JPH0228127B2 - KUKANHIKARIHENCHOKANNOSEIZOHOHO - Google Patents

KUKANHIKARIHENCHOKANNOSEIZOHOHO

Info

Publication number
JPH0228127B2
JPH0228127B2 JP4118083A JP4118083A JPH0228127B2 JP H0228127 B2 JPH0228127 B2 JP H0228127B2 JP 4118083 A JP4118083 A JP 4118083A JP 4118083 A JP4118083 A JP 4118083A JP H0228127 B2 JPH0228127 B2 JP H0228127B2
Authority
JP
Japan
Prior art keywords
light modulation
electro
plate
vacuum
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4118083A
Other languages
Japanese (ja)
Other versions
JPS59166916A (en
Inventor
Tsutomu Hara
Nobuyuki Hirai
Takashi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP4118083A priority Critical patent/JPH0228127B2/en
Publication of JPS59166916A publication Critical patent/JPS59166916A/en
Publication of JPH0228127B2 publication Critical patent/JPH0228127B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Description

【発明の詳細な説明】 (発明の分野) 本発明は空間光変調管の製造方法に関する。[Detailed description of the invention] (Field of invention) The present invention relates to a method for manufacturing a spatial light modulation tube.

(発明の背景) 第1図を参照して空間光変調装置の基本的構成
と問題点に言及する。
(Background of the Invention) The basic configuration and problems of a spatial light modulation device will be described with reference to FIG.

空間光変調管3は第1図に示すように有底円筒
系の真空気密容器4の一方の底面の内壁に光電面
5、他の底面の内壁に電気光学結晶から作られた
光変調板9が設けられている。
As shown in FIG. 1, the spatial light modulation tube 3 has a bottomed cylindrical vacuum-tight container 4 with a photocathode 5 on the inner wall of one bottom surface and a light modulation plate 9 made of electro-optic crystal on the inner wall of the other bottom surface. is provided.

前記2つの底面は透明である。 The two bottom surfaces are transparent.

さらに前記光電面5と光変調板9の間に前記光
電面5から放出した電子像を前記光変調板9の面
92上に結像するための集束電極6および前記光
変調板9の面92から放出した2次電子を捕集す
るための捕集電極8を設けたものである。なお、
必要に応じてマイクロチヤンネルプレートのよう
な2次電子増倍器7を組み込むこともある。
Further, between the photocathode 5 and the light modulation plate 9, there is a focusing electrode 6 for focusing an electron image emitted from the photocathode 5 onto a surface 92 of the light modulation plate 9, and a surface 92 of the light modulation plate 9. A collection electrode 8 is provided for collecting secondary electrons emitted from the . In addition,
If necessary, a secondary electron multiplier 7 such as a microchannel plate may be incorporated.

前述の空間光変調管3において、電源A,B,
CおよびDより各電極に所定の電圧を印加してお
き、光電面5に光学像1′を投影すると前記光電
面5から前記光学像1′に対応する電子像が放出
される。この電子像は、集束、増倍および加速さ
れて光変調板9の面92に入射する。この入射し
た電子像はそのまま光変調板9の面92を帯電す
るか、あるいは2次電子を放出させることによ
り、面92に電荷像を形成する。
In the spatial light modulation tube 3 described above, power supplies A, B,
When a predetermined voltage is applied to each electrode from C and D and an optical image 1' is projected onto the photocathode 5, an electron image corresponding to the optical image 1' is emitted from the photocathode 5. This electron image is focused, multiplied, and accelerated and is incident on the surface 92 of the light modulation plate 9 . The incident electron image directly charges the surface 92 of the light modulating plate 9 or forms a charge image on the surface 92 by emitting secondary electrons.

