JPH02280958A - Lining structure for bottom part in ladle - Google Patents

Lining structure for bottom part in ladle

Info

Publication number
JPH02280958A
JPH02280958A JP9964689A JP9964689A JPH02280958A JP H02280958 A JPH02280958 A JP H02280958A JP 9964689 A JP9964689 A JP 9964689A JP 9964689 A JP9964689 A JP 9964689A JP H02280958 A JPH02280958 A JP H02280958A
Authority
JP
Japan
Prior art keywords
layer
ladle
bedding
wear layer
brick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9964689A
Other languages
Japanese (ja)
Other versions
JP2773226B2 (en
Inventor
Yuji Narita
成田 雄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9964689A priority Critical patent/JP2773226B2/en
Publication of JPH02280958A publication Critical patent/JPH02280958A/en
Application granted granted Critical
Publication of JP2773226B2 publication Critical patent/JP2773226B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To prolong the service life of a ladle by making a convex lens form of bedding wear layer and a concave lens form of permanent layer positioned at lower layer and forming brick laying structure of refractory brick, etc., for forming the bedding wear layer to reverse arch structure. CONSTITUTION:In case of using high alumina brick or basic brick having errosion resistance to the bed in the ladle, the boundary face between the permanent layer and wear layer is made to the structure having curving face, spherical face or inclined face corresponding to these. The wear layer 3 is made to the convex lens form and the permanent layer 4 is made to the concave lens form. By this construction, errosive balance of the lining brick is made uniform, i.e., the service life as the whole of the ladle lining can be lengthened. Further, it is effective to apply large-sized block to the permanent layer below the boundary face in order to surely secure wedging effect. As the center of the bedding wear layer, at the center part of the bedding, the brick having triangle shape in the vertical cross section is set. By this method, the errosive balance of the bedding wear layer is secured and trouble of detaching and floating-up of the refractory can be eliminated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、溶融金属、特に溶鋼を受容する取鍋底部の内
張り構造に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a lining structure for the bottom of a ladle that receives molten metal, particularly molten steel.

(従来の技術) 取鍋は転炉精錬後に溶鋼を受鋼し、鋳造機上までクレー
ンで搬送して出鋼する工程を受持つ窯炉である。その内
張り構造は、取鍋の寿命に極めて大きな影響を与えるも
のであって、内張り耐火材料のコスト、使用初期の加熱
、または使用途中の冷却といった諸条件を勘案すること
により、従来は、シャモツト質、ロウ石質またはジルコ
ン質煉瓦等が取鍋の内部の全面について、はぼ均一に同
一材質により内張すされたものである。具体的にはその
断面が第5図に示すようなコツプ状を呈するものであっ
て、鉄皮5の内部には、側壁部において側壁パーマ層2
と側壁ウェア層1とが、また底部においては敷パーマ層
4と敷ウェア層3とがそれぞれ形成されている。そして
この底部は水平の略円板状の構造となっている。このよ
うにこの第5図に示す取鍋は、他の窯炉と同様にウェア
層とパーマ層とに材質を区分して内張すされているが、
他の窯炉、例えば転炉等に比べ内張り厚さは薄く、熱放
散量も大きい。
(Prior Art) A ladle is a kiln that receives molten steel after refining in a converter, transports it by crane to a casting machine, and taps the steel. The lining structure has an extremely large effect on the life of the ladle, and by taking into consideration various conditions such as the cost of the lining refractory material, heating at the initial stage of use, and cooling during use, conventionally, chamots The entire interior of the ladle is lined with the same material, such as waxite or zirconite bricks. Specifically, the cross section thereof has a pot-like shape as shown in FIG.
and a side wall wear layer 1, and a permanent bed layer 4 and a bed wear layer 3 are formed at the bottom. The bottom part has a horizontal, generally disk-shaped structure. In this way, the ladle shown in Fig. 5 is lined with a wear layer and a permanent layer, which are made of different materials, like other kilns.
Compared to other kilns, such as converters, the lining is thinner and the amount of heat dissipated is greater.

このように取鍋は、従来はその構造からも分かるように
、鉄鋼プロセスにおいて精錬工程と鋳造工程とを接続す
るための手段として位置付けられており、取扱いの容易
さ、例えば搬送の容易さ、メンテナンスの容易さ等に重
点をおいて設計され、使用されてきた。
As can be seen from its structure, ladle has traditionally been positioned as a means to connect the refining process and casting process in the steel process, and has been used for ease of handling, such as ease of transportation and maintenance. It has been designed and used with emphasis on ease of use.

しかし、近年の連続鋳造法の著しい普及に伴って、鋼質
の高級化の要求が高まり、例えば取鍋を使った真空脱ガ
ス法、取鍋内でのバブリングやインジェクション処理法
等が広く行なわれるようになってきた。これに伴い、取
鍋の使用目的には、精錬工程の一部を受は持つこと、す
なわち高温出鋼、溶鋼滞留時間の延長等が新たに求めら
れるようになってきた。したがって、このような使用状
況の変化・過酷化につれて、高珪酸質系の取鍋の内張り
耐火物の損傷が著しくなってきた。
However, with the remarkable spread of continuous casting methods in recent years, the demand for higher quality steel has increased, and methods such as vacuum degassing using a ladle, bubbling in a ladle, and injection treatment methods are now widely used. It's starting to look like this. Along with this, there has been a new requirement for the purpose of using the ladle to support a part of the refining process, that is, high-temperature steel tapping, extension of the residence time of molten steel, etc. Therefore, as the usage conditions have changed and become more severe, damage to the refractory lining of high-silicic acid ladles has become significant.

