JPH02280996A - Bond flux for submerged arc welding - Google Patents

Bond flux for submerged arc welding

Info

Publication number
JPH02280996A
JPH02280996A JP10124689A JP10124689A JPH02280996A JP H02280996 A JPH02280996 A JP H02280996A JP 10124689 A JP10124689 A JP 10124689A JP 10124689 A JP10124689 A JP 10124689A JP H02280996 A JPH02280996 A JP H02280996A
Authority
JP
Japan
Prior art keywords
flux
welding
submerged arc
amount
arc welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10124689A
Other languages
Japanese (ja)
Other versions
JP2544479B2 (en
Inventor
Yutaka Nishikawa
裕 西川
Kaoru Hase
薫 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1101246A priority Critical patent/JP2544479B2/en
Publication of JPH02280996A publication Critical patent/JPH02280996A/en
Application granted granted Critical
Publication of JP2544479B2 publication Critical patent/JP2544479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To obtain excellent welding workability and stable mechanical performance by using the bond flux contg. specific rations of SiO2, Al2O3, MgO, T.Mn, CaF2, T.FeO, Na2O, K2O, T.CO2, and H2. CONSTITUTION:The bond flux for submerged arc welding having the compsn. contg., by weight %, 17 to 26 SiO2, 25 to 42 Al2O3, 13 to 20 MgO, 5 to 10 T.Mn, 17 to 20 CaF2, 0.1 to 7 T.FeO, 0.5 to 3.5 one or two kinds of Na2O and K2O, 0.05 to 0.5 T.CO2 and 10 to 50ppm H2 is used. This flux generates gases, such as CO2 and H2 having a shielding effect so that the excellent welding workability and the stable mechanical performance are obtd., further consumption of flux is decreased. This flux is particularly adequate for the flux for the high speed horizontal fillet welding and the downward multi-layer butt welding.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はサブマージアーク溶接用ボンドフラックスに係
り、特に高速スミ肉溶接及び下向の多層盛突合せ溶接に
おいて、優れた溶接作業性及び経済性と安定した機械的
性能が得られるサブマージアーク溶接用ボンドフラック
ス組成に関するものである。 (従来の技術及び解決しようとする課題)水平スミ肉溶
接のサブマージアーク溶接では一般に比較的小電流の高
速溶接が実施されている。 これは、大電流、低速溶接では等脚柱が得られないため
である。 従来、このような高速サブマージアーク溶接においては
、ポックマーク、ブローホール、ピット等のガス欠陥発
生の面から、炭酸塩を含有した低温ボンドフラックスは
採用されず、炭酸塩を含有しない溶融型フラックスが一
般に広く使用されていた。 しかし、この炭酸塩を含有しない溶融型フラックスを用
いて溶接した場合、溶融中に1例えば、CaCO3−*
CaO+CO+Oなる化学反応で発生するCOガスで大
気からシールドする効果が期待できず、その結果、溶接
金属中の(N)量が非常に不安定となり、靭性にバラツ
キが生じるという問題があった。 また、このように炭酸塩を含有しない溶融型フラックス
の場合、下向の多層盛突合せ溶接のサブマージアーク溶
接においても同様の問題があり。 更には、フラックス使用量が多く経済的でないという問
題もあった。 本発明は、上記従来技術の問題点を解決するためになさ
れたものであって、シールド効果を有するガス発生成分
を含有させたボンド型フラックスであっても、ガス欠陥
の発生がなく、優れた機械的性能の溶接金属が得られ、
また優れた溶接作業性を有する経済的なサブマージアー
ク溶接用フラックスを提供することを目的とするもので
ある。 (課題を解決するための手段) 本発明者は、上述のような問題点に対処すべくボンドフ
ラックスについて種々検討を重ねた。その結果、特に高
速水平スミ肉溶接及び下向の多層盛突合せ溶接のサブマ
ージアーク溶接において、優れた溶接作業性と安定した
機械的性能が得られる経済的なサブマージアーク溶接用
ボンドフラックスを見出したものである。 すなわち、本発明に係るサブマージアーク溶接用ボンド
フラックスは、Sin、:17〜26%、A M、O,
:25〜42%、MgO:13〜20%、T、Mn:5
〜lO%、CaF227〜20%、T、Fe○:0.1
〜7.0%、Na2O及びに、0(711種又ハ2種=
0.5〜3.5%、T、CO,:0.05〜0.5%及
びH2:10〜50ppmを含む組成からなることを特
徴とするものである。 以下に本発明を更に詳細に説明する。 (作用) 本発明における化学成分の限定理由は以下のとおりであ
る。 Sio:17〜26% Sio、は酸性成分であって、スラブの粘性、凝固温度
を調整するのに有効な成分である。しかし、17%未満
ではスラグの粘性が不十分てビード幅の均一性が劣り、
またフラックス消費量が増大し好ましくない。一方、2
6%を超えると塩基度が低下し、溶接金属の靭性が劣化
し、また高速水平スミ肉溶接において、ビード形状が凸
となり、スラグ剥離性が劣化する。したがって、Sin
、量は17〜26%の範囲とする。 A11l  O:25〜42% AQ20.は中性成分であり、スラグの塩基度を下げな
いでスラグの粘性、凝固温度を調整するのに有効な成分
である。しかし、25%未満では高速水平スミ肉溶接に
おいて等膜性が損なわれ、またアンダーカットも生じ易
いため好ましくない。 一方、42%を超えると粘性が高くなりすぎてスラグ巻
