JPH0228077B2 - NETSUHANSOSOCHI - Google Patents
NETSUHANSOSOCHIInfo
- Publication number
- JPH0228077B2 JPH0228077B2 JP9054684A JP9054684A JPH0228077B2 JP H0228077 B2 JPH0228077 B2 JP H0228077B2 JP 9054684 A JP9054684 A JP 9054684A JP 9054684 A JP9054684 A JP 9054684A JP H0228077 B2 JPH0228077 B2 JP H0228077B2
- Authority
- JP
- Japan
- Prior art keywords
- tank
- valve mechanism
- generator
- valve
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012530 fluid Substances 0.000 claims description 45
- 230000007246 mechanism Effects 0.000 claims description 33
- 239000007788 liquid Substances 0.000 claims description 31
- 238000001514 detection method Methods 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D17/00—Domestic hot-water supply systems
- F24D17/0015—Domestic hot-water supply systems using solar energy
- F24D17/0021—Domestic hot-water supply systems using solar energy with accumulation of the heated water
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Sorption Type Refrigeration Machines (AREA)
- Central Heating Systems (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は太陽熱温水器、排熱回収装置、空調機
器等に利用される無動力の熱搬送装置に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a non-powered heat transfer device used in solar water heaters, exhaust heat recovery devices, air conditioners, and the like.
従来例の構成とその問題点
従来のこの種の熱搬送装置は第1図に示すよう
に構成されていた。複数の集熱パイプよりなるコ
レクタ1(発生器)の下方に給湯水を貯めた熱交
換タンク2が配置され、その内に収納されている
熱交換器3とコレクタ1は途中に逆止弁4aが設
けられた往管5で接続されている。内部に液面検
知手段6が収納された液溜めタンク7はコレクタ
1の上方に配置され、熱交換器3とは復管8で接
続され、コレクタ1とは途中に逆止弁4bが設け
られた戻管9で接続され、また、液溜めタンク7
の上部とコレクタ1の上部とは途中に開閉弁10
(弁機構)が設けられた連通管11で接続されて
いる。液面検知手段6により検出された作動液1
2の液面が設定値Hより大きくなつたとき開閉弁
10を開状態にさせる制御器13によつて作動液
12の液面が制御されている。Structure of Conventional Example and Its Problems A conventional heat transfer device of this type was constructed as shown in FIG. A heat exchange tank 2 storing hot water is arranged below a collector 1 (generator) consisting of a plurality of heat collecting pipes, and a check valve 4a is installed between the heat exchanger 3 housed in the tank 2 and the collector 1. They are connected by an outgoing pipe 5 provided with a. A liquid reservoir tank 7 in which a liquid level detection means 6 is housed is arranged above the collector 1, connected to the heat exchanger 3 through a return pipe 8, and connected to the collector 1 with a check valve 4b in the middle. It is connected by a return pipe 9, and is also connected to a liquid storage tank 7.
There is an on-off valve 10 between the upper part of the collector 1 and the upper part of the collector 1.
(valve mechanism) are connected through a communication pipe 11 provided with a valve mechanism. Hydraulic fluid 1 detected by liquid level detection means 6
The liquid level of the hydraulic fluid 12 is controlled by a controller 13 which opens the on-off valve 10 when the liquid level of the hydraulic fluid 12 becomes larger than a set value H.
作動液12は日射によりコレクタ1が加熱され
ると沸騰蒸発し、コレクタ1内の圧力を上昇させ
ることにより加熱された作動液12が往管5を通
り熱交換器3へ押し込まれ、熱交換タンク2内の
給湯水と熱交換して冷却された作動液12が復管
8を通つて液溜めタンク7へ送られて、液溜めタ
ンク7内の作動液12の液面は徐々に上昇してい
く。液面検知手段6により検出された作動液12
の液面が設定値Hより大きくなると制御器13に
より開閉弁10が開状態にされてコレクタ1の上
部と液溜めタンク7の上部が連通管11によつて
連通され、コレクタ1内の圧力が液溜めタンク7
に導びかれ、液溜めタンク7内の作動液12は戻
管9を通つてコレクタ1に回収される。作動液1
2の液面が低下して設定値Hより小さくなると制
御部13により開閉弁10が閉状態にされて作動
液12のコレクタ1への回収は終了する。 The working fluid 12 boils and evaporates when the collector 1 is heated by sunlight, and by increasing the pressure inside the collector 1, the heated working fluid 12 passes through the outgoing pipe 5 and is pushed into the heat exchanger 3, and is transferred to the heat exchange tank. The working fluid 12 that has been cooled by exchanging heat with the hot water in the tank 2 is sent to the liquid storage tank 7 through the return pipe 8, and the level of the working fluid 12 in the liquid storage tank 7 gradually rises. go. Hydraulic fluid 12 detected by liquid level detection means 6
When the liquid level becomes larger than the set value H, the on-off valve 10 is opened by the controller 13, and the upper part of the collector 1 and the upper part of the liquid reservoir tank 7 are communicated through the communication pipe 11, and the pressure inside the collector 1 is reduced. Liquid reservoir tank 7
The working fluid 12 in the fluid reservoir tank 7 is collected into the collector 1 through the return pipe 9. Hydraulic fluid 1
When the liquid level of the hydraulic fluid 12 decreases and becomes smaller than the set value H, the control unit 13 closes the on-off valve 10 and the recovery of the hydraulic fluid 12 to the collector 1 is completed.