このような状況に対処する方策として、例えば特開昭6
1−269968号公報に開示されているように、耐食
性の劣るスラグライン部を中心とした側壁部ウェア層に
対して、高耐食性の高アルミナ質煉瓦やMg0−C質等
の塩基性煉瓦を内張すすることにより耐食性を改善する
試みがなされてきた。
As a measure to deal with this situation, for example,
As disclosed in Japanese Patent Application No. 1-269968, a highly corrosion-resistant high alumina brick or a basic brick such as Mg0-C brick is inserted into the side wall wear layer centered on the slag line portion, which has poor corrosion resistance. Attempts have been made to improve the corrosion resistance by coating.

また、取鍋の側壁部と底部との溶損バランスを確保する
という観点から従来から用いている高珪酸質耐火物中に
St C、Cry’s 、Zr0z等を少量添加するこ
とにより側壁部の損傷を低減して前記溶損バランスを確
保し、取鍋全体の耐食性を改善する試みもなされている
In addition, from the viewpoint of ensuring the balance of erosion loss between the side wall and the bottom of the ladle, by adding a small amount of St C, Cry's, Zr0z, etc. to the conventionally used high silicic acid refractory, the side wall can be improved. Attempts have also been made to reduce damage, ensure the above-mentioned melting loss balance, and improve the corrosion resistance of the ladle as a whole.

さらに、省力化の観点から、耐火物の不定形化や機械化
の改善が進み、高アルミナ質や塩基性耐火材料の不定形
化も実施されるようになってきた。
Furthermore, from the viewpoint of labor saving, progress has been made in making refractories amorphous and mechanizing them, and high alumina and basic refractory materials have also been made into amorphous shapes.

一方、取鍋の底部(以下、「敷」という、)でも側壁部
と同様にその寿命の改善・向上がなされてきた。敷のウ
ェア層は受鋼時の衝撃と鋳造末期時のスラグとの接触と
をともに受ける部分であるため、一般に側壁ウェア層に
比較してその寿命は短い、このため該ウェア層の材質を
変更して耐食性を高めることによる効果は側壁部程顕著
ではなく、依然として補修頻度が側壁部に比較して高い
のが現状である。相対的には側壁部との耐用性のアンバ
ランスは、むしろ従来よりも拡大していると考えられる
On the other hand, the lifespan of the bottom of the ladle (hereinafter referred to as "bed") has been improved and extended in the same way as the side wall. The wear layer on the bottom is the part that receives both the impact during receiving steel and the contact with slag at the end of casting, so its lifespan is generally shorter than that of the sidewall wear layer.For this reason, the material of the wear layer is changed. The effect of improving corrosion resistance is not as pronounced as in the side wall portion, and the current situation is that the frequency of repair is still higher than that of the side wall portion. Relatively speaking, the unbalance in durability with the side wall portion is considered to have expanded more than in the past.

さらに、特開昭61−235064号公報に開示されて
いるように、内張り炉材として塩基性耐火物を用いた場
合に、加熱条件等を制限することにより、耐火物の損傷
を低減できるという手段もあるが、この手段では敷の補
修に際して必然的に温度変動(降温、再昇温等)が発生
するため、無補修の側壁部を損傷する原因となっている
Furthermore, as disclosed in JP-A No. 61-235064, when basic refractories are used as lining furnace materials, damage to the refractories can be reduced by limiting heating conditions, etc. However, with this method, temperature fluctuations (temperature drop, reheating, etc.) inevitably occur when repairing the flooring, which causes damage to the unrepaired side wall portion.

(発明が解決しようとする課題) このような取鍋の敷での実状に対し、材質改善以外の手
段によっても種々の対策が講しられてきたが、必ずしも
満足できる状態に至っていない。
(Problem to be Solved by the Invention) Various countermeasures have been taken to address the actual situation of ladle beds by means other than improving the material, but the situation has not always been satisfactory.

例えば受鋼の衝撃を受ける湯当り部を厚巻にする手段も
提案されているが、この手段では、溶損バランスを確保
することにのみ効果を奏する手段であるため、周辺部の
目地侵食により、内張り煉瓦が剥離して浮上し易い。
For example, a method has been proposed in which the part that receives the impact of the receiving steel is thickly wound, but this method is only effective in ensuring the balance of melting loss, and therefore, it is difficult to prevent joint erosion in the surrounding area. , the lining bricks tend to peel off and float up.

また目地差し、つまり溶鋼の目地部への差込み量を低減
するため、煉瓦に代えて大型のブロック化したAQgO
s系耐火材料を用いる方法もあるが、このAQzOs系
耐火材料は熱衝撃により亀裂が発生し易い。
In addition, in order to reduce the amount of joint insertion, that is, the amount of molten steel inserted into the joint, large blocks of AQgO are used instead of bricks.
Although there is a method using an s-based refractory material, this AQzOs-based refractory material is prone to cracking due to thermal shock.

