JPH02179391A - Bond flux for submerged arc welding - Google Patents

Bond flux for submerged arc welding

Info

Publication number
JPH02179391A
JPH02179391A JP33082188A JP33082188A JPH02179391A JP H02179391 A JPH02179391 A JP H02179391A JP 33082188 A JP33082188 A JP 33082188A JP 33082188 A JP33082188 A JP 33082188A JP H02179391 A JPH02179391 A JP H02179391A
Authority
JP
Japan
Prior art keywords
welding
flux
submerged arc
arc welding
bond flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33082188A
Other languages
Japanese (ja)
Other versions
JPH0455788B2 (en
Inventor
Yutaka Nishikawa
裕 西川
Kaoru Hase
薫 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP33082188A priority Critical patent/JPH02179391A/en
Publication of JPH02179391A publication Critical patent/JPH02179391A/en
Publication of JPH0455788B2 publication Critical patent/JPH0455788B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/361Alumina or aluminates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To obtain excellent welding workability and stable mechanical performance by specifying the compsn. of the bond flux for submerged arc welding. CONSTITUTION:The bond flux for submerged arc welding is composed, by weight, of 13 to 20% SiO2, 30 to 45% Al2O3, 6 to 15% TiO2, 0.1 to 5.0% MgO, 5 to 16% T.Mn, 7 to 15% CaF2, 0.1 to 7.0% T.FeO, 0.5 to 3.5% 1 or 2 kinds of Na2O and K2O, 0.05 to 0.5% T. CO2 and 10 to 5ppm H2. While this bond flux contains gas generating components, such as CO2 and H2, the bond flux has the good welding workability, does not generate blow holes and has excellent toughness. This bond flux is particularly suitable as the flux tor high-speed submerged arc welding for fillet and flat butt welding.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はサブマージアーク溶接用ボンドフラックスに係
り、特にスミ肉及び下向突合せの高速サブマージアーク
溶接において、優れた溶接作業性と安定した機械的性能
が得られるサブマージアーク溶接用ボンドフラックス組
成に関するものである。 (従来の技術及び解決しようとする課題)従来、高速サ
ブマージアーク溶接においては、ポックマーク、ブロー
ホール、ピット等のガス欠陥発生の面から、炭酸塩を含
有した低温ボンドフラックスは採用されず、炭酸塩を含
有しない溶融型フラックスが一般に広く使用されていた
。 しかし、この炭酸塩を含有しない溶融型フラックスを用
いて溶接した場合、溶融中に1例えば、CaC0,→C
aO+CO+Oなる化学反応で発生するCOガスで大気
からシールドする効果が期待できず、その結果、溶接金
属中の(N)量が非常に不安定となり、靭性にバラツキ
が生じるという問題があった。 本発明は、上記従来技術の問題点を解決するためになさ
れたものであって、シールド効果を有するガス発生成分
を含有させたボンド型フラックスであっても、ガス欠陥
の発生がなく、優れた機械的性能の溶接金属が得られ、
また優れた溶接作業性を有するサブマージアーク溶接用
フラックスを提供することを目的とするものである。 (1題を解決するための手段) 本発明者は、上述のような問題点に対処すべくボンドフ
ラックスについて種々検討を重ねた。その結果、特にス
ミ肉及び下向突合せの高速サブマージアーク溶接におい
て、優れた溶接作業性と安定した機械的性能が得られる
サブマージアーク溶接用ボンドフラックスを見出したも
のである。 すなわち、本発明に係るサブマージアーク溶接用ボンド
フラックスは、SiO2:13〜20%、Al2O3=
30〜45%、TxO,: 6〜15%、MgO:0.
1〜5.0%、T、Mn:5〜16%、CaF、ニア 
〜15%、T、FeO:0.1〜7.0%、Na2O及
びK2Oの1種又は2種:0.5〜3.5%、T、co
、:o、o5〜0.5%及びHt : 10〜50 p
pmを含む組成からなることを特徴とするものである。 以下に本発明を更に詳細に説明する。 (作用) 本発明における化学成分の限定理由は以下のとおりであ
る。 Sin:13〜20% SiO□は酸性成分であって、スラグの粘性、凝固温度
を調整するのに有効な成分である。しかし、13%未満
ではスラグの粘性が不十分でビード幅の均一性が劣る。 一方、20%を超えると塩基度が低下し、溶接金属の靭
性が劣化し、また水平スミ肉溶接において、ビード形状
が凸となり、スラブ剥離性が劣化する。したがって、S
iO2量は13〜20%の範囲とする。 AQ  O:30〜45% AQ2O,は中性成分であり、スラグの塩基度を下げな
いでスラグの粘性、凝固温度を調整するのに有効な成分
である。しかし、30%未満では水平スミ肉溶接におい
て等脚性が損なわれ、またアンダーカットも生じ易いた
め好ましくない、一方、45%を超えると粘性が高くな
りすぎてスラグ巻込みが発生し易く、下向溶接において
凸ビードになり易い、したがって、A11.O,量は3
0〜45%の範囲とする。 TiO:6〜15% T i O2はスラグの融点及び粘性調整剤として有効
な成分である。また、TiOよは溶液中還元反応によっ
て溶接金属中に(Ti)を添加し、衝撃性能を向上させ
るために添加する。しかし、6%未満では還元によって
添加される溶接金属中の(Ti)量が少なすぎて衝撃性
能が劣化し、またアンダーカットが発生し易いため好ま
しくない。一方、15%を超えるとスラグが焼付き、ス
ラグ剥離性が急激に劣化する。したがって、Tie、量
は6〜15%の範囲とする。 M o:o、t〜5.0% MgOは塩基性成分であり、溶接金属中