光変調板9は電気光学結晶を極めて高い精度で
均一な厚さに研麿したものであり、光変調板9の
第2の面に透明電極91を密着してある。電気光
学結晶は前記面92の電荷と透明電極9に加えら
れた電圧による電界によつて光の屈折率が単調に
変化させれる性質を有するものである。
The light modulation plate 9 is made of electro-optic crystal polished to a uniform thickness with extremely high precision, and a transparent electrode 91 is closely attached to the second surface of the light modulation plate 9. The electro-optic crystal has the property that the refractive index of light can be monotonically changed by the electric field caused by the charge on the surface 92 and the voltage applied to the transparent electrode 9.

したがつて、前述のように光変調板9の第1の
面92に電荷像が形成されると光変調板9の内部
は前記電荷像に対応した光の屈折率の分布の像が
生成される。
Therefore, when a charge image is formed on the first surface 92 of the light modulation plate 9 as described above, an image of the refractive index distribution of light corresponding to the charge image is generated inside the light modulation plate 9. Ru.

図において13は点光源、12はコリメータレ
ンズ,11は単色フイルタ,10は半透明鏡であ
り、これ等により、光変調板9は垂直に単色光で
一様に照射される。
In the figure, 13 is a point light source, 12 is a collimator lens, 11 is a monochromatic filter, and 10 is a semi-transparent mirror, and the light modulating plate 9 is vertically and uniformly irradiated with monochromatic light.

この単色光の電気ベクトルをe=exp jωt
(ω:光の角周波数)と表すと、結晶の電荷像が
形成された面92から反射してきた光が電極91
面に達した時にその電気ベクトルは、 A=a・exp j(ωt―2kZ) となり、一方、91面での反射光は、 B=b・exp j(ωt―π) となる。
The electric vector of this monochromatic light is e=exp jωt
(ω: angular frequency of light), the light reflected from the surface 92 on which the charge image of the crystal is formed is transmitted to the electrode 91.
When it reaches the surface, its electric vector becomes A=a・exp j(ωt−2kZ), while the reflected light from the 91 surface becomes B=b・exp j(ωt−π).

ここで、a,bは定数、Zは結晶の厚さ、kは
波数で、n・ω/C0で表される。
Here, a and b are constants, Z is the thickness of the crystal, and k is the wave number, which is expressed as n·ω/C 0 .

C0は真空中の光速、nは結晶の屈折率である。
そのため、91面,92面からの反射光の干渉出力
は、 I=a2+b2−2ab・cos2ω・n・Z/C0 となる。
C 0 is the speed of light in vacuum, and n is the refractive index of the crystal.
Therefore, the interference output of the reflected light from the 91st and 92nd surfaces is I=a 2 +b 2 −2ab·cos2ω·n·Z/C 0 .

出力光強度は屈折率nによつて変調され、電荷
像に依存することがわかる。
It can be seen that the output light intensity is modulated by the refractive index n and depends on the charge image.

前記光変調板9から得られる光学像は半透明鏡
10によつて光源13と垂直な方向にある面14
に形成される。
The optical image obtained from the light modulating plate 9 is transmitted by a semi-transparent mirror 10 to a surface 14 in a direction perpendicular to the light source 13.
is formed.

このようにして空間光変調管は光学像を増強
し、あるいは点光源13がレーザー光源であれ
ば、インコヒーレント光による光学像をコヒーレ
ント光による光学像に変換することができる。
In this way, the spatial light modulation tube can intensify the optical image, or if the point light source 13 is a laser light source, it can convert an optical image created by incoherent light into an optical image created by coherent light.

前記構成の空間光変調管3において光変調板9
の厚さが比較的に厚いとき、面92上の微小な点
Pに帯電した電荷による電界は第2図aに示すよ
うに前記の点を中心としてその周囲にδ1で示すよ
うに広く拡がる。
In the spatial light modulation tube 3 having the above configuration, the light modulation plate 9
When the thickness of P is relatively thick, the electric field due to the electric charge at a minute point P on the surface 92 spreads widely around the point as shown by δ 1 with the point as the center, as shown in Figure 2a. .