このように、従来の取鍋では操業条件の変化に応じて材
質を変更する等の改善を進めてきたものの、敷について
は十分な耐用性を得ることができなかった。さらに、上
記高耐食性耐火物はいずれも高熱伝導性材料であるため
、従来の内張構造で材質を入れかえただけでは熱放散が
著しくなってしまい、溶鋼温度の降下や敷での地金付き
等が発生し易くなり、操業時のトラブル発生の原因の一
つとなってしまっている。このため一部の特殊な取鍋を
除いて、多くの取鍋の敷では、従来の高珪酸質の材質を
用いているにとどまっているのが現状である。
As described above, although improvements have been made to conventional ladles by changing the material in response to changes in operating conditions, it has not been possible to obtain sufficient durability for the bedding. Furthermore, since the above-mentioned highly corrosion-resistant refractories are all highly thermally conductive materials, simply replacing the material with the conventional lining structure will result in significant heat dissipation, resulting in problems such as a drop in the temperature of the molten steel and metal build-up at the bottom. This is becoming more likely to occur, and is one of the causes of trouble during operation. For this reason, with the exception of some special ladles, most ladle beds are currently made of conventional high silicic acid materials.

ここに本発明の目的は、溶融金属、特に溶鋼を受容する
取鍋の寿命を延長させること、すなわち耐火物の補修頻
度を低減することができる、取鍋底部の内張構造を提供
することにある。
An object of the present invention is to provide a lining structure for the bottom of a ladle that can extend the life of a ladle that receives molten metal, especially molten steel, that is, can reduce the frequency of repair of refractories. be.

(課題を解決するための手段) 本発明者は、現状の平底型のを鍋底部構造において、高
珪酸質の耐火物から高耐食性の高アルミナ質あるいは塩
基性質の耐火物へと、敷部の耐火物の材質を変更するこ
とにより、取鍋の耐食性すなわち取鍋の寿命を延長する
ことができると考え、このように現状の取鍋底部の耐火
物の材質を変更した場合に予想される問題点を詳細に検
討した結果、次に示す■、■および■という問題がある
ことがわかった。
(Means for Solving the Problems) The present inventor has proposed changing the bottom structure of the current flat-bottom pot from a high-silicate refractory to a high-corrosion-resistant high-alumina or basic refractory. We believe that by changing the material of the refractory, the corrosion resistance of the ladle, that is, the life of the ladle, can be extended. As a result of a detailed study of the points, it was found that there were the following problems: ■, ■, and ■.

■従来のロウ石系材質は800℃以上の高温域で体積変
化が少なく、また高珪酸質であるため目地で先行した侵
食が少な(、FeO等の浸潤が少ない、これに対して、
上記の高耐食性材質は熱膨張変化が大きいため、容積安
定性に欠け、浸潤が多い、したがって、これら材質の特
性に応じて、設計的・構造的な改善を要する。
■ Conventional waxite-based materials have little volume change in the high temperature range of 800°C or higher, and are highly silicic, so there is little advance erosion at joints (in contrast, there is little infiltration of FeO, etc.)
The above-mentioned highly corrosion-resistant materials have large thermal expansion changes, lack volume stability, and tend to infiltrate frequently. Therefore, design and structural improvements are required depending on the characteristics of these materials.

■従来の敷ウェア層の厚さは200〜30〇−程度であ
るため、侵食の進行により煉瓦相互間の拘束力が弱まる
。すなわち、平底では煉瓦相互間の迫り効果がなく、熱
膨張変化の大きい材質を用いた場合には、目地の緩み、
目地差し、煉瓦の剥離・浮上等が生じ易い、これを側壁
部や敷パーマ層からの膨張反力がさらに助長する。
■Since the thickness of the conventional paving layer is about 200 to 300 mm, the binding force between the bricks weakens as erosion progresses. In other words, with a flat bottom, there is no pressing effect between the bricks, and when a material with a large change in thermal expansion is used, the joints may loosen,
Joints, peeling and floating of bricks are likely to occur, and this is further exacerbated by the expansion reaction forces from the side walls and the perm layer.

■取鍋底部全体を他の窯炉(例えば、混銑車、転炉)の
ように球体構造とすることにより、上記の迫り効果を敷
部に付与することができることは周知の事実である(実
公昭63−8737号公報)。
■It is a well-known fact that by making the entire bottom of the ladle have a spherical structure like other kilns (for example, pig iron mixers, converters), the above-mentioned pressing effect can be imparted to the bed (in practice). Publication number 63-8737).

しかし、新規に取鍋鉄皮を更新して球体構造とすること
は単に高額な投資が必要となるだけではなく、既設の製
鋼工場内で、例えば取鍋本体ではスライドゲート取付面
の水平確保が困難となること、球体化に伴って受鋼容量
が変化してしまうこと、受鋼時や鋳造時における相手設
備との寸法的な制約が発生すること、さらには取鍋の体
積や重量の変化に伴って、運搬クレーンの能力や経路確
保の問題が発生することといった新たに生じる問題が多
く、実際的な解決策にならない。
However, renewing a new ladle shell to create a spherical structure not only requires a large investment, but also requires the installation of a slide gate horizontally in an existing steel factory, for example in the ladle body. The steel receiving capacity changes due to spheroidization, there are dimensional restrictions with the mating equipment during receiving and casting, and there are also changes in the volume and weight of the ladle. As a result, there are many new problems that arise, such as problems with the capacity of transport cranes and securing routes, making it difficult to provide practical solutions.

