JPH02281120A - Pressure-gage calibrating apparatus - Google Patents

Pressure-gage calibrating apparatus

Info

Publication number
JPH02281120A
JPH02281120A JP10377989A JP10377989A JPH02281120A JP H02281120 A JPH02281120 A JP H02281120A JP 10377989 A JP10377989 A JP 10377989A JP 10377989 A JP10377989 A JP 10377989A JP H02281120 A JPH02281120 A JP H02281120A
Authority
JP
Japan
Prior art keywords
pressure
calibration
precision
output
pressures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10377989A
Other languages
Japanese (ja)
Other versions
JP2597710B2 (en
Inventor
Michio Saito
斎藤 道雄
Yukio Matsunaga
松永 征雄
Tatsuo Kagifuku
辰緒 鍵福
Taichi Koyashiki
小屋敷 太一
Seiki Wakita
清貴 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Chubu Electric Power Co Inc
Original Assignee
Toshiba Corp
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Chubu Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP1103779A priority Critical patent/JP2597710B2/en
Publication of JPH02281120A publication Critical patent/JPH02281120A/en
Application granted granted Critical
Publication of JP2597710B2 publication Critical patent/JP2597710B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to perform calibration at multiple points in a short time highly accurately by obtaining input/output characteristic curves based on mea sured pressure signals and calibrating pressures, comparing the input/output characteris tic curves with predetermined characteristic curves in specifications, and judging the accuracy of a pressure measuring means. CONSTITUTION:When a pressure measuring means 11 which measures the pressure in a plant, pressures corresponding to a plurality of calibrating pressures are sequential ly applied on the means 11 from a pressure generating means 12. The pressures which are applied to the means 11 from the means 12 at this time are measured with a precise pressure measuring means 13. The pressures generated in the means 12 are controlled so that the pressure which is measured with the means 13 becomes the predetermined calibrating pressure. A measured pressure signal which is measured with the means 11 for every calibrating pressure is received and stored in a control/ operating means 14. The input/output characteristic curves of the means 11 are obtained based on said measured pressure signal and the calibrating pressure. The accuracy of the means 11 can be judged based on the input/output characteristic curves and the characteristic curves in specifications which are provided beforehand for the means 11.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、原子カプラントその他各種のプラント等に設
置される多数の圧力計器を自動的に校正する圧力計器校
正装置に係わり、特に多点校正作業の省力化を実現する
圧力計器校正装置に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a pressure gauge calibration device that automatically calibrates a large number of pressure gauges installed in nuclear couplants and other various plants, and particularly relates to a pressure gauge calibration device that automatically calibrates a large number of pressure gauges installed in nuclear couplants and other various plants. This invention relates to a pressure gauge calibration device that saves labor.

(従来の技術) この種の工業用プラントでは配管内に流れる流体の圧力
あるいは差圧等を測定するために随所に圧力スイッチ、
圧カドランスミッタ等の圧力計器が設置されている。こ
れら圧力計器は、一般にプラントの運転状態を監視する
目的で使用されているので常に所望とする精度を維持す
る必要があり、ここに圧力計器の校正を適正に行うこと
が非常に重要となってくる。
(Prior art) In this type of industrial plant, pressure switches are installed at various locations to measure the pressure or differential pressure of the fluid flowing in the piping.
Pressure gauges such as pressure quadrature transmitters are installed. These pressure gauges are generally used for the purpose of monitoring plant operating conditions, so they must always maintain the desired accuracy, which is why it is extremely important to properly calibrate pressure gauges. come.

ところでJ従来、原子カプラントにおける配管内の流体
圧力の測定は、第9図に示すように配管に設置された圧
力計器1で配管内の流体圧力を測定した後、この測定信
号を精密抵抗器2を通して圧力指示器3を導入し、ここ
で圧力指示器3の指示値から流体圧力を得ている。
By the way, conventionally, in order to measure the fluid pressure inside the piping in an atomic coupler, as shown in FIG. The pressure indicator 3 is introduced through the pressure indicator 3, and the fluid pressure is obtained from the indicated value of the pressure indicator 3 here.

一方、圧力計器1の校正時には、圧力計器1に配管4を
介して加圧ポンプ5および精密圧力計6を接続した後、
校正員が加圧ポンプ5を操作して配管4内に空気圧を送
り込みながら、そのときの精密圧力計6の測定値が所望
とする校正用圧力となる様に前記加圧ポンプ5から空気
圧を送り出し、このときの圧力指示器3の指示値を記録
する。このような校正用圧力の印加操作は、圧力計器1
の各測定レンジについて、0%→100%、100%→
0%の各範囲ごとに数点ずつ行い、そのときの圧゛力指
示器3の指示値を順次記録していく。その後、この測定
指示値と校正用圧力とを比較し、その差が予め設定され
る許容精度範囲内に入っているか否かを判断し、許容範
囲外の場合には圧力計器1の調整を行う。
On the other hand, when calibrating the pressure gauge 1, after connecting the pressure pump 5 and the precision pressure gauge 6 to the pressure gauge 1 via the piping 4,
While the proofreader operates the pressure pump 5 to send air pressure into the piping 4, the proofreader sends out air pressure from the pressure pump 5 so that the measured value of the precision pressure gauge 6 at that time becomes the desired calibration pressure. , record the indicated value of the pressure indicator 3 at this time. This operation of applying pressure for calibration is performed using the pressure gauge 1.
For each measurement range, 0%→100%, 100%→
The measurement is carried out at several points in each range of 0%, and the indicated value of the pressure indicator 3 at that time is sequentially recorded. After that, this measured value is compared with the calibration pressure, and it is determined whether the difference is within a preset allowable accuracy range, and if it is outside the allowable range, the pressure gauge 1 is adjusted. .

(発明が解決しようとする課題) しかし、以上のような校正装置では次のような問題点が
指摘されている。
(Problems to be Solved by the Invention) However, the following problems have been pointed out in the above-described calibration device.

(1) 校正員が精密圧力計6の精密測定値の読取り、
加圧ポンプ5の操作および圧力指示器3の測定圧力の記
録等を行うので、校正作業に対する校正凡の負担が非常
に大きいこと。
(1) The proofreader reads the precise measurement value of the precision pressure gauge 6,
Since the pressure pump 5 is operated and the pressure measured by the pressure indicator 3 is recorded, the burden of calibration work is very large.