込みが発生し易く、下向の多層盛突合せ溶接において凸
ビードになり易い、したがって。 AQ20.量は25〜42%の範囲とする。 MgO:13〜20% MgOは塩基性成分であり、溶接金属中(0)を低減す
るのに有効な成分であり、粘性調整剤としての作用も有
している。しかし、13%未満では溶接金属中(0)の
低減効果が少なく、靭性が劣る。 またビードが蛇行し易く、アンダーカットが発生する。 一方、20%を超えるとスラブ焼付きが増すと共にポッ
クマークが多発し、またフラックス消費量が増大するの
で好ましくない。したがって、MgO量は13〜20%
の範囲とする。 T、Mn:5〜10% Mnはスラグの粘性、凝固温度を調整するのに有効な成
分であるだけでなく、溶接金属中のMn量を調整し、引
張性能、衝撃性能を確保するために必須の成分である。 しかし、5%未満ではアンダーカット及びスラグ焼付き
が発生し易く好ましくない。また、安価な低Mnワイヤ
と組合せた場合、溶接金属中の〔Mn量量が不足し、引
張強度及び靭性が低下する。一方、10%を超えるとビ
ードが蛇行し易く、且つフラックス消費量が増大するた
め好ましくない。 なお、Mn成分は、金属MnやF e −M nなどの
化合物及びMnO,MnO2などの酸化物の形でフラッ
クス中に添加されるが、ここではMnの総量としてT 
、 M nで規定することにした。 したがって、T、Mn量は5〜10%の範囲とする。 CaFニア〜20% CaF2は塩基性成分であって、溶接金属中〔o〕を低
下させる効果があると共に、スラグの流動性を調整し、
溶接中のスラグ−メタル間の反応を促進させるために有
効な成分である。しかし、7%未満ではポックマークが
発生し易く、粘性向上に対しても効果が少ない。一方、
20%を超えるとスラグの流動性が増し、ビードの蛇行
やアンダーカットが発生し、またフラックス消費量が増
大するので好ましくない、したがって、Ca F2量は
7〜20%の範囲とする。 T、FeO:0.1〜7.0% FeO成分は粘性調整剤として有効な成分であるが、0
.1%未満ではスラグの粘性が高くなり、高速水平スミ
肉溶接においてアンダーカットやスラブ巻込みが増加す
るため好ましくない。一方、7.0%を超えると溶接金
属中(0)量が増加し、衝撃性能が劣化する。 なお、Fe○成分はFe−8i、Fe−Mnなどの化合
物及びFe01Fe、03などの酸化物の形でフラック
ス中に添加されるが、ここではFeOの総量としてT、
FeOで規定することにした。 したがって、T、FeO量は0.1〜7.0%の範囲と
する。 Na OびKOの1 又は2種:0.5〜3.5%Na
、O,に、Oはアーク安定剤、スラグの粘性調整剤とし
て有効であり、特に高速水平スミ肉溶接においてはアー
ク安定性を確保するためには必須の成分であるので、N
a、O及びに、Oの1種又は2種を添加する。しかし、
0.5%未満ではアークの安定性、集中性が悪くなり、
ビードが蛇行したり、スラグ巻込みが増加する。一方、
3.5%を超えるとフラックスの耐吸湿性が悪くなり。 ピットやポックマークが発生し易い。したがって、Na
、O及びに、Oの1種又は2種の添加量は0.5〜3.
5%の範囲とする。 T、CO:0.05〜0.5% CO□成分は溶接中に発生するcoガスで大気をシール
ドし溶接金属中〔N〕量を低減し、安定化するのに非常
に有効な成分である。cOガスを発生させるためには、
フラックス中にCaC0,やBaC0,などの炭酸塩及
びC(炭素)などの形で添加するが、ここではCO2の
総量としてT、CO2で規定することにした。しかし、
T、CO□量が0゜05%未満では溶接金属中(N)の
低減及び安定化に対して効果がなく、靭性が低下する。 一方、0゜5%を超えると高速水平スミ肉溶接において
ポックマークが発生し易い。したがって、T、CO,量
は0.05〜0.5%の範囲とする。 H:10〜50m 溶接金属中(N)の低減及び安定化対策のためには、上
記T、CO□量の管理だけでは不十分であるので、本発
明では、アーク雰囲気中の(N)分圧を下げるためにF
2の添加を必須とした。しかし、10ppm未満では溶
接金属中(N)の低減及び安定化に対して効果がなく、
靭性が低下するため好ましくない。一方、50PP11
を超えると溶接金属中の〔H2〕量が高くなりすぎて、
遅れ割れ等の問題が発生するため好ましくない。また、
ピットも発生し易い。したがって、F2量は10〜5Q
ppmの範囲とする。 なお、上記F2量はガスクロマトグラフィー法により測
定した量である。例えば、300℃×1時間の予備乾燥
後、インパルス炉を用いて抽出した水素をガスクロマト
グラフィー法で定量する。 その他の条件としては、特に制限されないが、大気から
のシールド効果を更に高めるためには、フラックス粒度
を、10メツシユより粗い粒子が全体の5%以下とし、
48メツシユより細い粒子が全体の8〜35%とするの
が望ましい。 なお、ボンドフラックスとは、溶融型フラックスとは異
なり、焼成又は焼結して製造されるフッラックス(ボン
ドフラックス)を指している。 また、サブマージアーク溶接条件も特に制限されないが
、高速水平スミ肉溶接及び下向の多層盛突合せ溶接条件
のもとて上記効果が顕著である。 次に本発明の実施例を示す。 (実施例) 第1表に示す化学成分を有する供試ボンドフラックスを
準備した。その際、T 、 M n量は金属M n 。 Fe−Mn等の化合物及びMnO,MnO2、Mn、○
。 等の酸化物により、T、Fe0ffiはFe−Mn、F
e−8i等の化合物及びFe01Fg20.等の酸化物
により、T、CO2量はCaCO3,BaCO3及びN
a、Co3及びNa、CO3等の炭酸塩により、N2量
は、例えば、Sin、源として用いる珪砂等に含まれる
結晶水分量、フラックスの固着剤として用いる水硝子の
添加量及びフラックスの焼成温度により、それぞれ含有
量を調整した6 なお、比較例の各フラックスにおいて、Nα5はMgO
とT 、 M nが多い例、Na6はSio、とT、F
eOが多い例、Na7はAΩ20.が多くMgOが少な
い例、Na8はT、CO2とN2が多い例、Na9はS
iO2とT、Mnが少なく、CaF2とNa、O及びに
20が多い例、Nlll0はAQ、O,とT、FeOと
Na、0及びに20が少ない例、Na1lは’r、c 
O,)ニー H,が少ない例、N112はSio、が多
くCaF、が少ない例である。 尖適盤工 第1表に示した供試フラックスを用い、12mmtX7
50mIQの寸法で第1図に示す開先の母材5S41に
、3.2mmφでJIS Z 3351YS−83相当
のワイヤを用い、以下の溶接条件でサブマージアーク溶
接を行った。 〈溶接条件〉 単電極水平スミ肉溶接 1st 5ide:550A−32V−80c腸/wi
n2nd 5ide:       tt溶接作業性を
第2表に示す。 第2表より明らかなように1本発明例はいずれも良好な
溶接作業性を有し、ガス欠陥の発生もなかった。 去】11λ 第1表に示した供試フラックスを用い、251Illt
X1000■■Qの寸法で第2図に示すV開先の母材5
M41Bに、4.0mmφでJIS  Z  3351
  YS−83相当のワイヤを用い、以下の溶接条件で
サブマージアーク溶接を行った。 〈溶接条件〉 単電極下向多層溶接 550A−28V−40c腸/win 溶接作業性とX線透過試験、衝撃試験結果並びにフラッ
クス消費量を第2表に併記する。 なお、X線透過試験は、試験板全長を対象として行い、
欠陥の有無を判定した。衝撃試験は、供試材表面9.5
mmよりJIS  Z  3111 4号試験片を採取