そこで、本発明者は上記の■、■ないしは■に示した問
題を解決するため種々検討を重ねた結果、第5図に示し
た従来の取鍋構造では受鋼時に湯当り部分でのt員傷が
進んで溶損バランスがくずれると、すなわち、侵食の進
行で第6図に示すような侵食ラインが形成されると、侵
食ラインの凹凸部分における煉瓦の剥離が生じ、敷の浮
き上がりが生じ易くなり、敷において水平方向での耐火
物相互間の拘束力が弱まり、側壁部あるいは敷のパーマ
層の熱膨張による反力により、敷のウェア層の拘束力が
不均一となって敷の耐火物の剥離・浮上を助長すること
となっていたことを知見した。
Therefore, as a result of various studies in order to solve the problems shown in (1), (2) or (3) above, the present inventors found that in the conventional ladle structure shown in Fig. If the damage progresses and the erosion balance is lost, that is, if erosion progresses and an erosion line as shown in Figure 6 is formed, the bricks will peel off at the uneven parts of the erosion line and the paving will likely lift up. As a result, the binding force between the refractories in the horizontal direction in the bedding is weakened, and due to the reaction force due to thermal expansion of the side walls or the permanent layer of the bedding, the binding force of the wear layer of the bedding becomes uneven, and the refractories in the bedding are It was discovered that this facilitated the separation and surfacing of the material.

そこで敷のウェア層とパーマ層との境界面を傾斜面を有
する構造として、迫り効果を発生させ、さらに逆アーチ
型構造とすることで安定して均一な拘束力を部構造に付
与することができ、個々の敷煉瓦の浮き上がりを回避す
ることができることを知り、さらにかかる構成によれば
、敷の耐火物の材質の変更を行なわなくとも取鍋の寿命
を延長できることを知見した。そしてさらに、前述のよ
うに、敷のウェア層とパーマ層との境界面を傾斜面を有
する構造とし、また逆アーチ型構造とするとともに、敷
ウェア層が凸レンズ状形態をなすとともに、パーマ層が
凹レンズ状形態をなすことにより、さらに取鍋の寿命を
延長できることを知見して、本発明を完成した。
Therefore, the interface between the wear layer and the permanent layer of the bed is made to have a structure with an inclined surface to create a pressing effect, and by making it an inverted arch type structure, it is possible to impart a stable and uniform restraining force to the part structure. The present inventors found that it is possible to avoid lifting of individual paving bricks, and furthermore, they found that with such a configuration, the life of the ladle can be extended without changing the material of the refractory material of the paving. Furthermore, as mentioned above, the boundary surface between the wear layer of the bed and the permanent layer has a structure having an inclined surface and an inverted arch type structure, and the wear layer of the bed has a convex lens shape, and the permanent layer The present invention was completed based on the finding that the life of the ladle can be further extended by forming the ladle into a concave lens shape.

ここに、本発明の要旨とするところは、平底型鉄皮構造
を有する取鍋底部の内張り構造であって、(1)内張り
材であるウェア層とパーマ層との境界面が、曲面、球面
もしくはこれらに相当する傾斜面であること、 (ii ン取鍋底部の直径方向の少なくとも1断面にお
いて、敷ウェア層が凸レンズ状形態をなすとともに、前
記敷ウェア層の下層に接して位置するパーマ層が凹レン
ズ状形態をなすこと、および (iii)敷ウェア層を形成する耐火煉瓦もしくは耐火
ブロックの築炉構造が逆アーチ構造であること を特徴とする取鍋底部の内張り構造である。
Here, the gist of the present invention is a lining structure for the bottom of a ladle having a flat-bottomed iron skin structure, in which (1) the boundary surface between the wear layer and the permanent layer, which are lining materials, is a curved or spherical surface; or an inclined surface corresponding to these, (ii. In at least one diametrical cross section of the bottom of the ladle, the bedding layer has a convex lens shape, and the permanent layer is located in contact with the lower layer of the bedding wear layer. and (iii) the furnace construction structure of the refractory bricks or refractory blocks forming the bedding layer is an inverted arch structure.

また、本発明は最も広義には、平底型鉄皮構造を有する
取鍋底部の内張り構造であって、内張り材であるウェア
層とパーマ層とパーマ層との境界面が、曲面、球面もし
くはこれらに相当する傾斜面であることを特徴とする取
鍋底部の内張り構造である。
In the broadest sense, the present invention relates to a lining structure at the bottom of a ladle having a flat-bottom iron skin structure, in which the boundary surface between the wear layer, which is the lining material, and the permanent layer is a curved surface, a spherical surface, or any of these. The lining structure of the bottom of the ladle is characterized by an inclined surface corresponding to .

また、別の面からは、平底型鉄皮構造を有する取鍋底部
の内張り構造であって、取鍋底部の直径方向の少なくと
もl断面において、敷ウェア層が凸レンズ状形態をなす
とともに、前記敷ウェア層の下層に接して位置するパー
マ層が凹レンズ状形態をなすことを特徴とする取鍋底部
の内張り構造である。
Another aspect of the invention is a lining structure for the bottom of a ladle having a flat-bottom iron shell structure, in which the bedding layer has a convex lens-like shape in at least l cross section in the diametrical direction of the bottom of the ladle, and the bedding layer has a convex lens-like shape. This is a ladle bottom lining structure characterized in that the permanent layer located in contact with the lower layer of the wear layer has a concave lens shape.