(2) また、精密圧力計6の精密測定値を読取りなが
ら加圧ポンプ5から校正用圧力を印加し、かつ、そのと
きの測定圧力を記録するので、校正作業に長時間を必要
とする問題がある。
(2) In addition, since the pressure for calibration is applied from the pressure pump 5 while reading the precise measurement value of the precision pressure gauge 6, and the measured pressure at that time is recorded, the calibration work requires a long time. There is.

(3) さらに、圧力計器の校正は、正常な計器を用い
て測定した結果から得られる特性曲線から正および負で
最大どの位の誤差があるかを判断しながら行う必要があ
るので、校正試験点数は多い方が望ましい。しかし、従
来の校正装置では、1点あたりの測定に時間がかかるだ
けでなく、原子カプラントのように数百台にも及ぶ圧力
計器1を備えている場合には13当たりに裂くことので
きる校正作業時間は限られおり、ひいては校正試験点数
にもおのずと制限が出てくる問題がある。
(3) Furthermore, when calibrating a pressure meter, it is necessary to judge the maximum positive and negative error from the characteristic curve obtained from the measurement results using a normal meter, so the calibration test The higher the score, the better. However, with conventional calibration equipment, not only does it take a long time to measure each point, but in the case of an atomic couplant equipped with hundreds of pressure gauges 1, the calibration can be divided into 13 parts. There is a problem in that the work time is limited, which naturally limits the number of calibration test scores.

本発明は以上のような問題点を解決するためになされた
もので、校正作業時に所望とする圧力を安定に供給でき
、かつ、短時間に多点校正を高精度に行い得る圧力計器
校正装置を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and provides a pressure gauge calibration device that can stably supply desired pressure during calibration work and can perform multi-point calibration with high accuracy in a short time. The purpose is to provide

(課題を解決するための手段) 本発明による圧力計器校正装置は上記課題を解決するた
めに、第1図に示すようにプラント中の圧力を測定し、
その圧力測定信号を出力する圧力測定手段11と、この
圧力測定手段を校正する場合に、前記圧力測定手段に圧
力を印加する圧力発生手段12と、この圧力発生手段か
ら発生された圧力を測定し、精密測定信号を出力する精
密圧力測定手段13と、予め複数の校正用圧力が設定さ
れ、各校正用圧力毎に前記精密圧力測定手段の精密測定
信号が該校正用圧力を示すよう前記圧力発生手段からの
圧力を制御する圧力制御信号を前記圧力測定手段に供給
し、かつ、該各校正用圧力毎に前記圧力発生手段から出
力される圧力に応じて前記圧力41す定手段から出力さ
れる圧力測定信号を記憶すると共に、それらの圧力測定
信号と校正用圧力から圧力測定手段の入出力特性曲線を
求め、この入出力特性曲線と予め設けてある圧力測定手
段の仕様特性曲線とを比較し、前記圧力測定手段の精度
の判定を行う制御・演算手段14とを備えたちのである
(Means for Solving the Problems) In order to solve the above problems, the pressure gauge calibration device according to the present invention measures the pressure in a plant as shown in FIG.
A pressure measuring means 11 that outputs the pressure measurement signal, a pressure generating means 12 that applies pressure to the pressure measuring means when calibrating the pressure measuring means, and a pressure generating means 12 that measures the pressure generated from the pressure generating means. , a precision pressure measurement means 13 that outputs a precision measurement signal; and a plurality of calibration pressures are set in advance, and the pressure is generated so that the precision measurement signal of the precision pressure measurement means indicates the calibration pressure for each calibration pressure. A pressure control signal for controlling the pressure from the means is supplied to the pressure measuring means, and the pressure 41 is output from the pressure measuring means in accordance with the pressure output from the pressure generating means for each calibration pressure. While storing the pressure measurement signals, the input/output characteristic curve of the pressure measurement means is determined from those pressure measurement signals and the calibration pressure, and this input/output characteristic curve is compared with a predetermined specification characteristic curve of the pressure measurement means. , and control/calculation means 14 for determining the accuracy of the pressure measuring means.

(作用) 従って、本発明は以上のような手段を講じたことにより
、プラント中の圧力を測定する圧力測定手段を校正する
場合、その圧力発生手段から複数の校正用圧力に相当す
る圧力を順次圧力測定手段に印加すると共に、このとき
の圧力発生手段から圧力測定手段に印加される圧力を精
密圧力測定手段により測定し、この精密圧力測定手段で
測定した圧力が予め定めた校正用圧力となるように前記
圧力発生手段から発生する圧力を制御する。そして、前
記校正用圧力毎に前記圧力測定手段で測定した圧力測定
信号を制御・演算手段で取り込んで記憶すると共にこの
圧力測定信号と校正用圧力とから圧力測定手段の入出力
特性曲線を求め、この入出力特性曲線と予め設けた圧力
測定手段の仕様特性曲線とから前記圧力測定手段の精度
を判定するものである。
(Function) Therefore, by taking the above-described measures, the present invention sequentially generates pressures corresponding to a plurality of calibration pressures from the pressure generating means when calibrating the pressure measuring means for measuring the pressure in the plant. At the same time as being applied to the pressure measuring means, the pressure applied from the pressure generating means to the pressure measuring means at this time is measured by a precision pressure measuring means, and the pressure measured by this precision pressure measuring means becomes a predetermined calibration pressure. The pressure generated from the pressure generating means is controlled in such a manner. Then, a pressure measurement signal measured by the pressure measurement means for each of the calibration pressures is captured and stored by a control/calculation means, and an input/output characteristic curve of the pressure measurement means is determined from this pressure measurement signal and the calibration pressure; The accuracy of the pressure measuring means is determined from this input/output characteristic curve and a predetermined specification characteristic curve of the pressure measuring means.

