し、前記第1と第3の金属膜
、前記第2の第4の金属膜はそれぞれ前記放熱体側面を
経由して連続しており、前記第2の金属膜の上には共晶
合金により半導体レーザ素子が固着されており、前記半
導体レーザ素子の上側電極と前記第1の金属膜とは導電
性ワイヤにより接続され、前記放熱体は絶縁性台座の上
に形成された第1、第2の金属配線の上に、前記第3の
金属膜と前記第1の金属配線とが接触し、更に前記第4
の金属膜と前記第2の金属配線とが接触するように固着
されていることを特徴とする半導体レーザ装置。
[Claims] 1. A first metal film and a second metal film are separated from each other on the upper surface of the insulating heat sink, and the first metal film is provided on the side and back surfaces of the heat sink. are formed continuously, a semiconductor laser element is fixed on the second metal film by a eutectic alloy, and the heat sink is fixed on a conductive pedestal,
The upper electrode of the semiconductor laser element and the first metal film are connected by a first conductive wire, and the second metal film is connected to a power supply terminal by a second conductive wire. Semiconductor laser device. 2. The first and second parts are separated from each other on the upper surface of the insulating heat sink.
The lower surface of the heat sink has third and fourth metal films separated from each other, and the first and third metal films, the second and fourth metal films are separated from each other. A semiconductor laser element is fixed on the second metal film by a eutectic alloy, and an upper electrode of the semiconductor laser element and the first metal film are connected to each other via the side surface of the heat sink. The third metal film and the first metal wiring are connected to the film by a conductive wire, and the heat sink is connected to the third metal film and the first metal wiring on the first and second metal wiring formed on the insulating pedestal. contact, and further the fourth
A semiconductor laser device, wherein the metal film and the second metal wiring are fixed so as to be in contact with each other.
JP10243189A 1989-04-21 1989-04-21 Semiconductor laser device Pending JPH02281679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10243189A JPH02281679A (en) 1989-04-21 1989-04-21 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10243189A JPH02281679A (en) 1989-04-21 1989-04-21 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH02281679A true JPH02281679A (en) 1990-11-19

Family

ID=14327277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10243189A Pending JPH02281679A (en) 1989-04-21 1989-04-21 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH02281679A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054534U (en) * 1991-02-18 1993-01-22 三菱電機株式会社 Laser diode chip carrier
US7605402B2 (en) 2003-12-26 2009-10-20 Opnext Japan, Inc. Structure of chip carrier for semiconductor optical device, optical module, and optical transmitter and receiver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054534U (en) * 1991-02-18 1993-01-22 三菱電機株式会社 Laser diode chip carrier
US7605402B2 (en) 2003-12-26 2009-10-20 Opnext Japan, Inc. Structure of chip carrier for semiconductor optical device, optical module, and optical transmitter and receiver

Similar Documents

Publication Publication Date Title
US5090119A (en) Method of forming an electrical contact bump
US4538170A (en) Power chip package
US3964157A (en) Method of mounting semiconductor chips
JPH01173627A (en) Integrated circuit package
US6433424B1 (en) Semiconductor device package and lead frame with die overhanging lead frame pad
EP0139517B1 (en) Improvements in or relating to diamond heatsink assemblies
JPH0758413A (en) Optical semiconductor device
JPH02281679A (en) Semiconductor laser device
JPS5850021B2 (en) Manufacturing method for semiconductor devices
JPS59229850A (en) Semiconductor device
JPS63318193A (en) Sub-mount for optical semiconductor
JPH01150379A (en) Light emitting device
JPH06188516A (en) Semiconductor device and fabrication thereof
JP4005937B2 (en) Thermoelectric module package
JPS61234588A (en) Submount for optical semiconductor element
JPS62150837A (en) Semiconductor device
EP0032565A1 (en) Mounting and packaging of silicon devices on ceramic substrates, and packaged silicon devices
JPH02116186A (en) Semiconductor laser
JPH0513603A (en) Semiconductor integrated circuit device
JPS6325993A (en) Optical coupling device
JPS5826675B2 (en) Hand tie souchi
JPS63245986A (en) Semiconductor laser
JPH0722708A (en) Semiconductor laser device and its mounting method
JPH0497581A (en) Heat sink of semiconductor device
JPH04283948A (en) Submount for optical semiconductor device