さらに、別の面からは、平底型鉄皮構造を有する取鍋底
部の内張り構造であって、敷ウェア層を形成する耐火煉
瓦もしくは耐火ブロックの築炉構造が逆アーチ構造であ
ることを特徴とする取鍋底部の内張り構造である。
Furthermore, from another point of view, the lining structure at the bottom of the ladle has a flat-bottom iron shell structure, and the furnace construction structure of refractory bricks or refractory blocks forming the bedding layer is characterized by an inverted arch structure. This is the lining structure at the bottom of the ladle.

本発明は、既設の平底型鉄皮構造を有する取鍋における
敷の特にウェア層において、使用初期から末期まで炉材
間相互に迫り効果を与えることにより、内張り材の溶損
バランスを確保するため、次のような内張構造を提案す
るものである。この構造図を第1図に示す、すなわち、 (i)内張り材であるウェア層とパーマ層との境界面が
曲面、球面あるいはこれらに相当した傾斜面である構造 (ii )敷ウェア層が凸レンズ状形態をなすとともに
、前記敷ウェア層の下層に接して位置するパーマ層が凹
レンズ状形態をなすこと (iii )前記ウェア層を形成する煉瓦もしくは耐火
ブロックの築炉構造が逆アーチの煉瓦積構造の上記(i
)、(ii )および/または(ii )を具備する構
造とするのである。
The present invention aims to ensure the balance of melting and erosion of the lining material by giving a mutually pressing effect between the furnace materials from the initial stage to the final stage of use, especially in the wear layer of the lining in the existing ladle having a flat-bottomed steel shell structure. , we propose the following lining structure. This structural diagram is shown in Figure 1, namely: (i) a structure in which the boundary surface between the wear layer and the permanent layer, which is the lining material, is a curved surface, a spherical surface, or an inclined surface equivalent to these; (ii) the inner wear layer is a convex lens (iii) The furnace construction structure of the bricks or refractory blocks forming the wear layer is an inverted arch brickwork structure. The above (i
), (ii) and/or (ii).

さらに望ましくは、 (iv)パーマ層の少なくとも第−層(ウェア層と接す
る一番目のパーマネントブロック層)を4分割以上に区
分したブロックの組立て構造とし、他のパーマ層より肉
薄であって、耐火性の中空粒子を含んだ耐火断熱性のブ
ロックとした構造、および (v)少なくとも縦断面の一つが三角形状をなす煉瓦を
敷中央部に設け、側壁に接するコーナー部分を不定形耐
火物を打ち固めた構造 をさらに具備する構造である。
More preferably, (iv) at least the first permanent block layer (the first permanent block layer in contact with the wear layer) of the permanent layer has a block assembly structure divided into four or more parts, is thinner than other permanent layers, and is fireproof. (v) Bricks with at least one vertical section having a triangular shape are installed in the center of the floor, and the corners that contact the side walls are made of monolithic refractories. The structure further includes a solidified structure.

(作用) 以下、本発明を作用効果とともに詳述する。なお本明細
書において、「%」は特にことわりがない限り「重量%
」を意味するものとする。
(Function) Hereinafter, the present invention will be explained in detail along with the function and effect. In this specification, "%" means "% by weight" unless otherwise specified.
” shall mean.

まず、取鍋の敷に高耐食性の高アルミナ煉瓦(AQzO
sを60%以上含む)や塩基性(MgOlMgO−Ca
OlMgO−CrzOs 、MgO−へQ20.系成分
を10%以上含む)煉瓦を用いる場合、パーマ層とウェ
ア層との境界面を曲面、球面あるいはこれらに相当した
傾斜面を有する構造および/または逆アーチ構造とする
理由を説明する。
First, a highly corrosion-resistant high alumina brick (AQzO
containing 60% or more of s) or basic (MgOlMgO-Ca
OlMgO-CrzOs, MgO- to Q20. When using bricks (containing 10% or more of organic components), the reason why the boundary surface between the permanent layer and the wear layer is made to have a curved surface, a spherical surface, a structure having an inclined surface corresponding to these, and/or an inverted arch structure will be explained.

すなわち、部構造を傾斜面を有する構造とすることによ
り、迫り効果を発生させ、さらに逆アーチ型とすること
により、各煉瓦間に安定した均一な拘束力を付与するこ
とができ、敷煉瓦の浮き上がりを回避することができる
In other words, by making the section structure have a structure with an inclined surface, a pressing effect is generated, and by making it an inverted arch type, a stable and uniform restraining force can be applied between each brick, and the It is possible to avoid floating.

したがって、受鋼の湯当り部分を肉厚にし、逆アーチ型
に煉瓦積をした結果は、第2図に示す構造の如くで、ウ
ェア層を凸レンズ状、パーマ層を凹型レンズ状とする。
Therefore, the result of making the contact part of the receiving steel thicker and bricklaying it in an inverted arch shape is the structure shown in FIG. 2, with the wear layer shaped like a convex lens and the permanent layer shaped like a concave lens.

このような形状にすることにより、内張り煉瓦の溶損バ
ランスを均一に、すなわち取鍋全体の延命を図ることが
できる。また、迫り効果を十分発揮させる上で、上記境
界面下のパーマ層は面確保の点から大型のブロック化を
施したものとすることが有効であり、また施工も容易で
ある。
By adopting such a shape, it is possible to uniformly balance the melting loss of the lining bricks, that is, to extend the life of the entire ladle. Further, in order to fully exhibit the pressing effect, it is effective to form the permanent layer under the boundary surface into large blocks from the viewpoint of securing the surface area, and it is also easy to construct.