(実施例) 以下、本発明装置の実施例について図面を参照して説明
する。第2図は液体の水圧を用いて正領域圧力について
多点校正を行う本発明装置の一実施例とした構成図であ
る。同図において21はプラントの配管に設置される圧
力測定手段としての圧力計器であって、この圧力計器2
1には制御・演算手段30から圧力発生手段を介して校
正用水圧が供給される。この制御・演算手段30は予め
仕様特性曲線及び校正用圧力の実測定結果による入出力
特性曲線との比較および必要な演算処理を実行する部分
であって、この手段30の一部を構成する演算制御部3
1より校正のために発生させたい水圧に対応する水圧制
御信号が出力し、前記圧力発生手段の一部を構成するD
/A変換器22に導入する。この圧力光、生手段は、演
算制御部31から送られてくるデジタル水圧制御信号を
アナログ水圧制御信号に変換するD/A変換器22のほ
か、電気・水圧変換器23および水タンク24等で構成
されている。この電気・水圧変換器23はアナログ水圧
制御信号を受けその水圧力制御信号に対応する水圧を発
生し、前記圧力計器21および精密圧力センサ25に印
加するが、この加圧に必要な水は水タンク24より得る
ものである。この精密圧力センサ25はその水圧に対応
した精密測定信号をアナログ信号としてA/D変換器2
6に供給し、一方、圧力計器21による水圧測定信号は
制御・演算手段30のデータ処理装置32に送られる。
(Example) Hereinafter, an example of the apparatus of the present invention will be described with reference to the drawings. FIG. 2 is a block diagram showing an embodiment of the apparatus of the present invention that performs multi-point calibration for positive region pressure using liquid water pressure. In the figure, reference numeral 21 denotes a pressure gauge as a pressure measuring means installed in the piping of the plant, and this pressure gauge 2
1 is supplied with water pressure for calibration from the control/calculation means 30 via the pressure generation means. This control/calculation means 30 is a part that performs a comparison in advance with a specification characteristic curve and an input/output characteristic curve based on the actual measurement result of the calibration pressure, and performs necessary calculation processing. Control part 3
1 outputs a water pressure control signal corresponding to the water pressure desired to be generated for calibration, and constitutes a part of the pressure generating means.
/A converter 22. This pressure light and generation means include a D/A converter 22 that converts a digital water pressure control signal sent from the arithmetic control unit 31 into an analog water pressure control signal, an electric/water pressure converter 23, a water tank 24, etc. It is configured. This electric/hydraulic pressure converter 23 receives an analog water pressure control signal, generates water pressure corresponding to the water pressure control signal, and applies it to the pressure gauge 21 and precision pressure sensor 25, but the water required for this pressurization is water. It is obtained from tank 24. This precision pressure sensor 25 converts the precision measurement signal corresponding to the water pressure into an analog signal to the A/D converter 2.
6, while the water pressure measurement signal from the pressure gauge 21 is sent to the data processing device 32 of the control and calculation means 30.

精密圧力センサ25から精密測定信号を受けたA/D変
換器26はデジタル信号に変換し前記演算制御部31に
供給する。ここで。
The A/D converter 26 receives the precision measurement signal from the precision pressure sensor 25, converts it into a digital signal, and supplies it to the arithmetic control section 31. here.

演算制御部31は校正用圧力と精密測定信号を比較し、
偏差があれば精密測定信号が校正用圧力に合致するよう
な補正用水圧制御信号を前記圧力発生手段に送出する。
The calculation control unit 31 compares the calibration pressure and the precision measurement signal,
If there is a deviation, a correction water pressure control signal is sent to the pressure generating means so that the precise measurement signal matches the calibration pressure.

前記データ処理装置32は、複数の水圧測定信号をデー
タとして記憶すると共に得られたデータから入出力特性
曲線を求め、仕様特性曲線との比較を行い、圧力計器2
1が許容精度範囲内で動作しているか否かを判定し、そ
の判定結果を記憶すると共に許容精度範囲外であれば圧
力計器21の調整を行う必要がある。これら一連のデー
タ処理結果は表示器33.プリンタ34に表またはグラ
フとして出力するので、校正員はこの出力に基づいて圧
力計器21の調整を行うことが可能である。
The data processing device 32 stores a plurality of water pressure measurement signals as data, determines an input/output characteristic curve from the obtained data, compares it with a specification characteristic curve, and converts the pressure gauge 2
It is necessary to determine whether or not the pressure gauge 1 is operating within the permissible accuracy range, store the determination result, and adjust the pressure gauge 21 if it is outside the permissible accuracy range. These series of data processing results are displayed on the display 33. Since the information is output as a table or graph to the printer 34, the proofreader can adjust the pressure gauge 21 based on this output.

27は校正用圧力を設定し、その他必要なデータを演算
制御部31等に入力する操作部、35は伝送インタフェ
ースである。
Reference numeral 27 is an operation unit for setting the calibration pressure and inputting other necessary data to the calculation control unit 31, etc., and 35 is a transmission interface.

次に、以上のように構成された装置の動作を説明する。Next, the operation of the apparatus configured as above will be explained.

先ず、校正員が予め操作部27から演算制御部31に校
正すべき点数の校正用圧力を設定すると、演算制御部3
1ではそのデータをメモリ等に格納する。圧力計器21
の校正を必要とする時、操作部27等から開始指令を入
力すると、演算制御部31では予め格納されている複数
の校正用圧力の中から所定゛の順序に基づいて1つの校
正用圧力に対応する水圧制御信号を発生する。ここで、
電気・水圧変換器23は演算制御部31からD/A変換
器22を介して送られてくる水圧制御信号に対応する水
圧を水タンク24からの水を利用しながら発生し、圧力
計器21および精密圧力センサ25に印加する。ここで
、精密圧力センサ25は印加された水圧に対応する精密
測定信号を得、これをA/D変換器26を介して演算制
御部31に導入する。この演算制御部31では前記圧力
発生手段へ送出した校正用圧力と精密測定信号とを比較
し偏差があればその偏差を零とするための補正用水圧制
御信号を発生し、これに伴って電気・水圧変換器23か
ら所望とする校正用圧力に対応する水圧を発生する。し
かして演算制御部31では校正用圧力と精密測定信号が
合致したとき、その旨の信号および必要に応じて精密測
定信号を伝送インタフェース35を介してデータ処理装
置32に送出する。このデータ処理装置32においては
、演算制御部31から両信号が合致した旨の信号を受け
て前記圧力計器21から送られて来る水圧測定信号を取
込んでメモリに格納する。
First, when the proofreader sets the calibration pressure for the number of points to be calibrated in advance from the operation unit 27 to the calculation control unit 31, the calculation control unit 3
1, the data is stored in a memory or the like. Pressure gauge 21
When calibration is required, when a start command is input from the operation unit 27 or the like, the arithmetic control unit 31 selects one calibration pressure from a plurality of pre-stored calibration pressures in a predetermined order. Generate a corresponding water pressure control signal. here,
The electric/water pressure converter 23 uses water from the water tank 24 to generate water pressure corresponding to the water pressure control signal sent from the calculation control section 31 via the D/A converter 22, and generates water pressure using the water from the water tank 24. The pressure is applied to the precision pressure sensor 25. Here, the precision pressure sensor 25 obtains a precision measurement signal corresponding to the applied water pressure, and introduces this to the calculation control section 31 via the A/D converter 26. This arithmetic control unit 31 compares the calibration pressure sent to the pressure generating means with the precision measurement signal, and if there is a deviation, generates a correction water pressure control signal to make the deviation zero, and in conjunction with this, the electric - Generate water pressure corresponding to the desired calibration pressure from the water pressure converter 23. When the calibration pressure and the precise measurement signal match, the arithmetic control unit 31 sends a signal to that effect and, if necessary, a precision measurement signal to the data processing device 32 via the transmission interface 35. The data processing device 32 receives a signal from the arithmetic control section 31 indicating that both signals match, takes in the water pressure measurement signal sent from the pressure gauge 21, and stores it in a memory.