し、−51℃で試験を行い、3本の平均値を求めた。ま
た、フラックス消費量については、全パス溶接終了後、
ワイヤ及びフラックス消費量をそれぞれ測定し、フラッ
クス/ワイヤ消費率を求めて評価した。 第2表より明らかなように、本発明例はいずれも良好な
溶接作業性を有し、ガス欠陥の発生もなく、靭性も優れ
ており、またフラックス消費量も少ない。 なお、第2表において、比較例Nα7〜Nα8、Nα1
0、N(112について衝撃試験結果が記載してないが
、これは、溶接作業性が悪く(スラグ巻込。 ブローホール)、したがって、靭性を確認するまでもな
いと判断し、試験を中止したためである。
(Field of Industrial Application) The present invention relates to a bond flux for submerged arc welding, which provides excellent welding workability, economic efficiency, and stable mechanical performance, particularly in high-speed fillet welding and downward multilayer butt welding. The present invention relates to a bond flux composition for submerged arc welding. (Prior Art and Problems to be Solved) In submerged arc welding of horizontal fillet welding, high-speed welding with a relatively small current is generally performed. This is because high-current, low-speed welding does not produce equipodal columns. Conventionally, low-temperature bond fluxes containing carbonates have not been used in such high-speed submerged arc welding due to the generation of gas defects such as pockmarks, blowholes, and pits, and molten fluxes that do not contain carbonates have been used. It was widely used. However, when welding is performed using a molten flux that does not contain carbonates, 1 e.g., CaCO3-*
The CO gas generated by the chemical reaction CaO+CO+O cannot be expected to have a shielding effect from the atmosphere, and as a result, the amount of (N) in the weld metal becomes extremely unstable, resulting in variations in toughness. Furthermore, in the case of a molten flux that does not contain carbonates, similar problems occur in submerged arc welding of downward multilayer butt welding. Furthermore, there was also the problem that the amount of flux used was large, making it uneconomical. The present invention has been made in order to solve the problems of the prior art described above, and even with a bond type flux containing a gas generating component having a shielding effect, there is no occurrence of gas defects and an excellent A weld metal with mechanical performance is obtained,
Another object of the present invention is to provide an economical flux for submerged arc welding that has excellent welding workability. (Means for Solving the Problems) The inventors of the present invention have conducted various studies regarding bond flux in order to address the above-mentioned problems. As a result, we have discovered an economical bond flux for submerged arc welding that provides excellent welding workability and stable mechanical performance, especially in submerged arc welding for high-speed horizontal fillet welding and downward multilayer butt welding. It is. That is, the bond flux for submerged arc welding according to the present invention has Sin,: 17 to 26%, AM, O,
: 25-42%, MgO: 13-20%, T, Mn: 5
~lO%, CaF227~20%, T, Fe○: 0.1
~7.0%, Na2O and 0 (711 types or 2 types =
It is characterized by having a composition containing 0.5 to 3.5%, T, CO: 0.05 to 0.5%, and H2: 10 to 50 ppm. The present invention will be explained in more detail below. (Function) The reasons for limiting the chemical components in the present invention are as follows. Sio: 17-26% Sio is an acidic component and is an effective component for adjusting the viscosity and solidification temperature of the slab. However, if it is less than 17%, the viscosity of the slag is insufficient and the uniformity of the bead width is poor.