(Industrial Application Field) The present invention relates to a bond flux for submerged arc welding, particularly in high-speed submerged arc welding of fillet and downward butt welding, which provides excellent welding workability and stable mechanical performance. This relates to the composition of bond flux for use in other applications. (Prior art and problems to be solved) Conventionally, in high-speed submerged arc welding, low-temperature bond flux containing carbonate has not been used because of the generation of gas defects such as pock marks, blowholes, and pits. Salt-free molten fluxes were generally widely used. However, when welding is performed using a molten flux that does not contain carbonates, 1 e.g., CaC0,→C
CO gas generated by the chemical reaction aO+CO+O cannot be expected to have a shielding effect from the atmosphere, and as a result, the amount of (N) in the weld metal becomes extremely unstable, causing variations in toughness. The present invention has been made in order to solve the problems of the prior art described above, and even with a bond type flux containing a gas generating component having a shielding effect, there is no occurrence of gas defects and an excellent A weld metal with mechanical performance is obtained,
Another object of the present invention is to provide a flux for submerged arc welding that has excellent welding workability. (Means for Solving a Problem) The present inventor has repeatedly conducted various studies on bond flux in order to address the above-mentioned problems. As a result, we have discovered a bond flux for submerged arc welding that provides excellent welding workability and stable mechanical performance, particularly in high-speed submerged arc welding of fillet and downward butt welding. That is, the bond flux for submerged arc welding according to the present invention has SiO2: 13 to 20%, Al2O3=
30-45%, TxO: 6-15%, MgO: 0.
1-5.0%, T, Mn: 5-16%, CaF, near
~15%, T, FeO: 0.1-7.0%, one or both of Na2O and K2O: 0.5-3.5%, T, co
, :o, o5~0.5% and Ht: 10~50p
It is characterized by having a composition containing pm. The present invention will be explained in more detail below. (Function) The reasons for limiting the chemical components in the present invention are as follows. Sin: 13 to 20% SiO□ is an acidic component and is an effective component for adjusting the viscosity and solidification temperature of the slag. However, if it is less than 13%, the viscosity of the slag is insufficient and the uniformity of the bead width is poor. On the other hand, if it exceeds 20%, the basicity decreases, the toughness of the weld metal deteriorates, and in horizontal fillet welding, the bead shape becomes convex and slab peelability deteriorates. Therefore, S
The amount of iO2 is in the range of 13-20%. AQO: 30-45% AQ2O is a neutral component, and is an effective component for adjusting the viscosity and coagulation temperature of the slag without reducing the basicity of the slag. However, if it is less than 30%, it is undesirable because it will impair isopodal properties in horizontal fillet welding and undercuts will easily occur.On the other hand, if it exceeds 45%, the viscosity will become too high and slag entrainment will easily occur, resulting in lower It is easy to form a convex bead in direction welding, therefore, A11. O, amount is 3
The range is 0 to 45%. TiO: 6-15% TiO2 is a component effective as a slag melting point and viscosity modifier. In addition, TiO is added to the weld metal by a reduction reaction in a solution to improve impact performance. However, if it is less than 6%, the amount of (Ti) added by reduction in the weld metal is too small, which deteriorates impact performance and tends to cause undercutting, which is not preferable. On the other hand, if it exceeds 15%, the slag will seize and the slag removability will deteriorate rapidly. Therefore, the amount of Tie should be in the range of 6-15%. Mo: o, t ~ 5.0% MgO is a basic component and is present in the weld metal.