これに対して光変調板9の厚さが比較的に薄い
ときは第2図Bで示すように面92の上の微小な
点Pに帯電した電荷による電界δ2のように小さく
なる。
On the other hand, when the thickness of the light modulating plate 9 is relatively thin, the electric field δ 2 due to the electric charges charged at a minute point P on the surface 92 becomes small as shown in FIG. 2B.

このことから空間光変調管3から取り出される
出力像は光変調板9が薄い方が解像度が良くなる
ことが容易に理解できる。
From this, it can be easily understood that the resolution of the output image taken out from the spatial light modulation tube 3 is better when the light modulation plate 9 is thinner.

本願発明者は、可視領域の波長の4分の1より
小さな平坦度で可能な限り電気光学結晶を薄く研
磨して、空間変調管に組み込んだ。すなわち直径
20mm,厚さ0.5mmのニオブ酸リチウム結晶を用い
て装置を構成した。このようにして得られた空間
光変調装置の解像度は、 5line/mm である。
The inventor of this application polished an electro-optic crystal to be as thin as possible with a flatness smaller than one-fourth of the wavelength in the visible region, and incorporated the crystal into a spatial modulation tube. i.e. diameter
The device was constructed using lithium niobate crystals of 20 mm and 0.5 mm thickness. The spatial light modulator thus obtained has a resolution of 5 lines/mm.

ニオブ酸リチウム結晶を前述の厚さより薄くし
ようとしても、結晶が反つてしまうので使用に耐
えられない。
Even if an attempt was made to make the lithium niobate crystal thinner than the above-mentioned thickness, the crystal would warp, making it unusable.

(発明の目的) 本発明の目的は、極めて薄い電気光学結晶によ
り光変調板を得て、解像度の優れた空間光変調管
を得ることができる製造方法を提供することにあ
る。
(Objective of the Invention) An object of the present invention is to provide a manufacturing method capable of obtaining a spatial light modulating tube with excellent resolution by obtaining a light modulating plate using an extremely thin electro-optic crystal.

(発明の構成および作用) 前記目的を達成するために本発明による空間光
変調管の製造方法は、真空気密容器の透明な第1
の底面の内壁に形成した電子源と、透明な第2の
底面の内壁に形成した電気光学結晶からなる光変
調板と、前記電子源と前記光変調板との間に配置
した電子源から発生した電子を加速し、前記光変
調板の面に結像する電子光学系を形成する集束電
極と前記光変調板の面から放出した二次電子を捕
集する捕集電極を有する空間光変調管の製造方法
において、前記真空気密容器の第2の底面を形成
するガラス円板の内面に透明導電膜を形成し、少
なくとも一つの面を研摩した電気光学結晶をその
研摩した面において前記透明導電膜に透明接着剤
で接着し、前記電気光学結晶を前記透明導電膜に
接着した面に平行な面で研摩した後前記電気光学
結晶が前記真空気密容器内に収容されるように前
記ガラス円板を前記真空気密容器の側壁を構成す
る円筒端面に接合して構成されている。
(Structure and operation of the invention) In order to achieve the above object, the method for manufacturing a spatial light modulation tube according to the present invention provides
an electron source formed on the inner wall of the bottom surface of the , a light modulation plate made of electro-optic crystal formed on the inner wall of the transparent second bottom surface, and an electron source disposed between the electron source and the light modulation plate. a spatial light modulation tube having a focusing electrode that forms an electron optical system that accelerates the electrons and forms an image on the surface of the light modulation plate; and a collection electrode that collects secondary electrons emitted from the surface of the light modulation plate. In the manufacturing method, a transparent conductive film is formed on the inner surface of a glass disk forming the second bottom surface of the vacuum-tight container, and an electro-optic crystal having at least one surface polished is coated with the transparent conductive film on the polished surface. After bonding the electro-optic crystal to the transparent conductive film with a transparent adhesive and polishing the electro-optic crystal on a surface parallel to the surface bonded to the transparent conductive film, the glass disc is placed so that the electro-optic crystal is housed in the vacuum-tight container. It is configured to be joined to a cylindrical end surface constituting a side wall of the vacuum-tight container.