以上のような校正用圧力の印加および補正処理は校正点
ごとに実行し、その都度圧力計器21から出力される水
圧測定信号を取込んでメモリに格納する。しかる後、メ
モリに記憶された各校正圧力における水圧測定信号を用
いて入出力特性曲線を求め、圧力計器21が許容精度範
囲内で動作しているか否かを判定し、その判定結果を表
示器33およびプリンタ34に表やグラフとして出力す
る。ここで、校正員はその判定結果の出力内容から許容
精度範囲外であれば圧力計器21の調整を行う。なお、
判定結果の内容はメモリに格納し必要時に出力すること
もできる。
The above-described calibration pressure application and correction processing are executed for each calibration point, and each time the water pressure measurement signal output from the pressure gauge 21 is captured and stored in the memory. After that, an input/output characteristic curve is determined using the water pressure measurement signal at each calibration pressure stored in the memory, it is determined whether the pressure gauge 21 is operating within the allowable accuracy range, and the determination result is displayed on the display. 33 and printer 34 as a table or graph. Here, the proofreader adjusts the pressure gauge 21 if the output content of the determination result is outside the allowable accuracy range. In addition,
The content of the determination result can also be stored in memory and output when necessary.

従って、以上のような実施例によれば、従来においては
校正点数が多く取れないことおよび校正作業に多くの時
間が必要であったが、本装置では短時間に校正作業を自
動的に行うことができ、プラント等に設置されている多
数の圧力計器21の校正を迅速に行うことができる。ま
た、多数の点数の校正用圧力を用いて校正可能であるの
で圧力計器21の調整を正確に行える。
Therefore, according to the embodiments described above, in the past, it was not possible to obtain a large number of calibration points and a lot of time was required for the calibration work, but with this device, the calibration work can be automatically performed in a short time. This makes it possible to quickly calibrate a large number of pressure gauges 21 installed in a plant or the like. Further, since calibration can be performed using a large number of calibration pressures, the pressure gauge 21 can be adjusted accurately.

以下、本装置と従来装置との関係を説明する。The relationship between this device and the conventional device will be explained below.

従来の校正装置では第3図に示す如く目標とする5つの
校正用圧力を発生させ、そのときの圧力計器での測定圧
力を読み取っている。この場合、少ない点数の校正用圧
力を用いて校正するので、第3図中の各校正点に対し左
右方向に矢印で示す許容範囲を狭くしなければ正確な校
正ができなくなる。
In the conventional calibration device, five target calibration pressures are generated as shown in FIG. 3, and the pressures measured at that time with a pressure gauge are read. In this case, since calibration is performed using a small number of calibration pressures, accurate calibration cannot be performed unless the allowable range shown by arrows in the left and right directions for each calibration point in FIG. 3 is narrowed.

これに対し、本装置においては、第4図に示すように圧
力計器本来の仕様特性曲線と校正試験ブタによる入出力
特性曲線とを比較するので、ある程度校正点がずれても
その校正試験データにより得られるはずの特性曲線上を
移動するのみであるので、容易に特性曲線を得ることが
できる。
In contrast, with this device, as shown in Figure 4, the original specification characteristic curve of the pressure gauge is compared with the input/output characteristic curve obtained by the calibration test pig, so even if the calibration point deviates to some extent, the calibration test data The characteristic curve can be easily obtained by simply moving on the characteristic curve that should be obtained.

また、従来の校正装置においては、校正用圧力の印加や
圧力計器の出力読取り及びデータ整理を全て校正員によ
る手作業で行っているので、圧力計器1台当たりの校正
時間が比較的長く、校正試験点もせいぜいスパン0,2
5,50,75゜100%の往復9点程度に限られてし
まうが、本装置では短時間に数十点の校正試験データお
よび入出力特性曲線、を得ることができ、圧力計器21
の高精度な校正を実現できる。
In addition, in conventional calibration equipment, the application of pressure for calibration, the reading of the output of the pressure gauge, and the data organization are all done manually by the proofreader, so the calibration time per pressure gauge is relatively long. Test points are span 0,2 at most
Although it is limited to about 9 points of reciprocation at 5, 50, 75° 100%, this device can obtain calibration test data and input/output characteristic curves of dozens of points in a short time.
Highly accurate calibration can be achieved.

また、本装置は、印加すべき発生圧力を高精度にしなく
てもシステムの校正精度を高くできるので、従来では圧
力発生のコントロールが非常に難しい水を用いて容易に
校正でき、校正流体の種類を大幅に拡大することができ
る。
In addition, this device can increase the calibration accuracy of the system without making the generated pressure to be applied highly accurate, so it can be easily calibrated using water, which is extremely difficult to control pressure generation in the past, and it can be used with different types of calibration fluids. can be expanded significantly.

なお、上記実施例では電気・水圧変換器23から発生す
る加圧水の圧力を精密圧力センサ25で測定し補正処理
を行っていたが、更に例えば第5図のように加圧水の温
度を検出する温度センサ28およびA/D変換器29を
設け、加圧水の温度信号を演算制御部31へ送出し、こ
こで水温の変化に応じた補正を行うようにすれば、更に
より正確な校正を実現できる。
In the above embodiment, the pressure of the pressurized water generated from the electric/hydraulic converter 23 is measured by the precision pressure sensor 25 and corrected, but in addition, for example, as shown in FIG. 28 and an A/D converter 29 are provided, and the temperature signal of the pressurized water is sent to the arithmetic control section 31, where correction is made in accordance with changes in water temperature, thereby achieving even more accurate calibration.