〔0〕を低減す
るのに有効な成分であり、粘性flIill剤としての
作用も有している。しかし、0.1%未満では溶接金属
It is an effective component for reducing [0] and also acts as a viscous flIll agent. However, if it is less than 0.1%,

〔0〕の低減効果が少なく、靭性が劣る。またビード
が蛇行し易く、アンダーカットが発生する。一方、5.
0%を超えるとスラグ焼付きが増すと共にポックマーク
が多発する。したがって、MgO量は0.1〜5.0%
の範囲とする。 Mnはスラグの粘性、凝固温度を調整するのに有効な成
分であるだけでなく、溶接金属中のMn量を調整し、引
張性能、衝撃性能を確保するために必須の成分である。 しかし、5%未満ではアンダーカット及びスラグ焼付き
が発生し易く好ましくない、また、安価な低Mnワイヤ
と組合せた場合、溶接金属中の(Mn)量が不足し、引
張強度及び靭性が低下する。一方、16%を超えるとビ
ードが蛇行し易く、且つフラックス消費量が増大するた
め好ましくない。 なお、Mn成分は、金属MnやFe−Mnなどの化合物
及びMnO,MnO2などの酸化物の形でフラックス中
に添加されるが、ここではMnの総量としてT、Mnで
規定することにした。 したがって、T、Mn量は5〜16%の範囲とする。 CaFニア〜15% CaF、は塩基性成分であって、溶接金属中(0)を低
下させる効果があると共に、スラグの流動性を調整し、
溶接中のスラグ−メタル間の反応を促進させるために有
効な成分である。しかし、7%未満ではポックマークが
発生し易く、粘性向上に対しても効果が少ない。一方、
15%を超えるとスラグの流動性が増し、ビードの蛇行
やアンダーカットが発生する。したがって、CaF、量
は7〜15%の範囲とする。 T、FeO:0.1〜7.0% FeO成分は粘性調整剤として有効な成分であるが、0
.1%未満ではスラグの粘性が高くなり、高速溶接にお
いてアンダーカットやスラグ巻込みが増加するため好ま
しくない、一方、7.0%を超えると溶接金属中(0)
量が増加し、衝撃性能が劣化する。 なお、FeO成分はFe−3i、Fe−Mnなどの化合
物及びFeO,Fe、0.などの酸化物の形でフラック
ス中に添加されるが、ここではFeOの総量としてT、
FeOで規定することにした。 したがッテ、T、FeO量は0.1〜7..O%の範囲
とする。 Na OびKOの1  は2  :0.5〜3.5Na
2O,に2Oはアーク安定剤、スラグの粘性調整剤とし
て有効であり、特に高速溶接においてはアーク安定性を
確保するためには必須の成分であるので、Na2O及び
に2Oの1種又は2種を添加する。しかし、0.5%未
満ではアークの安定性、集中性が悪くなり、ビードが蛇
行したり、スラグ巻込みが増加する。一方、3.5%を
超えるとフラックスの耐吸湿性が悪くなり、ビットやポ
ックマークが発生し易い。したがって、Na2O及びに
2Oの1種又は2種の添加量は0.5〜3.5%の範囲
とする。 T、CO:o、os〜0.5 C02成分は溶接中に発生するCOガスで大気をシール
ドし溶接金属中(N)量を低減し、安定化するのに非常
に有効な成分である。COガスを発生させるためには、
フラックス中にCaCO3やBaCO3などの炭酸塩及
びC(炭素)などの形で添加するが、ここではCOlの
総量としてT、CO。 で規定することにした。しかし、T、CO,量が0゜0
5%未満では溶接金属中(N)の低減及び安定化に対し
て効果がなく、靭性が低下する。一方、0゜5%を超え
ると高速溶接においてポックマークが発生し易い、した
がって、T、GO,量は0.05〜0.5%の範囲とす
る。 H:10〜50  m 溶接金属中(N)の低減及び安定化対策のためには、上
記T、C○2量の管理だけでは不十分であるので1本発
明では、アーク雰囲気中の(N)分圧を下げるためにH
2の添加を必須とした。しかし。 10ppm未満では溶接金属中(N)の低減及び安定化
に対して効果がなく、靭性が低下するため好ましくない
、一方、50ppmを超えると溶接金属中の〔H2〕量
が高くなりすぎて、遅れ割れ等の問題が発生するため好
ましぐない、また、ピットも発生し易い。したがって、
H2量は10〜50ppmの範囲とする。 なお、上記H2量はガスクロマトグラフィー法により測
定した量である。例えば、300℃×1時間の予備乾燥
後、インパルス炉を用いて抽出した水素をガスクロマト
グラフィー法で定量する。 その他の条件としては、特に制限されないが、大気から
のシールド効果を更に高めるためには、フラックス粒度
を、10メツシユより粗い粒子が全体の5%以下とし、
48メツシユより細い粒子が全体の8〜35%とするの
が望ましい。 なお、ボンドフラックスとは、溶融型フラックスとは異
なり、焼成又は焼結して製造されるフッラックス(ボン
ドフラックス)を指している。 また、サブマージアーク溶接条件も特に制限されないが
、スミ肉及び突合せの高速溶接条件のもとで上記効果が
顕著である。 次に本発明の実施例を示す。 (実施例) 第1表に示す化学成分を有する供試ボンドフラックスを
準備した。その際、T、Mn量は金属Mn、Fe−Mn
等の化合物及びM n OlM n O、、Mn2O。 等の酸化物により、T、FeO量はFe−Mn、Fa−
3i等の化合物及びFed、Fe2Oz等の酸化物によ
り、T、GO,量はCaC0a、BaC0,及びNa、
CO,及びNa、Co、等の炭酸塩により、H2量は1
例えば、SiO2源として用いる珪砂等に含まれる結晶
水分量、フラックスの固着剤として用いる水硝子の添加
量及びフラックスの焼成温度により、それぞれ含有量を
調整した。 なお、比較例の各フラックスにおいて、NQ7はAQ2
O,が多く、Tie、が少ない例、Nn 8はSio2
とT、Mnが少ない例、&9はMgOとCaF2が少な
い例、No 10はAQ2O,、Tie、、CaF、が
多く、Na2O及びに2Oも多く、T 、 M nが少
ない例、NQIIはSio、とT、FeOが少ない例、
Na 12はT、FeOが少ない例、Nα13はMgO
が含まれず、H2が多い例、Nα14はT、CO,とH
2がともに少ない例、Nn15はT、CO□が多い例、
Nα16はNa2O及びに2Oが少ない例である。 失産■よ 第1表に示した供試フラックスを用い、3.2mmtX
 1000mmMの寸法で第1図に示す工開先の母材5
S41に、2 、4 mmφでJIS  Z  335
1YS−83相当のワイヤ(成分: 0.11%G−0
.28%5i−1.05%M n )を用い、以下の溶
接条件で下向突合せサブマージアーク溶接を行った。 く溶接条件〉 単電極両面−層溶接 1st 5ide:300 A −30V −150c
m/m1n2nd 5ide:300A −32V −
150c+n/win溶接作業性及びX線透過試験結果
を第2表に示す。なお、X線透過試験は、試験板全長を