(実施例の説明) 内径38mm,長さ150mmのガラス円筒の一端に円
形のガラス板で封着して、光電面形成用の第1の
底面を形成する。
(Description of Examples) A circular glass plate is sealed to one end of a glass cylinder having an inner diameter of 38 mm and a length of 150 mm to form a first bottom surface for forming a photocathode.

次に略円筒系の集束電極6,マイクロチヤンネ
ルプレート7,網状の捕集電極8を順次このガラ
ス円筒の中に組み込む(第3図参照)。
Next, a substantially cylindrical focusing electrode 6, a microchannel plate 7, and a net-like collecting electrode 8 are sequentially assembled into this glass cylinder (see FIG. 3).

他方、第2の底面となる直径38mmのガラス円板
19の1つの面に酸化インジウム錫からなる導電
層20を形成する。この酸化インジウム錫からな
る層に1つの面を研磨した厚さ1mmのニオブ酸リ
チウムの板状の結晶22を透明なエポキシ樹脂2
1で貼りつける。
On the other hand, a conductive layer 20 made of indium tin oxide is formed on one surface of a glass disk 19 having a diameter of 38 mm and serving as the second bottom surface. A plate-shaped crystal 22 of lithium niobate with a thickness of 1 mm with one side polished on this layer made of indium tin oxide is coated with a transparent epoxy resin 2.
Paste in 1.

次に前記ニオブ酸リチウムを下記のようにして
研磨する。前記ガラス円板19を前記結晶22を
下向きにして治具に固定する。
Next, the lithium niobate is polished as follows. The glass disk 19 is fixed to a jig with the crystal 22 facing downward.

回転研磨板に前記結晶22を接触させる。 The crystal 22 is brought into contact with a rotating polishing plate.

前記回転研磨板は、結晶表面の平滑度が良くな
るにつれて、順次、鉄板,はんだ板,フエルト板
に切換え、結晶の厚さが0.1mmに達するまで研磨
する。
As the smoothness of the crystal surface improves, the rotary polishing plate is sequentially replaced with an iron plate, a solder plate, and a felt plate, and polishing is performed until the crystal thickness reaches 0.1 mm.

研磨したニオブ酸リチウムの厚さの均一性は以
下のように検査した。ヘリウムネオンレーザ光を
光源とするマイケルソンの干渉計を用いて測定し
たところ直線の干渉縞が観測された。
The thickness uniformity of the polished lithium niobate was tested as follows. When measured using a Michelson interferometer with a helium-neon laser light source, straight interference fringes were observed.

すなわち前述の研磨により平面度をヘリウムネ
オンレーザ光の波長632.8nano mの4分の1より
十分小さくすることができた。
That is, by the polishing described above, the flatness could be made sufficiently smaller than one-fourth of the wavelength of helium-neon laser light, 632.8 nanometers.

前記ニオブ酸リチウムの結晶を研磨した後、結
晶が真空気密容器中に収容されるようにガラス円
筒と前記結晶を貼りつけたガラス円板19とを封
着する。
After polishing the lithium niobate crystal, the glass cylinder and the glass disk 19 to which the crystal is attached are sealed together so that the crystal is housed in a vacuum-tight container.

次にガラス気密容器内を真空に排気する。 Next, the inside of the glass airtight container is evacuated.

次にガラス気密容器の第1の底面内壁にあらか
じめ内蔵してあるモリブデン線に取付けたアンチ
モン球(図示してない)からモリブデン線を通電
過熱してアンチモンを蒸着し、さらにアルカリ金
属のアンプルを包む枝管(図示してない)からア
ルカリ金属を導入して前記底面内壁に光電面を形
成する。
Next, an antimony bulb (not shown) attached to a molybdenum wire pre-built into the first bottom inner wall of the glass airtight container is heated by passing electricity through the molybdenum wire to vapor-deposit antimony, and then wrap the alkali metal ampoule. An alkali metal is introduced from a branch pipe (not shown) to form a photocathode on the inner wall of the bottom surface.