Moreover, flux consumption increases, which is not preferable. On the other hand, 2
When it exceeds 6%, the basicity decreases, the toughness of the weld metal deteriorates, and in high-speed horizontal fillet welding, the bead shape becomes convex and slag removability deteriorates. Therefore, Sin
, the amount should be in the range of 17-26%. A11l O: 25-42% AQ20. is a neutral component, and is an effective component for adjusting the viscosity and solidification temperature of the slag without reducing the basicity of the slag. However, if it is less than 25%, the film uniformity is impaired in high-speed horizontal fillet welding, and undercuts are likely to occur, which is not preferable. On the other hand, if it exceeds 42%, the viscosity becomes too high and slag entrainment tends to occur, and convex beads tend to form in downward multilayer butt welding. AQ20. The amount should be in the range 25-42%. MgO: 13-20% MgO is a basic component and is an effective component for reducing (0) in the weld metal, and also functions as a viscosity modifier. However, if it is less than 13%, the effect of reducing (0) in the weld metal is small and the toughness is poor. In addition, the bead tends to meander and undercuts occur. On the other hand, if it exceeds 20%, it is not preferable because it increases slab sticking, pockmarks occur frequently, and flux consumption increases. Therefore, the amount of MgO is 13-20%
The range shall be . T, Mn: 5-10% Mn is an effective component not only for adjusting the viscosity and solidification temperature of slag, but also for adjusting the amount of Mn in the weld metal and ensuring tensile performance and impact performance. It is an essential ingredient. However, if it is less than 5%, undercutting and slag burning tend to occur, which is not preferable. Furthermore, when used in combination with an inexpensive low-Mn wire, the amount of Mn in the weld metal is insufficient, resulting in a decrease in tensile strength and toughness. On the other hand, if it exceeds 10%, the bead tends to meander and flux consumption increases, which is not preferable. The Mn component is added to the flux in the form of metal Mn, compounds such as Fe-Mn, and oxides such as MnO and MnO2, but here, T is the total amount of Mn.
, Mn. Therefore, the amounts of T and Mn are in the range of 5 to 10%. CaF Near - 20% CaF2 is a basic component and has the effect of lowering [o] in the weld metal, as well as adjusting the fluidity of slag.
It is an effective component for promoting the reaction between slag and metal during welding. However, if it is less than 7%, pock marks are likely to occur and there is little effect on improving viscosity. on the other hand,
If it exceeds 20%, the fluidity of the slag will increase, meandering and undercutting of the bead will occur, and flux consumption will increase, which is undesirable.Therefore, the amount of CaF2 is set in the range of 7 to 20%. T, FeO: 0.1-7.0% The FeO component is an effective component as a viscosity modifier, but 0.