次に、第6図は本発明装置の他の実施例を示す構成図で
ある。上記第2図および第5図に示す実施例は主として
0点から正領域圧力の他点校正を可能としたが、この第
6図の実施例では負領域の他点校正も可能とした構成で
ある。すなわち、この装置は、加圧装置40および調圧
装置50等よりなる圧力発生手段と、この圧力発生手段
から発生された圧力を測定するプラント等の配管に設置
されている被校正用計器である圧カドランスミッタ等の
圧力計器60と、精密圧力センサ61と、圧力コントロ
ーラ62.サーボアンプ63より成る制御・演算手段と
によって構成されている。
Next, FIG. 6 is a block diagram showing another embodiment of the apparatus of the present invention. The embodiments shown in FIGS. 2 and 5 above mainly allow for other-point calibration of positive region pressure from the 0 point, but the embodiment shown in FIG. 6 has a configuration that also allows other-point calibration of negative region pressure. be. That is, this device is a pressure generating means consisting of a pressurizing device 40, a pressure regulating device 50, etc., and an instrument to be calibrated installed in piping of a plant or the like that measures the pressure generated from this pressure generating means. A pressure gauge 60 such as a pressure quadrature transmitter, a precision pressure sensor 61, and a pressure controller 62. It is constituted by control/calculation means consisting of a servo amplifier 63.

前記加圧装置40は、加圧源としての空気圧を用いて昇
圧制御を行う圧力レギュレータ41およびこの圧力レギ
ュレータ41からの昇圧制御により人口側配管42から
取込んだ校正流体(水)の圧力を昇圧し所定の一次側圧
力を出力するブースタポンプ43で構成されている。
The pressurization device 40 includes a pressure regulator 41 that performs pressure increase control using air pressure as a pressure source, and a pressure increase control from the pressure regulator 41 to increase the pressure of the calibration fluid (water) taken in from the artificial side piping 42. The booster pump 43 outputs a predetermined primary side pressure.

前記調圧装置50は、校正用配管51側に圧力コントロ
ーラ62からの校正印加圧力設定値バタンSv1に対応
する前記サーボアンプ63の出力信号に基づいてブース
タポンプ43からの一次側圧力を制御し所定の校正用圧
力52を得るサボ弁53と、この校正用圧力52の安定
を目的として制御するアキュムレータ54とが設けられ
、またドレン用配管55側には圧力レギュレータ41か
らの空気流量をサーボアンプ63の出力信号に基づいて
制御するサーボ弁56およびこのサーボ弁56からの空
気の流速に応じて背圧側を負圧とする機能を持ったジェ
ットポンプ57か設けられている。また、この調圧装置
50にはノズルフラッパ方式のサーボ弁53を用いてい
るので校正用圧力を零としたときに残圧が生ずるので、
この残圧を除去するためにサーボ弁53にリターン配管
58を介してジェットポンプ57の背圧側へ接続して零
点制御を可能とする。
The pressure regulating device 50 controls the primary side pressure from the booster pump 43 based on the output signal of the servo amplifier 63 corresponding to the calibration applied pressure set value button Sv1 from the pressure controller 62 on the side of the calibration piping 51. A servo valve 53 that obtains a calibration pressure 52 and an accumulator 54 that controls the calibration pressure 52 for the purpose of stabilizing the calibration pressure 52 are provided. A servo valve 56 that is controlled based on an output signal from the servo valve 56 and a jet pump 57 that has a function of creating a negative pressure on the back pressure side according to the flow rate of air from the servo valve 56 are provided. In addition, since this pressure regulator 50 uses a nozzle flapper type servo valve 53, residual pressure is generated when the calibration pressure is set to zero.
In order to remove this residual pressure, the servo valve 53 is connected to the back pressure side of the jet pump 57 via a return pipe 58 to enable zero point control.

前記圧力コントローラ62は、メモリおよびCPU等を
有し、圧力計器60に応じて予めそのレンジ、耐圧、複
数の校正印加圧力設定値パタンsv、、sv2.校正基
準点(目標値)等が設定され、その設定値パターンSv
1.SV2に基づいて各サーボ弁53.56を制御しな
がら精密圧力センサ61の出力P■1を真値として前記
設定値パターンSVI、SV2を可変補正し、この精密
圧力センサ61の出力Pv1が校正点圧力となったとき
に圧力計器60の出力Pv2を読み込んで記憶し、全て
の校正圧力について測定を行った後、記憶しておいた圧
力計器60の出力PV2の値から圧力計器60の入出力
特性曲線を求め、予め記憶しである仕様特性曲線との誤
差を求める機能を持っている。なお、図示されていない
が圧力コントローラ62から圧力レギュレータ41に対
し校正すべき圧力を発生させるための制御信号を入力す
る様になっている。
The pressure controller 62 has a memory, a CPU, etc., and stores in advance the range, withstand pressure, and a plurality of calibrated applied pressure set value patterns sv, sv2, etc. according to the pressure gauge 60. Calibration reference points (target values) etc. are set, and the set value pattern Sv
1. While controlling each servo valve 53, 56 based on SV2, the set value patterns SVI and SV2 are variably corrected using the output P■1 of the precision pressure sensor 61 as the true value, and the output Pv1 of the precision pressure sensor 61 is set as the calibration point. When the pressure is reached, the output Pv2 of the pressure gauge 60 is read and memorized, and after measuring all the calibration pressures, the input/output characteristics of the pressure gauge 60 are determined from the memorized value of the output PV2 of the pressure gauge 60. It has the function of determining the curve and determining the error with the pre-stored specification characteristic curve. Although not shown, a control signal for generating a pressure to be calibrated is input from the pressure controller 62 to the pressure regulator 41.

前記サーボアンプ63は、校正印加圧力設定値パターン
Sv1.S■2と精密圧力センサ61の出力Pv1とを
比較し、その偏差が零となるように前記サーボ弁53.
56を外部制御する機能を持っている。
The servo amplifier 63 uses the calibrated applied pressure set value pattern Sv1. S2 and the output Pv1 of the precision pressure sensor 61 are compared, and the servo valve 53.
It has a function to externally control 56.