次に、底部中央域が薄肉化したパーマ層へは、過剰な熱
放散を防止するために、耐火断熱性の耐火物を充当する
ことが望ましい0通常の敷用不定形キャスタブルは0.
6〜1.0 kcal/m ・hr℃の高い熱伝導率を
有するので、これに中空の耐火性粒子を10〜40%添
加して熱伝導率を低減した不定形耐火物もしくはブロッ
ク化した不焼成耐火物を用いることが望ましい、具体的
には、発泡シリカもしくはアルミナ−ボールを用いるこ
とが例示される。
Next, in order to prevent excessive heat dissipation, it is desirable to apply a fire-resistant and heat-insulating refractory to the permanent layer where the bottom center area has become thinner.
Since it has a high thermal conductivity of 6 to 1.0 kcal/m ・hr°C, monolithic refractories or block-shaped refractories are made by adding 10 to 40% of hollow refractory particles to reduce the thermal conductivity. It is desirable to use fired refractories, and specific examples include foamed silica or alumina balls.

10%未満の配合では断熱効果が不充分であるため熱放
散により鉄皮の熱変形を防ぐことができない。
If the content is less than 10%, the heat insulating effect will be insufficient and it will not be possible to prevent thermal deformation of the iron skin due to heat dissipation.

また40%を越える場合には耐火物の強度が低く、受綱
時の溶鋼の静圧に耐えられないからである。
Moreover, if it exceeds 40%, the strength of the refractory is low and cannot withstand the static pressure of molten steel during receiving.

さらに、敷ウェア層の要めとして敷中央部には、少なく
とも縦断面の一つが三角形状をなす煉瓦を設置する。こ
れは円板状の取鍋敷部の直径方向での迫り効果、すなわ
ち敷ウェア層内の各耐火物の拘束力を均等に分散させる
効果を発揮させるために設置するものである。また、外
周部の側壁と接する部構造部分にはラミング材あるいは
流込み材を用い、隙間を充填する。これは地金の侵入を
防止することと、散と側壁部との間での拘束力を均一に
分散させ、敷での迫り効果を維持することを目的とする
Furthermore, as the core of the paving layer, bricks with at least one vertical cross-section having a triangular shape are installed in the central part of the paving. This is installed in order to exert the effect of compressing the disc-shaped ladle base in the diametrical direction, that is, the effect of evenly distributing the restraining force of each refractory in the baseware layer. In addition, ramming material or pouring material is used in the structural portion of the outer peripheral portion that contacts the side wall to fill the gap. The purpose of this is to prevent the intrusion of metal, and to evenly distribute the binding force between the shank and the side wall to maintain the pressing effect at the base.

以上の内容から、本発明は既設の取鍋底部の内張構造上
の欠陥を解消したことが明白であり、耐食性に優れた高
アルミナ賞あるいは塩基性質の耐火物を用いずに、従来
の高珪酸質耐火物を用いても同様の効果が奏することが
明らかである。
From the above, it is clear that the present invention has solved the defects in the lining structure of the existing ladle bottom, and it is possible to solve the problem of the existing high-grade ladle bottom lining structure without using high-alumina or basic refractories, which have excellent corrosion resistance. It is clear that similar effects can be obtained even when a siliceous refractory is used.

実施例1 従来のロウ石−ジルコン系焼成煉瓦を用いていた取鍋(
160ton容量)に、高アルミナ不焼成ブロック(A
QgOs 76%、Sing 20%)を施工し、通常
の操業に組込み耐用性を追跡調査した。
Example 1 A ladle using conventional waxite-zircon fired bricks (
160 ton capacity), high alumina unfired block (A
QgOs 76%, Sing 20%) was constructed and incorporated into normal operation, and its durability was followed up.

すなわち、本実施例における部構造は、その断面図であ
る第3図+a+に示すようにウェア層とパーマ層との境
界面がほぼ完全な球面をなす、ウェア層は凸型レンズ状
をなし、中心部分と外周部分の厚みの差は85m−とし
た0本発明例の平面図である第3図山)に示すように、
各層のブロックとも円周方向に2〜3分割、直径方向に
4〜8分割した。
That is, as shown in FIG. 3+a+, which is a cross-sectional view, the partial structure in this embodiment is such that the boundary surface between the wear layer and the permanent layer forms an almost perfect spherical surface, and the wear layer has a convex lens shape. The difference in thickness between the center part and the outer peripheral part was 85 m. As shown in Figure 3, which is a plan view of an example of the present invention,
The blocks of each layer were divided into 2 to 3 parts in the circumferential direction and 4 to 8 parts in the diametrical direction.

上記の材料を流込み成形し、24hr養生後300℃で
10hr乾燥させて取鍋に搬入した。
The above material was cast and cured for 24 hours, dried at 300° C. for 10 hours, and then placed in a ladle.

なお、鋳込口には従来の「まず煉瓦」がそのまま装入で
きるように、四辺形断面の装入口を設けたブロックを用
いた。
In addition, a block with a quadrilateral cross-section charging opening was used so that conventional ``first bricks'' could be directly inserted into the casting opening.