.. If it is less than 1%, the viscosity of the slag becomes high and undercuts and slab entrainment increase in high-speed horizontal fillet welding, which is not preferable. On the other hand, if it exceeds 7.0%, the amount of (0) in the weld metal increases and the impact performance deteriorates. Note that the Fe○ component is added to the flux in the form of compounds such as Fe-8i, Fe-Mn, and oxides such as Fe01Fe, 03, but here, the total amount of FeO is T,
It was decided to specify it using FeO. Therefore, the amounts of T and FeO are in the range of 0.1 to 7.0%. Type 1 or 2 of Na O and KO: 0.5-3.5% Na
, O, O is effective as an arc stabilizer and a slag viscosity modifier, and is an essential component to ensure arc stability, especially in high-speed horizontal fillet welding.
One or two types of O are added to a, O, and. but,
If it is less than 0.5%, the stability and concentration of the arc will deteriorate,
Bead meandering and slag entrainment increases. on the other hand,
If it exceeds 3.5%, the moisture absorption resistance of the flux will deteriorate. Pit and pockmarks are likely to occur. Therefore, Na
, O, and the amount of one or two types of O added is 0.5 to 3.
The range shall be 5%. T, CO: 0.05-0.5% CO□ component is a very effective component for shielding the atmosphere with co gas generated during welding, reducing the amount of [N] in the weld metal, and stabilizing it. be. To generate cO gas,
It is added to the flux in the form of carbonates such as CaC0, BaC0, and C (carbon), but here the total amount of CO2 is defined as T and CO2. but,
If the amount of T and CO□ is less than 0°05%, there is no effect on reducing and stabilizing (N) in the weld metal, and the toughness decreases. On the other hand, if it exceeds 0.5%, pock marks are likely to occur during high-speed horizontal fillet welding. Therefore, the amounts of T and CO are in the range of 0.05 to 0.5%. H: 10 to 50 m In order to reduce and stabilize the (N) content in the weld metal, it is not sufficient to manage the above T and CO□ amounts, so in the present invention, the (N) content in the arc atmosphere is F to reduce pressure
The addition of 2 was made essential. However, if it is less than 10 ppm, it is not effective in reducing and stabilizing (N) in the weld metal.
This is not preferable because it reduces toughness. On the other hand, 50PP11
If it exceeds, the amount of [H2] in the weld metal becomes too high,
This is not preferable because it causes problems such as delayed cracking. Also,
Pit is also likely to occur. Therefore, the amount of F2 is 10-5Q
The range shall be ppm. Note that the above amount of F2 is the amount measured by gas chromatography. For example, after preliminary drying at 300° C. for 1 hour, hydrogen extracted using an impulse furnace is quantified by gas chromatography. Other conditions are not particularly limited, but in order to further enhance the shielding effect from the atmosphere, the flux particle size should be 5% or less of the total particles coarser than 10 mesh;
It is desirable that particles finer than 48 mesh account for 8 to 35% of the total. Note that bond flux refers to flux produced by firing or sintering (bond flux), unlike molten flux. Further, although the submerged arc welding conditions are not particularly limited, the above-mentioned effect is remarkable under the conditions of high-speed horizontal fillet welding and downward multilayer butt welding. Next, examples of the present invention will be shown. (Example) A sample bond flux having the chemical components shown in Table 1 was prepared. At that time, the amounts of T and Mn are metal Mn. Compounds such as Fe-Mn and MnO, MnO2, Mn, ○