次に、この実施例の動作を説明する。圧力計器60の校
正時、プラントのテスト弁60a側を解放し、プラント
配管側の計器元弁60bを閉止する。しかる後、圧力レ
ギュレータ41は空気圧を取込んでブースタポンプ43
を制御する。ここで、ブースタポンプ43は校正流体(
水)を取込んで所定圧力に昇圧して一次側圧力を得、こ
れを調圧装置50のサーボ弁53へ供給する。
Next, the operation of this embodiment will be explained. When calibrating the pressure gauge 60, the plant test valve 60a side is opened, and the meter main valve 60b on the plant piping side is closed. After that, the pressure regulator 41 takes in air pressure and pumps the booster pump 43.
control. Here, the booster pump 43 has a calibration fluid (
Water) is taken in and raised to a predetermined pressure to obtain primary side pressure, which is then supplied to the servo valve 53 of the pressure regulator 50.

一方、圧力コントローラ62は、第7図のステップS1
に示す如く予め操作部(図示せず)から圧力計器60に
対応するレンジ、耐圧および複数の校正印加圧力設定値
パターン等が設定されているので、その中から所望とす
る1つの校正印加圧力設定値パターンを選択し、圧力計
器60の当該レンジの例えば10%毎の校正点に近い設
定値パターンsv1.sv2を出力すると(ステップS
2.S3.S3’ ) 、これらの設定値パターンsv
1.sv2に対応した信号がサーボアンプ63を介して
サーボ弁53および56に与える。
On the other hand, the pressure controller 62 performs step S1 in FIG.
As shown in the figure, the range, pressure resistance, and multiple calibration applied pressure setting value patterns, etc. corresponding to the pressure gauge 60 are set in advance from the operation unit (not shown), so one desired calibration applied pressure setting from among them is set. A value pattern is selected, and a set value pattern sv1. When sv2 is output (step S
2. S3. S3'), these setting value patterns sv
1. A signal corresponding to sv2 is applied to servo valves 53 and 56 via servo amplifier 63.

ここで、サーボ弁53はブースタポンプ43からの一次
側圧力が校正印加圧力設定値パターンSv1に等しい校
正用圧力52となる様に制御して精密圧力センサ61お
よび圧力計器60に印加する。一方、サーボ弁56も圧
力レギュレータ41からの空気流量を同様の設定値パタ
ーンS■2となる様に制御しジェットポンプ57に印]
7 加する。ここで、圧力コントローラ62はステップS4
.S4’ に示すように精密圧力センサ61の出力Pv
1を所定の周期で取込みながら設定値パターンSv1.
Sv2と信号PV、とを比較し、Pvlが校正基準点(
標準校正点)に対し許容精度範囲内にあるか否かを判断
しくステップS5゜S5’)、無ければステップS3.
S3’に移行し校・正印加圧力設定値パターンsv、、
sv2を可変する補正処理を行いながらサーボアンプ6
3に供給する。サーボアンプ63は圧力コントローラ6
2から得られた補、正された校正印加圧力設定値パター
ンSv工、S■2と精密圧力センサ61の出力Pvlと
を比較しそれぞれの偏差が零となるように各サーボ弁5
3.56を制御する。このような制御を行いながら精密
圧力センサ61の出力PV1が校正基準点の許容精度範
囲内に入ったとき、圧力コントローラ62は予め定めた
校正すべき校正用圧力に達したと判断しステップS6に
示すように圧力計器60の出力PV2を測定し、pv、
、pv2と共にメモリに記憶しくステップS7)、以上
の動作を全ての校正印加圧力設定値で行い、全部完了し
た後に、記憶したPV2から圧力計器60の入出力特性
曲線を求め、予め別に記憶しておいた仕様特性曲線との
比較を行い、圧力計器60の誤差を求める。
Here, the servo valve 53 controls the primary side pressure from the booster pump 43 to be the calibration pressure 52 equal to the calibration applied pressure set value pattern Sv1, and applies it to the precision pressure sensor 61 and the pressure gauge 60. On the other hand, the servo valve 56 also controls the air flow rate from the pressure regulator 41 to the same set value pattern S2, and marks it on the jet pump 57.]
7 Add. Here, the pressure controller 62 performs step S4.
.. As shown in S4', the output Pv of the precision pressure sensor 61
1 at a predetermined cycle while setting value pattern Sv1.
Compare Sv2 and signal PV, and Pvl is the calibration reference point (
It is determined whether or not the accuracy is within the allowable accuracy range with respect to the standard calibration point). If not, step S3.
Proceed to S3' and perform calibration/correction applied pressure setting value pattern sv,,
Servo amplifier 6 while performing correction processing to vary sv2.
Supply to 3. Servo amplifier 63 is pressure controller 6
Compare the corrected applied pressure set value pattern Sv, S2 obtained from 2 with the output Pvl of the precision pressure sensor 61, and set each servo valve 5 so that the deviation of each becomes zero.
3.56 control. When the output PV1 of the precision pressure sensor 61 falls within the allowable accuracy range of the calibration reference point while performing such control, the pressure controller 62 determines that the predetermined calibration pressure to be calibrated has been reached, and proceeds to step S6. Measure the output PV2 of the pressure gauge 60 as shown, pv,
, pv2, and store it in the memory together with step S7). After performing the above operations with all the calibrated applied pressure setting values and completing all of them, calculate the input/output characteristic curve of the pressure gauge 60 from the stored PV2, and store it separately in advance. A comparison is made with the specified specification characteristic curve, and the error of the pressure gauge 60 is determined.

従って、この実施例の構成によれば、サーボ弁53.5
6を用いたので、正領域だけでなく負領域にも及ぶ任意
の校正印加圧力を得ることができ、広い範囲の校正が期
待できる。また、Pv2から圧力計器600Å出力特性
曲線を求めるため、仕様特性曲線との全体的な意味を持
つ比較ができる。
Therefore, according to the configuration of this embodiment, the servo valve 53.5
6 was used, it is possible to obtain an arbitrary calibration applied pressure that extends not only to the positive region but also to the negative region, and a wide range of calibration can be expected. Furthermore, since the pressure gauge 600 Å output characteristic curve is determined from Pv2, a comprehensive comparison with the specification characteristic curve can be made.