対象として行い、欠陥の有無を判定した。 第2表より明らかなように、本発明例はいずれも良好な
溶接作業性を有し、ガス欠陥の発生もなかった。 去JLJ2L% 第1表に示した供試フラックスを用い、16mmtX 
1000vamQの寸法で第2図に示すX開先の母材X
60に、4.0+a+*φでJIS  Z  3351
YS−83相当のワイヤ(成分: 0.11%C−0゜
28%5i−1,05%Mn)を用い、以下の溶接条件
で下向突合せサブマージアーク溶接を行った。 〈溶接条件〉 2電極両面−層溶接(第1電極L、第2電極T)1 s
t 5ide : (L) 700 A −34V −100co+/+a
in(T)600A−38V 2nd  5ide : (L) 800 A −34V −100cn+/wi
n(T)700A−38V 溶接作業性及びX線透過試験、衝撃試験結果を第2表に
示す。なお、X線透過試験は、試験板全長を対象として
行い、欠陥の有無を判定した。また衝撃試験は、2nd
 5ide表面6mmよりJISZ  3111A4号
試験片を採取し、−30℃で試験を行い、3本の平均値
を求めた。 第2表より明らかなように、本発明例はいずれも良好な
溶接作業性を有し、ガス欠陥の発生もなく、靭性も優れ
ている。 夾1銖主 第1表に示した供試フラックスを用い、12mm+tX
 700mm12の寸法で第3図に示す開先の母材5M
41Bに、4.Ot+a$でJ IS  Z  335
1YS−53相当のワイヤ(成分? 0.11%C−0
゜28%5i−1,05%Mn)を用い、以下の溶接条
件でサブマージアーク溶接でスミ肉溶接を行った。 く溶接条件〉 単電極水平スミ肉溶接 1st 5ide:550A−27V−65cm/1l
in2nd 5ide: 第2表に溶接作業性を示すように1本発明例はいずれも
良好な溶接作業性を有している。 以上の各実施例より、第1表に示した本発明例フラック
スは種々のサブマージアーク溶接用として優れた溶接作
業性、溶接性能を発揮するものであることが明らかであ
る。 なお、第2表において、比較例NQ7.Nα9〜Nα1
1、Nα16について試験結果が記載してないが、これ
は、実施例1での結果が悪く(スラグ巻込)、したがっ
て、実施例2.3で確認するまでもないと判断し、実施
例2.3の試験を中止したためである。 (発明の効果) 以上詳述したように1本発明によれば、C○、。 H2等のガス発生成分を含有するボンドフラックスであ
るが、優れた溶接作業性と安定した機械的性能が得られ
る。特にスミ肉、下向突合せの高速サブマージアーク溶
接用のフラックスに好適である。
The effect of reducing [0] is small and the toughness is poor. In addition, the bead tends to meander and undercuts occur. On the other hand, 5.
When it exceeds 0%, slag burning increases and pock marks occur frequently. Therefore, the amount of MgO is 0.1 to 5.0%
The range shall be . Mn is not only an effective component for adjusting the viscosity and solidification temperature of slag, but also an essential component for adjusting the amount of Mn in the weld metal and ensuring tensile performance and impact performance. However, if it is less than 5%, undercutting and slag seizure are likely to occur, which is undesirable.Also, when used in combination with inexpensive low-Mn wire, the amount of (Mn) in the weld metal is insufficient, resulting in a decrease in tensile strength and toughness. . On the other hand, if it exceeds 16%, the bead tends to meander and flux consumption increases, which is not preferable. The Mn component is added to the flux in the form of metal Mn, compounds such as Fe-Mn, and oxides such as MnO and MnO2, but here the total amount of Mn is defined by T and Mn. Therefore, the amounts of T and Mn are set in the range of 5 to 16%. CaF Near - 15% CaF is a basic component and has the effect of lowering the (0) content in the weld metal, as well as adjusting the fluidity of the slag.
It is an effective component for promoting the reaction between slag and metal during welding. However, if it is less than 7%, pock marks are likely to occur and there is little effect on improving viscosity. on the other hand,
When it exceeds 15%, the fluidity of the slag increases, causing bead meandering and undercuts. Therefore, the amount of CaF is in the range of 7 to 15%. T, FeO: 0.1-7.0% The FeO component is an effective component as a viscosity modifier, but 0.