この構成では、開閉弁10が開放されていると
き液溜めタンク7内の作動液12は自重によつて
コレクタ1へ流入するが熱交換器3を流れる作動
液12の流れは停止してしまい熱交換できなくな
るという問題を有していた。一方、開閉弁10が
閉塞状態となつたときも往管5・熱交換器3・復
管8内で停止している作動液12の慣性によつて
熱交換器3内の作動液12の流速はすぐに増大せ
ず所定の熱交換性能が得られないという問題も有
していた。 In this configuration, when the on-off valve 10 is open, the hydraulic fluid 12 in the fluid reservoir tank 7 flows into the collector 1 due to its own weight, but the flow of the hydraulic fluid 12 through the heat exchanger 3 is stopped and heat is generated. There was a problem that it could not be replaced. On the other hand, even when the on-off valve 10 is closed, the flow rate of the working fluid 12 in the heat exchanger 3 is reduced due to the inertia of the working fluid 12 stopped in the outgoing pipe 5, heat exchanger 3, and return pipe 8. There was also the problem that the heat exchange performance did not increase quickly and a predetermined heat exchange performance could not be obtained.
発明の目的
本発明は上記従来の問題点を解消するもので、
作動液の流れを連続的にして循環流量を増大させ
ることにより発生器と熱交換器との温度差を低減
させるとともに熱交換器の熱交換性能を高めるこ
とによつて、熱搬送性能の向上を図ることを目的
とする。Purpose of the invention The present invention solves the above-mentioned conventional problems.
By making the flow of the working fluid continuous and increasing the circulating flow rate, the temperature difference between the generator and the heat exchanger is reduced, and the heat exchange performance of the heat exchanger is improved, thereby improving heat transfer performance. The purpose is to
発明の構成
上記目的を達成するため本発明は、各々上部に
弁座が設けられた第1タンクと第2タンクに分割
された液溜めタンクの上部とガス導入部が一体的
に構成された制御タンクを発生器の上方に位置さ
せ、第1タンクおよび第2タンクの弁座と当接す
ることにより開放と閉塞を行ない液面検知手段に
よつて制御させる第1弁機構と第2弁機構の上部
と両端で当接し中央付近を支点として回転し第1
弁機構と第2弁機構を交互に開放・閉塞させる弁
制御器を設けたものである。Structure of the Invention In order to achieve the above object, the present invention provides a control system in which the upper part of a liquid reservoir tank, which is divided into a first tank and a second tank, each having a valve seat on the upper part, and a gas introduction part are integrated. The upper part of the first valve mechanism and the second valve mechanism are arranged such that the tank is located above the generator, and the tank is opened and closed by contacting the valve seats of the first tank and the second tank, and is controlled by the liquid level detection means. The first
A valve controller is provided that alternately opens and closes the valve mechanism and the second valve mechanism.
この構成によつて、第1弁機構が開放状態で第
1タンク内の作動液が発生器へ流入しているとき
は、弁制御器によつて第2弁機構は閉塞状態にさ
れ発生器内の作動液が熱交換器で熱交換され第2
タンク内へ流入し、また、第1弁機構が閉塞状態
のときは熱交換器で熱交換した作動液が第1タン
ク内へ流入することにより、発生器および熱交換
器へ流入する作動液の流れは連続的になる。 With this configuration, when the first valve mechanism is in the open state and the hydraulic fluid in the first tank is flowing into the generator, the second valve mechanism is closed by the valve controller and the hydraulic fluid in the first tank is in the generator. The working fluid is heat exchanged in the heat exchanger and the second
When the first valve mechanism is in the closed state, the working fluid that has been heat exchanged with the heat exchanger flows into the first tank, thereby reducing the amount of working fluid that flows into the generator and the heat exchanger. The flow becomes continuous.
実施例の説明
以下本発明の一実施例を第2図により説明す
る。第1図と同一部材には同一番号を付与し説明
を省略している。コレクタ1(発生器)の上方に
設けられたサブタンク14はコレクタ1の上部と
配管接続され、往管5が下部に連通管11が上部
に各々接続されている。制御タンク15は液溜め
タンク7とガス導入管16とからなり、液溜めタ
ンク7は更に第1タンク17aと第2タンク17
bに分割されている。第1タンク17aと第2タ
ンク17bの上部に設けられた弁座と当接し、第
1液面検知手段6aにより開放閉塞される第1弁
機構18aと第2液面検知手段6bにより開放閉
塞される第2弁機構18bにより、ガス導入部1
6と各々連通される。弁制御器19は中央付近を
支点として回転し、両端が第1弁機構18aと第
2弁機構18bの各々上部と当接することによ
り、第1弁機構18aと第2弁機構18bを交互
に開放・閉塞させている。第1タンク6aおよび
第2タンク6bの上部に逆止弁4a,4bを配設
するとともに、熱交換器3と復管8で並列に接続
され、第1タンク6aおよび第2タンク6bの下
部に逆止弁4c,4bを配設するとともに、コレ
クタ1と戻管9で並列に接続され、ガス導入管1
6とサブタンク14の上部が連通管11により接
続されている。DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. The same members as in FIG. 1 are given the same numbers and their explanations are omitted. A sub-tank 14 provided above the collector 1 (generator) is connected by piping to the upper part of the collector 1, and the outgoing pipe 5 is connected to the lower part and the communication pipe 11 is connected to the upper part. The control tank 15 consists of a liquid reservoir tank 7 and a gas introduction pipe 16, and the liquid reservoir tank 7 further includes a first tank 17a and a second tank 17.
It is divided into b. The first valve mechanism 18a contacts the valve seats provided at the upper part of the first tank 17a and the second tank 17b, and is opened and closed by the first liquid level detection means 6a, and the second valve mechanism 18a is opened and closed by the second liquid level detection means 6b. The second valve mechanism 18b allows the gas introduction part 1 to
6, respectively. The valve controller 19 rotates around the center as a fulcrum, and has both ends contacting the upper portions of the first valve mechanism 18a and the second valve mechanism 18b, thereby alternately opening the first valve mechanism 18a and the second valve mechanism 18b.・It is blocked. Check valves 4a and 4b are provided at the upper part of the first tank 6a and the second tank 6b, and are connected in parallel with the heat exchanger 3 through a return pipe 8, and at the lower part of the first tank 6a and the second tank 6b. Check valves 4c and 4b are provided, and the collector 1 and the return pipe 9 are connected in parallel, and the gas introduction pipe 1
6 and the upper part of the sub-tank 14 are connected by a communication pipe 11.
作動液12は日射によりコレクタ1が加熱され
ると沸騰蒸発し、コレクタ1内の圧力を上昇させ
ることにより加熱された作動液12が気液二相で
サブタンク14へ送られ気液が分離されて作動液
12の液が往管5を通り熱交換器へ押し込まれ、
熱交換タンク2内の給湯水と熱交換して冷却され
た作動液口が復管8を通つて第1タンク17aに
送られる。このとき第1弁機構18aは閉塞状態
であり第2弁機構18bは開放状態である。第1
タンク17a内の作動液12の液面は上昇してい
き所定の高さHに達すると第1液面検知手段6a
により第1弁機構18が押し上げられて開放状態
となるとともに弁制御器19によつて第2弁機構
18bが押し下げられて閉塞状態となる。コレク
タ1と第1タンク17aは連通され第1タンク1
7a内の作動液12は戻管9を通つてコレクタ1
に還流し、熱交換器3で熱交換して冷却された作
動液は第2タンク17bへ流入する。第2タンク
17b内の作動液12の液面は上昇していき所定
の高さHに達すると第2液面検知手段6bにより
第2弁機構18bが押し上げられて開放状態とな
るとともに弁制御器19によつて第1弁機構18
aが押し下げられて閉塞状態となり、第2タンク
17b内の作動液12は戻管9を通つてコレクタ
1に還流し、熱交換器3で熱交換して冷却された
作動液12は第1タンク17aへ流入する。従つ
て、第1タンク17aに作動液12が流入すると
きは第2タンク17b内の作動液12が流出する
こととなり、反対に第2タンク17bに作動液1
2が流入するときは第1タンク17a内の作動液
12が流出することとなり、コレクタ1および熱
交換器3の作動液12の流れは連続的になり、更
に慣性による抵抗がないため作動液12の流速が
増大して熱交換能力が高められ、熱搬送性能の向
上が図られる。 The working fluid 12 boils and evaporates when the collector 1 is heated by sunlight, and by increasing the pressure inside the collector 1, the heated working fluid 12 is sent to the sub-tank 14 in two phases of gas and liquid, where the gas and liquid are separated. The working fluid 12 is forced into the heat exchanger through the outgoing pipe 5,
The working fluid inlet cooled by heat exchange with the hot water in the heat exchange tank 2 is sent to the first tank 17a through the return pipe 8. At this time, the first valve mechanism 18a is in a closed state and the second valve mechanism 18b is in an open state. 1st
The liquid level of the hydraulic fluid 12 in the tank 17a rises and when it reaches a predetermined height H, the first liquid level detection means 6a
As a result, the first valve mechanism 18 is pushed up to be in the open state, and the second valve mechanism 18b is pushed down by the valve controller 19 to be in the closed state. The collector 1 and the first tank 17a are communicated with each other, and the first tank 1
The hydraulic fluid 12 in 7a passes through the return pipe 9 to the collector 1.
The working fluid is cooled by heat exchange in the heat exchanger 3 and flows into the second tank 17b. The liquid level of the hydraulic fluid 12 in the second tank 17b rises and when it reaches a predetermined height H, the second valve mechanism 18b is pushed up by the second liquid level detection means 6b and becomes open, and the valve controller 19 by the first valve mechanism 18
a is pushed down and becomes a closed state, the working fluid 12 in the second tank 17b returns to the collector 1 through the return pipe 9, and the working fluid 12 cooled by heat exchange with the heat exchanger 3 returns to the first tank. 17a. Therefore, when the hydraulic fluid 12 flows into the first tank 17a, the hydraulic fluid 12 in the second tank 17b flows out, and conversely, the hydraulic fluid 12 flows into the second tank 17b.
2 flows in, the working fluid 12 in the first tank 17a flows out, and the flow of the working fluid 12 in the collector 1 and the heat exchanger 3 becomes continuous.Furthermore, since there is no resistance due to inertia, the working fluid 12 in the first tank 17a flows out. The flow rate is increased, the heat exchange capacity is increased, and the heat transfer performance is improved.
発明の効果
本発明の熱搬送装置は、各々上部に弁座が設け
られた第1タンクと第2タンクに分割された液溜
めタンクの上部とガス導入部が一体的に構成され
た制御タンクを発生器の上方に位置させ、第1タ
ンクおよび第2タンクの弁座と当接することによ
り開放と閉塞を行ない液面検知手段によつて制御
される第1弁機構と第2弁機構の上部と両端で当
接し中央付近を支点として回転し第1弁機構と第
2弁機構を交互に開放・閉塞させる弁制御器を設
けているため、第1タンクと第2タンクで交互に
作動液を流入流出させることができるので発生器
および熱交換器の作動液の流れは連続的になり熱
交換性能を高めることにより熱搬送性能の向上を
図ることができる。Effects of the Invention The heat transfer device of the present invention includes a control tank in which the upper part of the liquid reservoir tank and the gas introduction part are integrally formed, which are divided into a first tank and a second tank each having a valve seat on the upper part. The upper parts of the first valve mechanism and the second valve mechanism are positioned above the generator, and are opened and closed by contacting the valve seats of the first tank and the second tank, and are controlled by the liquid level detection means. A valve controller is provided that contacts at both ends and rotates around the center as a fulcrum to alternately open and close the first and second valve mechanisms, allowing hydraulic fluid to alternately flow into the first and second tanks. Since the fluid can flow out, the flow of the working fluid in the generator and the heat exchanger becomes continuous, thereby improving the heat exchange performance and thereby improving the heat transfer performance.
第1図は従来の熱搬送装置のシステム図、第2
図は本発明の一実施例の熱搬送装置のシステム図
である。
1……発生器、3……熱交換器、5……往管、
6a,6b……液面検知手段、7……液溜めタン
ク、8……復管、9……戻管、11……連通管、
12……作動液、15……制御タンク、16……
ガス導入部、17a……第1タンク、17b……
第2タンク、18a……第1弁機構、18b……
第2弁機構、19……弁制御器。
Figure 1 is a system diagram of a conventional heat transfer device, Figure 2 is a system diagram of a conventional heat transfer device.