. T, Fe0ffi can be changed to Fe-Mn, F by oxides such as
Compounds such as e-8i and Fe01Fg20. The amount of T, CO2 is reduced by oxides such as CaCO3, BaCO3 and N
a, Co3 and carbonates such as Na and CO3, the amount of N2 depends on, for example, Sin, the amount of crystal water contained in the silica sand used as the source, the amount of water glass used as a fixing agent for the flux, and the firing temperature of the flux. , the content of each was adjusted6. Note that in each flux of the comparative example, Nα5 is MgO
and T, M An example where there are many n, Na6 is Sio, and T, F
An example with a large amount of eO, Na7 is AΩ20. example where there is a lot of MgO, Na8 is T, CO2 and N2 are large, Na9 is S
An example in which iO2 and T and Mn are small and CaF2 and Na, O and 20 are large, Nlll0 is AQ, O, and T, FeO and Na, 0 and 20 are small, Na1l is 'r, c
O, ) knee H, is an example with a small amount, and N112 is an example with a large amount of Sio and a small amount of CaF. Point fitting board work Using the sample flux shown in Table 1, 12mmtX7
Submerged arc welding was performed on a base material 5S41 having a groove size of 50 mIQ as shown in FIG. 1 using a wire having a diameter of 3.2 mm and corresponding to JIS Z 3351YS-83 under the following welding conditions. <Welding conditions> Single electrode horizontal fillet welding 1st 5ide: 550A-32V-80c intestine/wi
n2nd 5ide: tt welding workability is shown in Table 2. As is clear from Table 2, all of the examples of the present invention had good welding workability and no gas defects occurred. ] 11λ Using the test flux shown in Table 1, 251Illt
Base material 5 with V groove shown in Fig. 2 with dimensions of X1000■■Q
M41B, 4.0mmφ, JIS Z 3351
Submerged arc welding was performed using a wire equivalent to YS-83 under the following welding conditions. <Welding conditions> Single electrode downward multilayer welding 550A-28V-40c/win Welding workability, X-ray transmission test, impact test results, and flux consumption are also listed in Table 2. In addition, the X-ray transmission test was performed on the entire length of the test plate,
The presence or absence of defects was determined. In the impact test, the surface of the specimen material was 9.5
JIS Z 3111 No. 4 test pieces were taken from mm and tested at -51°C, and the average value of the three pieces was determined. Regarding flux consumption, after all pass welding is completed,
The wire and flux consumptions were each measured, and the flux/wire consumption ratio was determined and evaluated. As is clear from Table 2, all the examples of the present invention have good welding workability, no gas defects occur, excellent toughness, and low flux consumption. In addition, in Table 2, comparative examples Nα7 to Nα8, Nα1
The impact test results are not listed for 0, N (112), but this is because the welding workability was poor (slag entrainment, blowholes), so it was judged that there was no need to check the toughness, and the test was discontinued. It is.

【以下余白】[Left below]

(発明の効果) 以上詳述したように、本発明によれば、co2、H2等
のガス発生成分を含有するボンドブラックスであるが、
優れた溶接作業性と安定した機械的性能が得られ、更に
フラックス消費量が少ないので経済性に優れている。特
に高速水平スミ肉溶接や、下向の多層盛突合せ溶接のサ
ブマージアーク溶接用フラックスに好適である。
(Effects of the Invention) As detailed above, according to the present invention, bond blacks containing gas generating components such as CO2 and H2,
It provides excellent welding workability and stable mechanical performance, and is also economical because it consumes little flux. It is particularly suitable as a flux for high-speed horizontal fillet welding and submerged arc welding for downward multilayer butt welding.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は実施例で用いた開先形状。 寸法(in)を示す説明図である。 特許出願人  株式会社神戸製鋼所 代理人弁理士 中  村   尚 Figures 1 and 2 show the groove shapes used in the examples. It is an explanatory view showing dimensions (in). Patent applicant: Kobe Steel, Ltd. Representative Patent Attorney Takashi Nakamura

Claims (1)

【特許請求の範囲】[Claims] 重量%で(以下、同じ)、SiO_2:17〜26%、
Al_2O_3:25〜42%、MgO:13〜20%
、T、Mn:5〜10%、CaF_2:7〜20%、T
、FeO:0.1〜7.0%、Na_2O及びK_2O
の1種又は2種:0.5〜3.5%、T、CO_2:0
.05〜0.5%及びH_2:10〜50ppmを含む
組成からなることを特徴とするサブマージアーク溶接用
ボンドフラックス。
In weight% (hereinafter the same), SiO_2: 17 to 26%,
Al_2O_3: 25-42%, MgO: 13-20%
, T, Mn: 5-10%, CaF_2: 7-20%, T
, FeO: 0.1-7.0%, Na_2O and K_2O
One or two of: 0.5-3.5%, T, CO_2: 0
.. A bond flux for submerged arc welding characterized by having a composition containing 0.05 to 0.5% and H_2: 10 to 50 ppm.
JP1101246A 1989-04-19 1989-04-19 Bond flux for submerged arc welding Expired - Fee Related JP2544479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1101246A JP2544479B2 (en) 1989-04-19 1989-04-19 Bond flux for submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1101246A JP2544479B2 (en) 1989-04-19 1989-04-19 Bond flux for submerged arc welding

Publications (2)

Publication Number Publication Date
JPH02280996A true JPH02280996A (en) 1990-11-16
JP2544479B2 JP2544479B2 (en) 1996-10-16

Family

ID=14295548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1101246A Expired - Fee Related JP2544479B2 (en) 1989-04-19 1989-04-19 Bond flux for submerged arc welding

Country Status (1)

Country Link
JP (1) JP2544479B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100462037B1 (en) * 2000-07-10 2004-12-16 현대종합금속 주식회사 Flux for using butt submerged arc welding
KR100550334B1 (en) * 2001-12-28 2006-02-09 현대종합금속 주식회사 Submerged arc welding flux
WO2015019684A1 (en) * 2013-08-05 2015-02-12 株式会社神戸製鋼所 Flux for submerged arc welding
JP2016140888A (en) * 2015-02-02 2016-08-08 株式会社神戸製鋼所 Flux for submerged arc welding
EP3081328A4 (en) * 2013-12-13 2017-08-30 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Flux for submerged arc welding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116172A (en) * 1974-07-30 1976-02-09 Toyomatsu Nishimura Gasukonronadono nisuiguooibuta
JPS589795A (en) * 1981-07-10 1983-01-20 Nippon Steel Corp Flux for submerged arc welding by belt-like electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116172A (en) * 1974-07-30 1976-02-09 Toyomatsu Nishimura Gasukonronadono nisuiguooibuta
JPS589795A (en) * 1981-07-10 1983-01-20 Nippon Steel Corp Flux for submerged arc welding by belt-like electrode

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100462037B1 (en) * 2000-07-10 2004-12-16 현대종합금속 주식회사 Flux for using butt submerged arc welding
KR100550334B1 (en) * 2001-12-28 2006-02-09 현대종합금속 주식회사 Submerged arc welding flux
WO2015019684A1 (en) * 2013-08-05 2015-02-12 株式会社神戸製鋼所 Flux for submerged arc welding
JP2015030019A (en) * 2013-08-05 2015-02-16 株式会社神戸製鋼所 Flux for submerged arc welding
CN105408054A (en) * 2013-08-05 2016-03-16 株式会社神户制钢所 Flux for submerged arc welding
US10272528B2 (en) 2013-08-05 2019-04-30 Kobe Steel, Ltd. Flux for submerged arc welding
EP3081328A4 (en) * 2013-12-13 2017-08-30 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Flux for submerged arc welding
JP2016140888A (en) * 2015-02-02 2016-08-08 株式会社神戸製鋼所 Flux for submerged arc welding
WO2016125568A1 (en) * 2015-02-02 2016-08-11 株式会社神戸製鋼所 Flux for use in submerged arc welding
CN107206551A (en) * 2015-02-02 2017-09-26 株式会社神户制钢所 Solder flux used for submerged arc welding
EP3254798A4 (en) * 2015-02-02 2018-07-11 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Flux for use in submerged arc welding

Also Published As

Publication number Publication date
JP2544479B2 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
JP2011025285A (en) SINTERED TYPE FLUX FOR SUBMERGED-ARC WELDING FOR 9% Ni STEEL
JP2001300764A (en) Metal-cored wire for gas shielded arc welding
IL178452A (en) Sintered flux for submerged arc welding
JP2015155111A (en) Bond flux for multielectrode one-side submerged arc welding
JPH02280996A (en) Bond flux for submerged arc welding
JP2006272348A (en) Bonded flux for submerged arc welding
JP2545605B2 (en) Bond flux for submerged arc welding
GB2155045A (en) Flux cored wire electrodes
JP7179639B2 (en) Sintered flux for submerged arc welding for high-strength steel
JP2022146842A (en) Fusion type flux for fillet submerged arc welding
JPH02179391A (en) Bond flux for submerged arc welding
US5171958A (en) High-efficiency fillet welding method for steel plate
KR100466205B1 (en) A flux composition for submerged arc welding
JPH05228691A (en) Flux cored wire for self-shielded arc welding
JPH0513040B2 (en)
JPS6268695A (en) High temperature calcined flux for submerged arc welding
JP6908547B2 (en) Bond flux for multi-electrode single-sided submerged arc welding
JPH07100689A (en) Bonded flux for submerged arc welding downward facing fillet
JPH0244636B2 (en)
JPH06285679A (en) Highly basic and meltable flux
JP6434386B2 (en) Bond flux for downward fillet submerged arc welding
JPH082513B2 (en) High heat input submerged arc welding firing type flux
SU1252104A1 (en) Electrode coating composition
JPH07110431B2 (en) Low hydrogen system coated arc welding rod for weathering steel
JPH02151393A (en) Bond flux for submerged arc welding

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960611

LAPS Cancellation because of no payment of annual fees