.. If it is less than 1%, the viscosity of the slag will increase and undercut or slag entrainment will increase during high-speed welding, which is undesirable. On the other hand, if it exceeds 7.0%, the slag will become viscous (0) in the weld metal.
The amount increases and the impact performance deteriorates. Note that the FeO component includes compounds such as Fe-3i, Fe-Mn, and FeO, Fe, 0. It is added to the flux in the form of oxides such as T, but here, the total amount of FeO is T,
It was decided to specify it using FeO. The amounts of Gatte, T, and FeO are 0.1 to 7. .. The range shall be 0%. 1 of NaObiKO is 2:0.5~3.5Na
2O, 2O is effective as an arc stabilizer and a slag viscosity modifier, and is an essential component to ensure arc stability especially in high-speed welding, so one or both of Na2O and 2O are used. Add. However, if it is less than 0.5%, the stability and concentration of the arc will be poor, the bead will meander, and slag entrainment will increase. On the other hand, if it exceeds 3.5%, the moisture absorption resistance of the flux deteriorates, and bits and pockmarks are likely to occur. Therefore, the amount of one or both of Na2O and Na2O to be added is in the range of 0.5 to 3.5%. T, CO: o, os ~ 0.5 The CO2 component is a very effective component for shielding the atmosphere with CO gas generated during welding, reducing the amount of N in the weld metal, and stabilizing it. To generate CO gas,
It is added to the flux in the form of carbonates such as CaCO3 and BaCO3 and C (carbon), but here T and CO are expressed as the total amount of COl. I decided to specify. However, the amount of T, CO, is 0°0
If it is less than 5%, there is no effect on reducing and stabilizing (N) in the weld metal, and the toughness decreases. On the other hand, if it exceeds 0.5%, pock marks are likely to occur during high-speed welding. Therefore, the amounts of T and GO are set in the range of 0.05 to 0.5%. H: 10 to 50 m In order to reduce and stabilize (N) in the weld metal, controlling the amounts of T and C○2 described above is insufficient. ) H to lower the partial pressure
The addition of 2 was made essential. but. If it is less than 10 ppm, it will not be effective in reducing or stabilizing the (N) in the weld metal, and the toughness will decrease, which is undesirable. On the other hand, if it exceeds 50 ppm, the amount of [H2] in the weld metal will become too high, causing a delay. This is undesirable because problems such as cracking occur, and pits are also likely to occur. therefore,
The amount of H2 is in the range of 10 to 50 ppm. Note that the above amount of H2 is the amount measured by gas chromatography. For example, after preliminary drying at 300° C. for 1 hour, hydrogen extracted using an impulse furnace is quantified by gas chromatography. Other conditions are not particularly limited, but in order to further enhance the shielding effect from the atmosphere, the flux particle size should be 5% or less of the total particles coarser than 10 mesh;