築炉の手順としては底部鉄皮の水平を確保するため、厚
さ10m−以内でセラミックシートを敷き、パーマ用ブ
ロックを据え付け、まず煉瓦を装入した。さらに、ウェ
ア用ブロックを鋳込口部分から、中心部へ据え付け、外
周の側壁方向に順次据え付けた。ブロック間の目地間隔
は2〜51の範囲で調整し、AQt(h 87%アルミ
ナ系モルタルを充填した。側壁の内張は、敷の施工後従
来通りの手順で施工した。最後に、側壁と敷との隙間を
AQgOs 76%のラミング材で充填した。
The procedure for constructing the furnace was to lay a ceramic sheet within 10 m thick to ensure the levelness of the bottom steel shell, install permanent blocks, and first charge bricks. Furthermore, the wear blocks were installed from the casting opening to the center and then sequentially to the side walls of the outer periphery. The joint spacing between the blocks was adjusted in the range of 2 to 51, and AQt (h) was filled with 87% alumina mortar.The lining of the side walls was constructed using the conventional procedure after the construction of the lining.Finally, the side walls and The gap between the floor and the floor was filled with 76% AQgOs ramming material.

この結果、使用過程では、湯当り部分での異常損傷が減
り、地金差しが解消した。溶…プロフィルは比較的均一
で、敷の修理回数を同一の使用期間について3回から1
回に減少でき、炉命を従来の92chから130chに
延長することができた。
As a result, during the process of use, abnormal damage at the hot-water contact area was reduced, and the issue of bare metal was eliminated. The melting profile is relatively uniform, reducing the number of repairs to the pad from 3 to 1 over the same period of use.
It was possible to extend the reactor life from the conventional 92 channels to 130 channels.

実施例2 従来場当り領域に不焼成アルミナブロック(1,2m 
xl、2 m X230m5 、AQtOs 89%)
を用い、周囲を中アルミナ煉瓦(八QxOs 60%、
SiO□37%)を用いた部構造の取鍋(1,50to
n容量)で、不焼成のアルミナ煉瓦(AQiOx 89
%)を敷ウェア層として用いた。
Example 2 An unfired alumina block (1,2 m
xl, 2m x 230m5, AQtOs 89%)
using medium alumina bricks (8QxOs 60%,
Ladle (1,50 to
n capacity), unfired alumina brick (AQiOx 89
%) was used as the bedding layer.

部構造は第4開山)に示すように、ウェア層とパーマ層
との境界面は排滓側(第4図B側)でウェア層が厚くな
るようにした。
As shown in Fig. 4 (section 4), the interface between the wear layer and the permanent layer was such that the wear layer was thicker on the slag discharge side (side B in Fig. 4).

施工の手順は実施例1とほぼ同一であるが、敷上面のウ
ェア煉瓦の凹凸の段差を25鋼−以内とし、敷ウェア層
の厚みの差は80鵠−以内にした。また、稼動初期には
受鋼時にスラグカー/ トし、溶鋼上面のスラグ層を7
0m−に調整した。
The construction procedure was almost the same as in Example 1, but the difference in level between the irregularities of the wear bricks on the top surface of the paving was set to within 25 mm, and the difference in the thickness of the wear bricks was set to within 80 mm. In addition, in the early stages of operation, a slag cart is used to remove the slag layer on the top surface of the molten steel.
It was adjusted to 0m-.

上記取鍋の使用途中の侵食プロフィルは第2図の如くで
あった。この結果、敷部の大修理の必要もなく推移し、
炉命を従来の65chから97chに延長することがで
きた。
The erosion profile of the ladle during use was as shown in Figure 2. As a result, there was no need for major repairs to the sill,
We were able to extend the reactor life from the conventional 65 channels to 97 channels.

なお、第3図+a+、第4図(alにおいて4°である
耐火断熱耐火物としては、へQ20.量60%のアルミ
ナ系キャスタブルに、直径2m+4満のアルミナ中空ホ
ールを25%添加したものを粉体とし、7.9%の水を
配合し、15分混錬して型枠に流込み成形し、20hr
以上養生後、300℃で10hr乾燥させたものを実炉
に供した。
In addition, Fig. 3 + a +, Fig. 4 (4 degrees in al) As a refractory heat-insulating refractory, alumina-based castable with a 60% content is added with 25% alumina hollow holes with a diameter of 2 m + 4 full. It was made into a powder, mixed with 7.9% water, kneaded for 15 minutes, poured into a mold, and molded for 20 hours.
After the above curing, it was dried at 300° C. for 10 hours and then put into an actual furnace.

(発明の効果) 本発明による内張構造を、既設の溶鋼取鍋に体用するこ
とによって、敷ウェア層の溶損バランスが確保され、耐
火物の剥離浮上のトラブルも解消され、従来例に比し、
大幅な取鍋寿命の向上が図れた。また、既設の取鍋鉄皮
を流用するため、取鍋を使用する生産工程の大規模な改
造の必要がなく実用性に富んだ発明である。
(Effects of the invention) By applying the lining structure of the present invention to an existing molten steel ladle, the balance of erosion of the cladding layer is ensured, and the problem of peeling and flotation of the refractory is solved, which is better than the conventional example. Compare,
The life of the ladle was significantly improved. Furthermore, since the existing ladle shell is reused, there is no need for large-scale modification of the production process that uses the ladle, making this invention highly practical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明にかかる取鍋底部の内張り構造を示す
略式説明図; 第2図は、本発明にかかる取鍋底部の内張り構造の侵食
状態を示す略式説明図; 第3図(Jl)および第3開山)は、本発明の実施例の
略式断面図および略式平面図; 第4図(alおよび第4開山)は、本発明の他の実施例
の略式断面図および略式平面図;および第5図および第
6図は、従来の取鍋底部の内張り構造およびその侵食状
態を示す略式断面図である。 1:側壁ウェア層   2:側壁パーマ層3:敷ウェア
層    4:敷パーマ層4°:敷パーマ(耐火断熱層
Fig. 1 is a schematic explanatory diagram showing the lining structure of the bottom of the ladle according to the present invention; Fig. 2 is a schematic explanatory diagram showing the erosion state of the lining structure of the ladle bottom according to the present invention; Fig. 3 (Jl ) and 3rd opening) are a schematic sectional view and a schematic plan view of an embodiment of the present invention; FIG. 4 (al and 4th opening) are a schematic sectional view and a schematic plan view of another embodiment of the present invention; 5 and 6 are schematic cross-sectional views showing the conventional lining structure of the bottom of the ladle and its erosion state. 1: Side wall wear layer 2: Side wall perm layer 3: Layout wear layer 4: Layout perm layer 4°: Layout perm (fireproof insulation layer)

Claims (1)

【特許請求の範囲】 平底型鉄皮構造を有する取鍋底部の内張り構造であって
、 (i)内張り材であるウェア層とパーマ層との境界面が
、曲面、球面もしくはこれらに相当する傾斜面であるこ
と、 (ii)取鍋底部の直径方向の少なくとも1断面におい
て、敷ウェア層が凸レンズ状形態をなすとともに、前記
敷ウェア層の下層に接して位置するパーマ層が凹レンズ
状形態をなすこと、および (iii)敷ウェア層を形成する耐火煉瓦もしくは耐火
ブロックの築炉構造が逆アーチ構造であること を特徴とする取鍋底部の内張り構造。
[Scope of Claims] A lining structure for the bottom of a ladle having a flat-bottom iron skin structure, wherein (i) the boundary surface between the wear layer and the permanent layer, which are lining materials, is a curved surface, a spherical surface, or an inclined surface corresponding to these. (ii) In at least one diametrical cross-section of the bottom of the ladle, the bedding layer has a convex lens shape, and the permanent layer located in contact with the lower layer of the bedding wear layer has a concave lens shape. and (iii) a lining structure for the bottom of a ladle, characterized in that the furnace construction structure of the refractory bricks or refractory blocks forming the bedding layer is an inverted arch structure.
JP9964689A 1989-04-19 1989-04-19 Ladle bottom lining structure Expired - Lifetime JP2773226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9964689A JP2773226B2 (en) 1989-04-19 1989-04-19 Ladle bottom lining structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9964689A JP2773226B2 (en) 1989-04-19 1989-04-19 Ladle bottom lining structure

Publications (2)

Publication Number Publication Date
JPH02280958A true JPH02280958A (en) 1990-11-16
JP2773226B2 JP2773226B2 (en) 1998-07-09

Family

ID=14252819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9964689A Expired - Lifetime JP2773226B2 (en) 1989-04-19 1989-04-19 Ladle bottom lining structure

Country Status (1)

Country Link
JP (1) JP2773226B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006053A (en) * 2010-06-25 2012-01-12 Kobe Steel Ltd Ladle for conveying molten steel
CN105033235A (en) * 2015-08-28 2015-11-11 桂林昌鑫机械制造有限公司 Smelting steel ladle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006053A (en) * 2010-06-25 2012-01-12 Kobe Steel Ltd Ladle for conveying molten steel
CN105033235A (en) * 2015-08-28 2015-11-11 桂林昌鑫机械制造有限公司 Smelting steel ladle

Also Published As

Publication number Publication date
JP2773226B2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
CN106145964B (en) Dry ramming material for large ladle bottom working lining
CN112123544B (en) Construction method of integrated full-cast refractory structure applied to blast furnace lining
KR100333760B1 (en) Refractory wall metallurgical vessel comprising such a refractory wall and method in which such a refractory wall is applied
KR20130132927A (en) Ceramic bottom lining of a blast furnace hearth
US3687437A (en) Metallurgical furnaces or vessels
EP0076577B1 (en) Molten metal transfer channels
US5316268A (en) Method for increasing the durability of refractory vessel linings
JP2773226B2 (en) Ladle bottom lining structure
JP2768785B2 (en) Method of lining and repair of molten steel pot
CN216274217U (en) Combined type furnace wall of lower section of furnace belly of iron-making blast furnace
CN108424989A (en) A kind of blast furnace taphole region cooling structure
CN206052075U (en) A kind of masonry construction of RH dip pipes steel construction and liner tile
JP3448339B2 (en) Refractory lining of molten metal container
JP3197534U (en) Hot water receiving member, tilting rod and slag bucket
JPH09157718A (en) Structure for refractory of casting floor running of blast furnace
JPS5917072B2 (en) Massive refractories for hot-insertion repair
JPH02165863A (en) Lining structure for bottom of ladle of false bottom type
JP3464323B2 (en) Molten steel ladle and its repair method
CN111560486A (en) Blast furnace bottom building method for guiding furnace bottom to be in shape of boiler bottom
CN113430314B (en) Long-life blast furnace bottom hearth refractory structure and maintenance method
CN113333724B (en) Square-round steel ladle and refractory material building method thereof
JP3643923B2 (en) Insulated ladle and manufacturing method thereof
JP2003137663A (en) Refractory block for blast furnace runner
JPS61269968A (en) Lining structure for ladle
JP2004107742A (en) Structure for constructing refractory in rh-degassing vessel bottom, rh-degassing vessel and method for manufacturing refractory block