The figure is a system diagram of a heat transfer device according to an embodiment of the present invention. 1... Generator, 3... Heat exchanger, 5... Outgoing pipe,
6a, 6b...Liquid level detection means, 7...Liquid reservoir tank, 8...Return pipe, 9...Return pipe, 11...Communication pipe,
12... Hydraulic fluid, 15... Control tank, 16...
Gas introduction part, 17a...first tank, 17b...
Second tank, 18a...First valve mechanism, 18b...
Second valve mechanism, 19...valve controller.
Claims (1)
発生器の下方に位置する熱交換器と、前記発生器
の上方に位置し各々上部に弁座が設けられた第1
タンクと第2タンクに分割された液溜めタンクの
上部とガス導入部が一体的に構成された制御タン
クと、前記第1タンクおよび前記第2タンクの弁
座と当接することにより開放と閉塞を行ない液面
検知手段によつて制御される第1弁機構および第
2弁機構と、前記第1弁機構および前記第2弁機
構の上部と両端で当接し中央付近を支点として回
転し前記第1弁機構と前記第2弁機構を交互に開
放・閉塞させる弁制御器と、前記発生器と前記熱
交換器を接続する往管と、前記熱交換器と前記第
1タンクおよび前記第2タンクの上部とを並列に
接続する復管と、前記発生器と前記第1タンクお
よび前記第2タンクの下部とを並列に接続する戻
管と、前記発生器上部と前記ガス導入部を接続す
る連通管とからなる熱搬送装置。1 A generator in which a working fluid of a latent heat medium is sealed, a heat exchanger located below the generator, and a first heat exchanger located above the generator and each having a valve seat on its upper part.
A control tank is constructed in which an upper part of a liquid reservoir tank divided into a tank and a second tank and a gas introduction part are integrally configured, and the control tank is opened and closed by coming into contact with the valve seats of the first tank and the second tank. The first valve mechanism and the second valve mechanism, which are controlled by the liquid level detection means, contact the upper portions of the first valve mechanism and the second valve mechanism at both ends, and rotate about the center as a fulcrum. a valve controller that alternately opens and closes the valve mechanism and the second valve mechanism; an outgoing pipe that connects the generator and the heat exchanger; and a valve controller that connects the generator and the heat exchanger; a return pipe that connects the upper part in parallel, a return pipe that connects the generator and the lower parts of the first tank and the second tank in parallel, and a communication pipe that connects the upper part of the generator and the gas introduction part. A heat transfer device consisting of.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9054684A JPH0228077B2 (en) | 1984-05-07 | 1984-05-07 | NETSUHANSOSOCHI |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9054684A JPH0228077B2 (en) | 1984-05-07 | 1984-05-07 | NETSUHANSOSOCHI |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60233494A JPS60233494A (en) | 1985-11-20 |
JPH0228077B2 true JPH0228077B2 (en) | 1990-06-21 |
Family
ID=14001408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9054684A Expired - Lifetime JPH0228077B2 (en) | 1984-05-07 | 1984-05-07 | NETSUHANSOSOCHI |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0228077B2 (en) |
-
1984
- 1984-05-07 JP JP9054684A patent/JPH0228077B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS60233494A (en) | 1985-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6152559A (en) | Heat transfer device | |
JPH0228077B2 (en) | NETSUHANSOSOCHI | |
JPH0228792B2 (en) | NETSUHANSOSOCHI | |
CN211041902U (en) | Heat pipe heat exchanger structure under fluid flow ultra-large range fluctuation | |
JPH0243994B2 (en) | ||
JPH0140261B2 (en) | ||
JPH0423181B2 (en) | ||
JPH0117003Y2 (en) | ||
JPH0243993B2 (en) | ||
JPS63201494A (en) | Regenerative heat exchanger | |
JPH0510598B2 (en) | ||
JPS60233463A (en) | Heat transfer device | |
JPS6243102B2 (en) | ||
JPH0245791B2 (en) | ||
JPH0246860B2 (en) | ||
JPH0423179B2 (en) | ||
JP2556853B2 (en) | Non-azeotropic mixture working medium type heat pump type heat storage tank | |
JPS61153490A (en) | Heat transfer device | |
JPS61114090A (en) | Heat transmission device | |
JPS616542A (en) | Heat transmission device | |
JPH0117002Y2 (en) | ||
JPH07104013B2 (en) | Refrigerant natural circulation heat transfer device | |
JPS5937647Y2 (en) | Natural heat utilization device | |
JPS61138091A (en) | Heat carrying device | |
JPS61197955A (en) | Heat transfer device |