It is desirable that particles finer than 48 mesh account for 8 to 35% of the total. Note that bond flux refers to flux produced by firing or sintering (bond flux), unlike molten flux. Further, although the submerged arc welding conditions are not particularly limited, the above effect is remarkable under high-speed welding conditions for fillet and butt welding. Next, examples of the present invention will be shown. (Example) A sample bond flux having the chemical components shown in Table 1 was prepared. At that time, the amount of T and Mn is metal Mn, Fe-Mn
Compounds such as M n OlM n O, , Mn2O. The amount of T and FeO varies depending on the oxides such as Fe-Mn, Fa-
By compounds such as 3i and oxides such as Fed, Fe2Oz, the amount of T, GO, CaC0a, BaC0, and Na,
Due to CO and carbonates such as Na, Co, etc., the amount of H2 is 1
For example, the content was adjusted depending on the amount of crystal water contained in the silica sand used as the SiO2 source, the amount of water glass added as a fixing agent for the flux, and the firing temperature of the flux. In addition, in each flux of the comparative example, NQ7 is AQ2
An example where there are many O, and few Tie, Nn 8 is Sio2
&9 is an example with a small amount of MgO and CaF2, No. 10 is an example with a large amount of AQ2O,, Tie,, CaF, a large amount of Na2O and 2O, and a small amount of T, Mn, and NQII is an example with a small amount of Sio, and T, an example with less FeO,
Na12 is an example of low T and FeO, Nα13 is MgO
In an example where H2 is abundant and Nα14 is not included, Nα14 is T, CO, and H
Examples where both 2 are small, Nn15 has many T and CO□,
Nα16 is an example with low amounts of Na2O and 2O. 3.2mmtX using the test flux shown in Table 1.
Base material 5 of the work preparation shown in Fig. 1 with dimensions of 1000 mmM
S41, JIS Z 335 with 2 and 4 mmφ
Wire equivalent to 1YS-83 (component: 0.11%G-0
.. 28%5i-1.05%Mn), downward butt submerged arc welding was performed under the following welding conditions. Welding conditions> Single electrode double-sided layer welding 1st 5ide: 300A -30V -150c
m/m1n2nd 5ide: 300A -32V -
150c+n/win welding workability and X-ray transmission test results are shown in Table 2. Note that the X-ray transmission test was performed on the entire length of the test plate to determine the presence or absence of defects. As is clear from Table 2, all the examples of the present invention had good welding workability and no gas defects occurred. JLJ2L% Using the sample flux shown in Table 1, 16mmtX
Base material X of the X groove shown in Figure 2 with dimensions of 1000 vamQ
60, JIS Z 3351 with 4.0+a+*φ
Using a wire equivalent to YS-83 (components: 0.11%C-0°28%5i-1.05%Mn), downward butt submerged arc welding was performed under the following welding conditions. <Welding conditions> Two-electrode double-layer welding (first electrode L, second electrode T) 1 s
t5ide: (L) 700 A -34V -100co+/+a
in (T) 600A-38V 2nd 5ide: (L) 800 A -34V -100cn+/wi