また、精密圧力センサ61の出力から校正点に達したこ
とを検出すると、圧力計器60の出力を取込んで誤差演
算を行って誤差値を得るので、圧力計器60の調整が直
ちに行うことが可能となり作業の能率向上に大きく貢献
する。
Furthermore, when it is detected from the output of the precision pressure sensor 61 that the calibration point has been reached, the output of the pressure gauge 60 is taken in and an error calculation is performed to obtain an error value, so the pressure gauge 60 can be adjusted immediately. This greatly contributes to improving work efficiency.

なお、上記実施例ではノズルフラッパ形のサボ弁53を
用いたが、このサーボ弁53は原理上−次側圧力が二次
側にリークして残圧が生ずるので零点設定するためにジ
ェットポンプ57による制御を行っているが、例えばノ
ズルおよびフラッパの材質に軟質のもの例えばゴム製の
ものを使用することにより、接触圧を向上させることで
リーク量を十分抑えることができる。この場合には第8
図に示すようにジェットポンプ57を使用せずに、サー
ボ弁53の入力側にサーボ弁59を設け、このサーボ弁
59で二次側圧力を低くすることでサーボ弁53の出力
、すなわち校正用圧力52を相乗的に低くできる。
In the above embodiment, a nozzle flapper type servo valve 53 was used, but in principle, the downstream pressure leaks to the secondary side and residual pressure is generated, so a jet pump 57 is used to set the zero point. However, the amount of leakage can be sufficiently suppressed by increasing the contact pressure by using a soft material, such as rubber, for the nozzle and flapper. In this case, the eighth
As shown in the figure, a servo valve 59 is provided on the input side of the servo valve 53 without using the jet pump 57, and by lowering the secondary side pressure with this servo valve 59, the output of the servo valve 53, that is, for calibration. Pressure 52 can be synergistically lowered.

(発明の効果) 以上詳記したように本発明によれば、校正作業時に所望
とする圧力を安定に供給でき、かつ、短時間に多点校正
を高精度に行い得る圧力計器校正装置を提供できる。
(Effects of the Invention) As detailed above, the present invention provides a pressure meter calibration device that can stably supply desired pressure during calibration work and can perform multi-point calibration with high accuracy in a short time. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る圧力計器校正装置の機能ブロック
図、第2図は正領域圧力を多点校正するための一実施例
としての構成図、第3図および第4図は従来装置と本発
明装置の校正結果を説明する図、第5図は第2図の装置
の変形例を説明する構成図、第6図は負領域圧力の校正
も可能とする圧力計器校正装置の一実施例を示す構成図
、第7図は校正データを得るための動作説明図、第8図
は第6図の装置の変形例を示す構成図、第9図は従来の
圧力計器校正装置の構成図である。 11・・・圧力測定手段、12・・・圧力発生手段、1
3・・・精密圧力計、14・・・制御・演算手段、15
・・・操作手段、21,60.77・・・圧力計器、2
3・・・電気・圧力変換器、24・・・水タンク、25
゜61・・・精密圧力センサ、30・・・制御・演算手
段、31・・・演算制御部、32・・・データ処理装置
、40・・・加圧装置、50・・・調圧装置、53.5
6・・・サボ弁、57・・・ジェットポンプ、62・・
・圧力コントローラ、63・・・サーボアンプ。 出願人代理人 弁理士 鈴 江 武 彦司Qキー羽R崇
か =149−
Fig. 1 is a functional block diagram of a pressure gauge calibration device according to the present invention, Fig. 2 is a configuration diagram as an embodiment for multi-point calibration of positive area pressure, and Figs. A diagram explaining the calibration results of the device of the present invention, FIG. 5 is a configuration diagram explaining a modification of the device in FIG. 2, and FIG. 6 is an example of a pressure gauge calibration device that also allows calibration of negative region pressure. Fig. 7 is an explanatory diagram of the operation for obtaining calibration data, Fig. 8 is a block diagram showing a modification of the device shown in Fig. 6, and Fig. 9 is a block diagram of a conventional pressure gauge calibration device. be. 11...Pressure measuring means, 12...Pressure generating means, 1
3... Precision pressure gauge, 14... Control/calculation means, 15
...Operating means, 21,60.77...Pressure gauge, 2
3... Electricity/pressure converter, 24... Water tank, 25
゜61... Precision pressure sensor, 30... Control/calculation means, 31... Calculation control section, 32... Data processing device, 40... Pressure device, 50... Pressure regulating device, 53.5
6...Sabot valve, 57...Jet pump, 62...
・Pressure controller, 63... Servo amplifier. Applicant's agent Patent attorney Hikoji Suzue Takeshi Q Keye R Takashi = 149-

Claims (1)

【特許請求の範囲】[Claims] プラント中の圧力を測定し、その圧力測定信号を出力す
る圧力測定手段と、この圧力測定手段を校正する場合に
、前記圧力測定手段に圧力を印加する圧力発生手段と、
この圧力発生手段から発生された圧力を測定し、精密測
定信号を出力する精密圧力測定手段と、予め複数の校正
用圧力が設定され、各校正用圧力毎に前記精密圧力測定
手段の精密測定信号が該校正用圧力を示すよう前記圧力
発生手段からの圧力を制御する圧力制御信号を前記圧力
測定手段に供給し、かつ、該各校正用圧力毎に前記圧力
発生手段から出力される圧力に応じて前記圧力測定手段
から出力される圧力測定信号を記憶すると共に、それら
の圧力測定信号と校正用圧力から圧力測定手段の入出力
特性曲線を求め、この入出力特性曲線と予め設けてある
圧力測定手段の仕様特性曲線とを比較し、前記圧力測定
手段の精度の判定を行う制御・演算手段とを備えたこと
を特徴とする圧力計器校正装置。
Pressure measuring means for measuring the pressure in the plant and outputting the pressure measurement signal; Pressure generating means for applying pressure to the pressure measuring means when calibrating the pressure measuring means;
Precision pressure measurement means that measures the pressure generated from this pressure generation means and outputs a precision measurement signal, and a plurality of calibration pressures are set in advance, and a precision measurement signal of the precision pressure measurement means is set for each calibration pressure. supplying a pressure control signal to the pressure measuring means to control the pressure from the pressure generating means so as to indicate the calibration pressure, and responding to the pressure output from the pressure generating means for each calibration pressure. The pressure measurement signals outputted from the pressure measurement means are stored, and the input/output characteristic curve of the pressure measurement means is determined from these pressure measurement signals and the calibration pressure, and the input/output characteristic curve and the preset pressure measurement A pressure meter calibration device comprising control/calculation means for determining the accuracy of the pressure measuring means by comparing the means with a specification characteristic curve of the means.
JP1103779A 1989-04-24 1989-04-24 Pressure gauge calibration device Expired - Lifetime JP2597710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1103779A JP2597710B2 (en) 1989-04-24 1989-04-24 Pressure gauge calibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1103779A JP2597710B2 (en) 1989-04-24 1989-04-24 Pressure gauge calibration device

Publications (2)

Publication Number Publication Date
JPH02281120A true JPH02281120A (en) 1990-11-16
JP2597710B2 JP2597710B2 (en) 1997-04-09

Family

ID=14362910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1103779A Expired - Lifetime JP2597710B2 (en) 1989-04-24 1989-04-24 Pressure gauge calibration device

Country Status (1)

Country Link
JP (1) JP2597710B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0694774A1 (en) * 1994-07-27 1996-01-31 Ametek Denmark A/S Apparatus and method for the calibration of a pressure responsive device
JP2001503146A (en) * 1996-10-25 2001-03-06 アーサー ディー.リトル,インコーポレイティド Fluid pressure detecting device having diaphragm deflection sensor array
JP2001264204A (en) * 1993-04-01 2001-09-26 Yokogawa Electric Corp Differential pressure measuring device
JP2009172097A (en) * 2008-01-23 2009-08-06 Omron Healthcare Co Ltd Sphygmomanometer and confirmation system for measuring accuracy of sphygmomanometer
CN105333996A (en) * 2015-11-17 2016-02-17 广州视源电子科技股份有限公司 Gas pressure sensor calibration method and system
CN107209510A (en) * 2014-12-08 2017-09-26 罗伯特·博世有限公司 Method for evident characteristics curve
CN107860538A (en) * 2017-12-25 2018-03-30 交通运输部公路科学研究所 A kind of removable unloading system for being widely applicable to the calibration of multiple spot dynamic deflection and its application
CN108803556A (en) * 2017-04-28 2018-11-13 横河电机株式会社 Calibrating operation auxiliary device, calibrating operation householder method and recording medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159624A (en) * 1984-01-31 1985-08-21 Toshiba Corp Calibrating device of pressure measuring device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159624A (en) * 1984-01-31 1985-08-21 Toshiba Corp Calibrating device of pressure measuring device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264204A (en) * 1993-04-01 2001-09-26 Yokogawa Electric Corp Differential pressure measuring device
EP0694774A1 (en) * 1994-07-27 1996-01-31 Ametek Denmark A/S Apparatus and method for the calibration of a pressure responsive device
JP2001503146A (en) * 1996-10-25 2001-03-06 アーサー ディー.リトル,インコーポレイティド Fluid pressure detecting device having diaphragm deflection sensor array
JP2009172097A (en) * 2008-01-23 2009-08-06 Omron Healthcare Co Ltd Sphygmomanometer and confirmation system for measuring accuracy of sphygmomanometer
JP2017539025A (en) * 2014-12-08 2017-12-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Method for identifying characteristic curves
CN107209510A (en) * 2014-12-08 2017-09-26 罗伯特·博世有限公司 Method for evident characteristics curve
CN107209510B (en) * 2014-12-08 2020-07-28 罗伯特·博世有限公司 Method for identifying a characteristic curve
CN105333996A (en) * 2015-11-17 2016-02-17 广州视源电子科技股份有限公司 Gas pressure sensor calibration method and system
CN108803556A (en) * 2017-04-28 2018-11-13 横河电机株式会社 Calibrating operation auxiliary device, calibrating operation householder method and recording medium
JP2018190111A (en) * 2017-04-28 2018-11-29 横河電機株式会社 Calibration work assisting device, calibration work assisting method, calibrating work assisting program and recording medium
US10871416B2 (en) 2017-04-28 2020-12-22 Yokogawa Electric Corporation Calibration work support device, calibration work support method, and non-transitory computer readable storage medium
CN107860538A (en) * 2017-12-25 2018-03-30 交通运输部公路科学研究所 A kind of removable unloading system for being widely applicable to the calibration of multiple spot dynamic deflection and its application
CN107860538B (en) * 2017-12-25 2023-10-03 交通运输部公路科学研究所 Detachable system widely applicable to multipoint dynamic deflection calibration and application thereof

Also Published As

Publication number Publication date
JP2597710B2 (en) 1997-04-09

Similar Documents

Publication Publication Date Title
US3918291A (en) Method and apparatus for testing leakage rate
JP4684135B2 (en) Leakage inspection method and leak inspection apparatus for piping
US5684246A (en) Method and apparatus for improved flow rate measurement and calibration
US4829449A (en) Method and apparatus for measuring and providing corrected gas flow
US7818092B2 (en) In situ emission measurement for process control equipment
US4575807A (en) Method and apparatus for leak test
CN101485591A (en) Intelligent constant-voltage variable-flow pneumoperitoneum machine
JPH02281120A (en) Pressure-gage calibrating apparatus
JPS60501381A (en) Automatic calibration of sensor circuit in gear shaping machine
CN209372401U (en) Safety valve relieving characteristics test macro
US6598462B2 (en) Air flow measurement
CN113447234A (en) Wind tunnel electronic pressure scanning valve traceability device and traceability method thereof
JP2000039347A (en) Flowrate inspection device
JP2618952B2 (en) Calibration device for differential pressure transmitter
JP2000065668A (en) Automatic calibrating device for pressure and differential pressure transmitter
JPS58168933A (en) Calibrating device of pressure gauge
CN113340527B (en) Differential pressure transmitter verification system
JPS60159624A (en) Calibrating device of pressure measuring device
KR20030018224A (en) testing device of injecter for liquid fuel rocket
CN109520722A (en) Safety valve relieving characteristics test macro and method
JP2015219073A (en) Flow rate measurement method and flow rate measurement device
RU2282166C1 (en) Device for calibrating pressure gages
JP5749378B1 (en) Flow rate measuring method and flow rate measuring device
JPS6214033A (en) Water leak tester
SU1221514A1 (en) Method of testing linearity and calibration characteristic of low pressure gauges

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 13