上記実施例では、電子源として光電面の場合を
示したが、電子銃を電子源として書込みを行う形
式の場合も、本発明は同様に適用できる。
In the above embodiment, a photocathode is used as the electron source, but the present invention can be similarly applied to a type of writing using an electron gun as the electron source.

(発明の効果の説明) 前述のようにして製造された空間光変調管の光
電面にテストチヤートの像を投影し、波長ヘリウ
ムネオンレーザ632.8nano mのレーザ光を光変調
板に照射したところ 18 line/mm の解像度の像が得られた。
(Description of effects of the invention) The image of the test chart was projected onto the photocathode of the spatial light modulation tube manufactured as described above, and the light modulation plate was irradiated with laser light of a wavelength of 632.8 nanometers from a helium neon laser.18 Images with a resolution of line/mm were obtained.

すなわち本発明方法によれば、従来の装置より
3倍以上解像度の優れた装置が提供できる。
That is, according to the method of the present invention, it is possible to provide a device with a resolution three times or more superior to that of conventional devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は空間光変調装置の基本構成を示す略図
である。第2図は光変調板と電界の関係を示す略
図である。第3図は本発明による空間光変調管の
製造方法を説明するための略図である。第4図は
研磨工程を説明するための略図である。 1……被写体、2……レンズ、3……空間光変
調管、4……真空気密容器、5……光電面、6…
…集束電極、7……マイクロチヤンネルプレート
(2次電子増倍器)、8……捕集電極、9……光変
調板、10……半透明鏡、11……単色フイル
タ、12……コリメータレンズ、13……点光
源、19……第2の底面、20……導電層、21
……エポキシ層、22……結晶。
FIG. 1 is a schematic diagram showing the basic configuration of a spatial light modulation device. FIG. 2 is a schematic diagram showing the relationship between a light modulation plate and an electric field. FIG. 3 is a schematic diagram for explaining a method of manufacturing a spatial light modulation tube according to the present invention. FIG. 4 is a schematic diagram for explaining the polishing process. 1...Subject, 2...Lens, 3...Spatial light modulation tube, 4...Vacuum-tight container, 5...Photocathode, 6...
... Focusing electrode, 7 ... Microchannel plate (secondary electron multiplier), 8 ... Collection electrode, 9 ... Light modulation plate, 10 ... Semi-transparent mirror, 11 ... Monochromatic filter, 12 ... Collimator Lens, 13... Point light source, 19... Second bottom surface, 20... Conductive layer, 21
...Epoxy layer, 22...Crystal.

Claims (1)

【特許請求の範囲】[Claims] 1 真空気密容器の透明な第1の底面の内壁に形
成した電子源と、透明な第2の底面の内壁に形成
した電気光学結晶からなる光変調板と、前記電子
源と前記光変調板との間に配置した電子源から発
生した電子を加速し、前記光変調板の面に結像す
る電子光学系を形成する集束電極と前記光変調板
の面から放出した二次電子を補集する捕集電極を
有する空間光変調管の製造方法において、前記真
空気密容器の第2の底面を形成するガラス円板の
内面に透明導電膜を形成し、少なくとも一つの面
を研摩した電気光学結晶をその研摩した面におい
て前記透明導電膜に透明接着剤で接着し、前記電
気光学結晶を前記透明導電膜に接着した面に平行
な面で研摩した後前記電気光学結晶が前記真空気
密容器内に収容されるように前記ガラス円板を前
記真空気密容器の側壁を構成する円筒端面に接合
して構成したことを特徴とする空間光変調管の製
造方法。
1. An electron source formed on the inner wall of a transparent first bottom surface of a vacuum-tight container, a light modulation plate made of an electro-optic crystal formed on the inner wall of a transparent second bottom surface, and the electron source and the light modulation plate. A focusing electrode forms an electron optical system that accelerates electrons generated from an electron source placed between the electrodes and forms an image on the surface of the light modulation plate, and collects secondary electrons emitted from the surface of the light modulation plate. A method for manufacturing a spatial light modulation tube having a collection electrode includes an electro-optic crystal in which a transparent conductive film is formed on the inner surface of a glass disk forming the second bottom surface of the vacuum-tight container, and at least one surface is polished. The polished surface is adhered to the transparent conductive film with a transparent adhesive, and after polishing the electro-optic crystal in a plane parallel to the surface adhered to the transparent conductive film, the electro-optic crystal is housed in the vacuum-tight container. A method for manufacturing a spatial light modulation tube, characterized in that the glass disk is joined to a cylindrical end surface constituting a side wall of the vacuum-tight container.
JP4118083A 1983-03-11 1983-03-11 KUKANHIKARIHENCHOKANNOSEIZOHOHO Expired - Lifetime JPH0228127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4118083A JPH0228127B2 (en) 1983-03-11 1983-03-11 KUKANHIKARIHENCHOKANNOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4118083A JPH0228127B2 (en) 1983-03-11 1983-03-11 KUKANHIKARIHENCHOKANNOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS59166916A JPS59166916A (en) 1984-09-20
JPH0228127B2 true JPH0228127B2 (en) 1990-06-21

Family

ID=12601226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4118083A Expired - Lifetime JPH0228127B2 (en) 1983-03-11 1983-03-11 KUKANHIKARIHENCHOKANNOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0228127B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03120123U (en) * 1990-03-20 1991-12-10

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124887A (en) * 1987-11-10 1989-05-17 Hamamatsu Photonics Kk Synthetic hologram recording method for observation of stereoscopic image
JPH01189625A (en) * 1988-01-25 1989-07-28 Hamamatsu Photonics Kk Spatial light modulating tube
JP2636037B2 (en) * 1989-03-17 1997-07-30 日本碍子株式会社 Optical image conversion device
JP2599832B2 (en) * 1991-02-08 1997-04-16 日本碍子 株式会社 Manufacturing method of spatial light modulator
NO20021592D0 (en) 2002-04-04 2002-04-04 Fmc Biopolymer As Polysaccharide Capsules and Method of Preparation thereof
EP1991196B1 (en) 2006-03-03 2016-10-12 Fmc Corporation Method and apparatus for the preparation of capsules.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03120123U (en) * 1990-03-20 1991-12-10

Also Published As

Publication number Publication date
JPS59166916A (en) 1984-09-20

Similar Documents

Publication Publication Date Title
JPH0228127B2 (en) KUKANHIKARIHENCHOKANNOSEIZOHOHO
JPS5864742A (en) Space modulating device
Hara et al. Microchannel spatial light modulator with improved resolution and contrast ratio
JPH058807B2 (en)
US2267251A (en) Television receiver
GB1431280A (en) X-ray image converter
US3902012A (en) Color deformographic storage target
JPH0447289B2 (en)
JPS6242117A (en) Spatial optical modulation tube
JPS61122627A (en) Space optical modulating tube
US4763996A (en) Spatial light modulator
JP2731220B2 (en) Image conversion element and X-ray image detection method using the same
JPS6242118A (en) Spatial optical modulating tube
JPH0230494B2 (en)
JP2542471B2 (en) Image tube
JPH0422482B2 (en)
JPS608822A (en) Spatial optical modulation tube
JPS608823A (en) Spatial optical modulator
JPS59189542A (en) Space optical modulation tube
JP2520176B2 (en) Spatial light modulator
JPS61158654A (en) Space light modulator
JP2520175B2 (en) Spatial light modulator
JPS616622A (en) Optical modulator
JPH0234367B2 (en)
JPH0542648B2 (en)