n(T)700A-38V Welding workability, X-ray transmission test, and impact test results are shown in Table 2. Note that the X-ray transmission test was performed on the entire length of the test plate to determine the presence or absence of defects. In addition, the impact test
A JISZ 3111A No. 4 test piece was taken from 6 mm of the 5ide surface, tested at -30°C, and the average value of the three pieces was determined. As is clear from Table 2, the examples of the present invention all have good welding workability, no gas defects, and excellent toughness. 12mm+tX using the test flux shown in Table 1
Bevel base material 5M with dimensions of 700mm12 as shown in Figure 3
41B, 4. J IS Z 335 for Ot+a$
Wire equivalent to 1YS-53 (component? 0.11%C-0
Fillet welding was performed by submerged arc welding under the following welding conditions using 28%5i-1,05%Mn). Welding conditions> Single electrode horizontal fillet welding 1st 5ide: 550A-27V-65cm/1l
in2nd 5ide: As shown in Table 2, all examples of the present invention have good welding workability. From the above examples, it is clear that the fluxes of the present invention shown in Table 1 exhibit excellent welding workability and welding performance for various submerged arc welding applications. In addition, in Table 2, Comparative Example NQ7. Nα9~Nα1
1. There are no test results listed for Nα16, but this is because the results in Example 1 were poor (slag entrainment), so it was judged that there was no need to confirm it in Example 2.3, and Example 2. This is because the third test was discontinued. (Effects of the Invention) As detailed above, according to the present invention, C○. Although this bond flux contains gas-generating components such as H2, it provides excellent welding workability and stable mechanical performance. It is particularly suitable as a flux for high-speed submerged arc welding for fillet welding and downward butt welding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は実施例で用いた開先形状、寸法(、m
)を示す説明図である。 特許出願人  株式会社神戸製鋼所 代理人弁理士 中  村   尚
Figures 1 to 3 show the groove shape and dimensions (, m) used in the examples.
) is an explanatory diagram showing. Patent applicant Hisashi Nakamura, patent attorney representing Kobe Steel, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 重量%で(以下、同じ)、SiO_2:13〜20%、
Al_2O_3:30〜45%、TiO_2:6〜15
%、MgO:0.1〜5.0%、T.Mn:5〜16%
、CaF_2:7〜15%、T.FeO:0.1〜7.
0%、Na_2O及びK_2Oの1種又は2種:0.5
〜3.5%、T.CO_2:0.05〜0.5%及びH
_2:10〜50ppmを含む組成からなることを特徴
とするサブマージアーク溶接用ボンドフラックス。
In weight% (the same applies hereinafter), SiO_2: 13 to 20%,
Al_2O_3: 30-45%, TiO_2: 6-15
%, MgO: 0.1-5.0%, T. Mn: 5-16%
, CaF_2:7-15%, T. FeO: 0.1-7.
0%, one or both of Na_2O and K_2O: 0.5
~3.5%, T. CO_2: 0.05-0.5% and H
_2: A bond flux for submerged arc welding characterized by having a composition containing 10 to 50 ppm.
JP33082188A 1988-12-28 1988-12-28 Bond flux for submerged arc welding Granted JPH02179391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33082188A JPH02179391A (en) 1988-12-28 1988-12-28 Bond flux for submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33082188A JPH02179391A (en) 1988-12-28 1988-12-28 Bond flux for submerged arc welding

Publications (2)

Publication Number Publication Date
JPH02179391A true JPH02179391A (en) 1990-07-12
JPH0455788B2 JPH0455788B2 (en) 1992-09-04

Family

ID=18236922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33082188A Granted JPH02179391A (en) 1988-12-28 1988-12-28 Bond flux for submerged arc welding

Country Status (1)

Country Link
JP (1) JPH02179391A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100462037B1 (en) * 2000-07-10 2004-12-16 현대종합금속 주식회사 Flux for using butt submerged arc welding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100462037B1 (en) * 2000-07-10 2004-12-16 현대종합금속 주식회사 Flux for using butt submerged arc welding

Also Published As

Publication number Publication date
JPH0455788B2 (en) 1992-09-04

Similar Documents

Publication Publication Date Title
CN108581270B (en) Sintered flux for welding LPG ship and preparation method and application thereof
JP2001300764A (en) Metal-cored wire for gas shielded arc welding
IL178452A (en) Sintered flux for submerged arc welding
JP2015155111A (en) Bond flux for multielectrode one-side submerged arc welding
JPH02280995A (en) Bond flux for submerged arc welding
JP2544479B2 (en) Bond flux for submerged arc welding
CN108723638B (en) Sintered flux for niobium-titanium-containing stainless steel welding wire and preparation method and application thereof
JPH02179391A (en) Bond flux for submerged arc welding
JP2022146842A (en) Fusion type flux for fillet submerged arc welding
JPH11216593A (en) Low hydrogen system covered arc electrode
JPS6268695A (en) High temperature calcined flux for submerged arc welding
JPH0335033B2 (en)
JPH0513040B2 (en)
JP2878593B2 (en) Low hydrogen coated arc welding rod
JP7346328B2 (en) Low hydrogen coated arc welding rod for horizontal fillet welding
JPS6357154B2 (en)
JPH07100689A (en) Bonded flux for submerged arc welding downward facing fillet
JP6999461B2 (en) High titanium oxide-based shielded metal arc welding rod
JP2002321090A (en) Low hydrogen type covered electrode
JPH06285679A (en) Highly basic and meltable flux
JPH01138098A (en) Coated electrode for stainless steel
JPH082513B2 (en) High heat input submerged arc welding firing type flux
JP3538010B2 (en) Covered arc welding rod for austenitic stainless steel
JPH07100692A (en) Stainless steel flux cored wire
JPS61216891A (en) Coated electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees