JPH0140261B2 - - Google Patents

Info

Publication number
JPH0140261B2
JPH0140261B2 JP58236614A JP23661483A JPH0140261B2 JP H0140261 B2 JPH0140261 B2 JP H0140261B2 JP 58236614 A JP58236614 A JP 58236614A JP 23661483 A JP23661483 A JP 23661483A JP H0140261 B2 JPH0140261 B2 JP H0140261B2
Authority
JP
Japan
Prior art keywords
heat exchanger
return pipe
heat
tank
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58236614A
Other languages
Japanese (ja)
Other versions
JPS60129565A (en
Inventor
Junichi Jakudo
Takashi Sawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58236614A priority Critical patent/JPS60129565A/en
Publication of JPS60129565A publication Critical patent/JPS60129565A/en
Publication of JPH0140261B2 publication Critical patent/JPH0140261B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • F24S90/10Solar heat systems not otherwise provided for using thermosiphonic circulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は太陽熱温水器、排熱回収装置、空調機
器等に利用される無動力の熱搬送装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a non-powered heat transfer device used in solar water heaters, exhaust heat recovery devices, air conditioners, and the like.

従来例の構成とその問題点 従来この種の熱搬送装置は第1図に示すように
構成されていた。複数の集熱パイプよりなるコレ
クタ1(発生器)の下方に給湯水を貯めた熱交換
タンク2が配置され、その内に収納されている熱
交換器3とコレクタ1は途中に逆止弁4aが設け
られた往管5で接続されている。内部に液面検知
センサー6が収納された液溜めタンク7はコレク
タ1の上方に配置され、熱交換器3とは復管8で
接続され、コレクタ1とは途中に逆止弁4bが設
けられた戻管9で接続され、また、液溜めタンク
7の上部とコレクタ1の上部とは途中に開閉弁1
0(弁機構)が設けられた連通管11で接続され
ている。液面検知センサー6により検出された作
動液12の液面が設定値Hより大きくなつたとき
開閉弁10を開状態にさせる制御器13によつて
作動液12の液面が制御されている。
Conventional Structure and Problems Conventionally, this type of heat transfer device has been structured as shown in FIG. A heat exchange tank 2 storing hot water is arranged below a collector 1 (generator) consisting of a plurality of heat collecting pipes, and a check valve 4a is installed between the heat exchanger 3 housed in the tank 2 and the collector 1. They are connected by an outgoing pipe 5 provided with a. A liquid reservoir tank 7, in which a liquid level detection sensor 6 is housed, is arranged above the collector 1, connected to the heat exchanger 3 through a return pipe 8, and connected to the collector 1 with a check valve 4b on the way. The upper part of the liquid reservoir tank 7 and the upper part of the collector 1 are connected by a return pipe 9, and an on-off valve 1 is provided in the middle.
0 (valve mechanism) is connected through a communication pipe 11 provided with a valve mechanism. The liquid level of the hydraulic fluid 12 is controlled by a controller 13 that opens the on-off valve 10 when the liquid level of the hydraulic fluid 12 detected by the liquid level detection sensor 6 becomes larger than a set value H.

作動液12は日射によりコレクタ1が加熱され
ると沸謄蒸発し、コレクタ1内の圧力を上昇させ
ることにより加熱された作動液12が往管5を通
り熱交換器3へ押し込まれ、熱交換タンク2内の
給湯水と熱交換して冷却された作動液12が復管
8を通つて液溜めタンク7へ送られて、液溜めタ
ンク7内の作動液12の液面は徐々に上昇してい
く。液面検知センサー6により検出された作動液
12の液面が設定値Hより大きくなると制御器1
3により開閉弁10が開状態にされてコレクタ1
の上部と液溜めタンク7の上部が連通管11によ
つて連通され、コレクタ1内の圧力が液溜めタン
ク7に導びかれ、液溜めタンク7内の作動液12
は戻管9を通つてコレクタ1に回収される。作動
液12の液面が低下して設定値Hより小さくなる
と制御器13により開閉弁10が閉状態にされて
作動液12のコレクタ1への回収は終了する。こ
のようにコレクタ1で日射により加熱された作動
液12を熱交換器3において熱交換タンク2内の
給湯水と熱交換させ冷却された作動液12に液溜
めタンク7に導き、作動液12の液面を制御器1
3により設定値Hに保持されるように開閉弁10
を制御することによつてコレクタ1から熱交換タ
ンク2へ熱搬送していた。
When the collector 1 is heated by sunlight, the working fluid 12 boils and evaporates, and by increasing the pressure inside the collector 1, the heated working fluid 12 is pushed through the outgoing pipe 5 and into the heat exchanger 3, where it is heat exchanged. The working fluid 12 that has been cooled by exchanging heat with the hot water in the tank 2 is sent to the liquid reservoir tank 7 through the return pipe 8, and the level of the working fluid 12 in the fluid reservoir tank 7 gradually rises. To go. When the liquid level of the hydraulic fluid 12 detected by the liquid level detection sensor 6 becomes larger than the set value H, the controller 1
3, the on-off valve 10 is opened and the collector 1 is opened.
The upper part of the collector tank 7 and the upper part of the liquid reservoir tank 7 are communicated with each other by a communication pipe 11, and the pressure inside the collector 1 is guided to the liquid reservoir tank 7.
is collected into the collector 1 through the return pipe 9. When the level of the hydraulic fluid 12 decreases and becomes smaller than the set value H, the controller 13 closes the on-off valve 10 and the collection of the hydraulic fluid 12 to the collector 1 is completed. The working fluid 12 heated by solar radiation in the collector 1 is heat-exchanged with the hot water in the heat exchange tank 2 in the heat exchanger 3, and the cooled working fluid 12 is guided to the fluid reservoir tank 7. Liquid level controller 1
3, the on-off valve 10 is held at the set value H.
Heat was transferred from the collector 1 to the heat exchange tank 2 by controlling the .

この構成では、(1)開閉弁10を開状態にしてコ
レクタ1と液溜めタンク7を連通ささせるとコレ
クタ1内にある高温の作動液12の蒸気が液溜め
タンク7へ流入し液溜めタンク7内で熱交換して
凝縮するが、この凝縮熱量に相当して液溜めタン
ク7内の作動液12の温度は上昇し、コレクタ1
へ温度の高い作動液12が回収されるため、コレ
クタ1の集熱温度が高くなり集熱効率を低下させ
ていた。(2)開閉弁10が開状態のとき、往管5、
熱交換器3、往管8内の作動液12は停止してお
り、熱交換器3は熱交換器として機能していない
ため、また、開閉弁10が閉状態となつたときも
慣性による抵抗のため作動液12の流速はすぐに
は増大せず所定の熱交換能力が得られないため、
熱搬送性能を低下させるという問題を有してい
た。
In this configuration, (1) when the on-off valve 10 is opened and the collector 1 and the liquid reservoir tank 7 are communicated with each other, the vapor of the high temperature working fluid 12 in the collector 1 flows into the liquid reservoir tank 7; The temperature of the working fluid 12 in the liquid reservoir tank 7 rises corresponding to the amount of heat of condensation, and the temperature of the working fluid 12 in the collector tank 7 increases.
Since the working fluid 12 having a high temperature is recovered, the heat collection temperature of the collector 1 becomes high, reducing the heat collection efficiency. (2) When the on-off valve 10 is in the open state, the outgoing pipe 5,
Since the working fluid 12 in the heat exchanger 3 and the outgoing pipe 8 is stopped and the heat exchanger 3 is not functioning as a heat exchanger, there is also resistance due to inertia when the on-off valve 10 is closed. Therefore, the flow rate of the working fluid 12 does not increase immediately and the predetermined heat exchange capacity cannot be obtained.
This had the problem of deteriorating heat transfer performance.

発明の目的 本発明は上記従来の問題点を解消するもので、
発生器と熱交換器との温度差を低減させ、かつ、
熱交換器の熱交換性能を高めることによつて、熱
搬送性能の向上を図ることを目的とする。
Purpose of the invention The present invention solves the above-mentioned conventional problems.
reducing the temperature difference between the generator and the heat exchanger, and
The purpose is to improve heat transfer performance by increasing the heat exchange performance of a heat exchanger.

発明の構成 上記の目的を達成するため本発明は、熱交換器
と発生器を接続し途中に逆止弁が設けられた往管
の前記熱交換器と前記逆止弁との間の部分と、液
溜めタンク下部とを、途中に逆止弁が設けられた
戻管で接続させるとともに、復管と発生器とを途
中に逆止弁が設けられた還管で接続される構成と
している。
Structure of the Invention In order to achieve the above object, the present invention provides a portion between the heat exchanger and the check valve of an outgoing pipe that connects a heat exchanger and a generator and is provided with a check valve in the middle. , the lower part of the liquid storage tank is connected by a return pipe provided with a check valve in the middle, and the return pipe and the generator are connected by a return pipe provided in the middle with a check valve.

この構成によつて、熱交換タンク内の熱交換器
を通り熱交換して低温になり発生器に回収される
ため、発生器温度は低下し熱交換器との温度差は
低減される。また、連通管上の弁機構が開状態の
ときは、液溜めタンク内の作動液が熱交換器へ、
また、弁機構が閉状態のときは、発生器内の作動
液が熱交換器へ送られるため、熱交換器は常に熱
交換器として機能するとともに慣性による抵抗が
ないため熱交換器における作動液の流速が増大す
ることにより、熱搬送性能が向上する。
With this configuration, the heat is exchanged through the heat exchanger in the heat exchange tank, the temperature becomes low, and the temperature is recovered by the generator, so the generator temperature is lowered and the temperature difference with the heat exchanger is reduced. Also, when the valve mechanism on the communication pipe is open, the working fluid in the fluid reservoir tank flows into the heat exchanger.
In addition, when the valve mechanism is closed, the working fluid in the generator is sent to the heat exchanger, so the heat exchanger always functions as a heat exchanger, and since there is no resistance due to inertia, the working fluid in the heat exchanger The heat transfer performance is improved by increasing the flow rate.

実施例の説明 以下本発明の一実施例を第2図により説明す
る。第1図と同一部材には同一番号を付与してい
る。複数の集熱パイプよりなるコレクタ1(発生
器)の上方に設けられたサブタンク14はコレク
タ1の上部と配管接続され、コレクタ1の下方に
配置され、給湯水を貯めた熱交換タンク2内の熱
交換器3とサブタンク14の下部とが途中に逆止
弁4aを設けた往管5で接続されている。内部に
液面検知センサー6が収納された液溜めタンク7
はコレクタ1の上方に配置され、熱交換器3とは
途中に逆止弁4cを設けた復管8で、また、サブ
タンク14の上部とは途中に開閉弁10(弁機
構)が設けられた連通管11で接続されている。
熱交換器3と逆止弁4aの間の往管5と液溜めタ
ンク7の下部が途中に逆止弁4bを設けた戻管9
で接続され、熱交換器3と逆止弁4cの間の復管
8とコレクタ1の下部が途中に逆止弁4dを設け
た還管15で接続されている。このとき、戻管9
を復管8と、還管15を往管5と接続しても同様
の効果が得られる。液面検知センサー6により検
出された作動液12の液面が設定値Hより大きく
なつたとき開閉弁10を開状にさせる制御器13
によつて作動液12の液面が制御されている。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. The same members as in FIG. 1 are given the same numbers. A sub-tank 14 provided above the collector 1 (generator) consisting of a plurality of heat collection pipes is connected by piping to the upper part of the collector 1, and is placed below the collector 1, and is used to store hot water in the heat exchange tank 2. The heat exchanger 3 and the lower part of the sub-tank 14 are connected by an outgoing pipe 5 having a check valve 4a in the middle. A liquid reservoir tank 7 in which a liquid level detection sensor 6 is housed
is disposed above the collector 1, and is connected to the heat exchanger 3 by a return pipe 8 with a check valve 4c provided in the middle, and is connected to the upper part of the sub-tank 14 by an on-off valve 10 (valve mechanism) provided in the middle. They are connected through a communication pipe 11.
An outgoing pipe 5 between the heat exchanger 3 and the check valve 4a and a return pipe 9 in which the lower part of the liquid reservoir tank 7 is provided with a check valve 4b in the middle.
A return pipe 8 between the heat exchanger 3 and the check valve 4c and the lower part of the collector 1 are connected by a return pipe 15 having a check valve 4d in the middle. At this time, return pipe 9
Similar effects can be obtained by connecting the return pipe 8 and the return pipe 15 to the outgoing pipe 5. A controller 13 that opens the on-off valve 10 when the liquid level of the hydraulic fluid 12 detected by the liquid level detection sensor 6 becomes larger than a set value H.
The level of the hydraulic fluid 12 is controlled by.

作動液12は日射によりコレクタ1が加熱され
ると沸謄蒸発し、コレクタ1内の圧力を上昇させ
ることにより加熱された作動液12が気液二相で
サブタンク14へ送られ気液が分離されて作動液
12の液が往管5を通り熱交換器3へ押し込ま
れ、熱交換タンク2内の給湯水と熱交換して冷却
された作動液12が復管8を通つて液溜めタンク
7へ送られて、液溜めタンク7内の作動液12の
液面は徐々に上昇していく。液面検知センサー6
により検出された作動液12の液面が設定値Hよ
り大きくなると制御器13により開閉弁10が開
状態にされてサブタンク14の上部と液溜めタン
ク7の上部が連通管11によつて連通され、サブ
タンク14内の圧力が液溜めタンク7に導びかれ
てサブタンク14上部の作動液12の蒸気が液溜
めタンク7へ送られ、液溜めタンク7内で冷却さ
れて凝縮しこの凝縮熱量に相当して液溜めタンク
7内の作動液12の温度を上昇させ、この加熱さ
れた作動液12は戻管9と往管5の一部を通つて
熱交換器3へ送られ給湯水と熱交換して冷却され
復管8の一部と還管15を通つてコレクタ1の下
部へ送られ、コレクタ1に回収される。液溜めタ
ンク7内の作動液12の液面が低下して設定値H
より小さくなると制御器13により開閉弁10が
閉状態にされて作動液12のコレクタ1への回収
は終了する。つまり、開閉弁10が開状態のとき
は液溜めタンク7にサブタンク14内の圧力が付
加され高圧になり、その結果、作動液12が逆止
弁4b、戻管9、往管5を経て熱交換器3に入
る。そして、熱交換して熱交換器3を出た作動液
12は還管15、逆止弁4dを通りコレクタ1の
下部へ送られる。この時、熱交換器3をでて復管
8に入つた作動液は液溜タンク7内の圧力が高い
ので液溜めタンク7内には入らない。また、開閉
弁10が閉状態のときは、液溜めタンク7内は冷
却された作動液12により減圧される。したがつ
て熱交換器3を出た作動液12は復管8を通り液
溜めタンク7に送られる。この時、熱交換器3を
でた作動液12はコレクタ1側の圧力が高いの
で、還管15よりコレクタ1に流れ込むことはな
い。
The working fluid 12 boils and evaporates when the collector 1 is heated by sunlight, and by increasing the pressure inside the collector 1, the heated working fluid 12 is sent to the sub-tank 14 in two phases of gas and liquid, where the gas and liquid are separated. The working fluid 12 is forced into the heat exchanger 3 through the outgoing pipe 5, and the working fluid 12, which has been cooled by exchanging heat with the hot water in the heat exchange tank 2, passes through the returning pipe 8 and is transferred to the liquid reservoir tank 7. The liquid level of the working fluid 12 in the fluid reservoir tank 7 gradually rises. Liquid level detection sensor 6
When the liquid level of the hydraulic fluid 12 detected by the controller 13 becomes larger than the set value H, the on-off valve 10 is opened by the controller 13, and the upper part of the sub-tank 14 and the upper part of the liquid reservoir tank 7 are communicated with each other through the communication pipe 11. , the pressure inside the sub-tank 14 is led to the liquid storage tank 7, and the vapor of the working liquid 12 in the upper part of the sub-tank 14 is sent to the liquid storage tank 7, where it is cooled and condensed, which corresponds to the amount of heat of condensation. The heated working fluid 12 is sent to the heat exchanger 3 through the return pipe 9 and part of the outgoing pipe 5, where it exchanges heat with hot water. It is cooled and sent to the lower part of the collector 1 through a part of the return pipe 8 and the return pipe 15, and is collected by the collector 1. The liquid level of the hydraulic fluid 12 in the fluid reservoir tank 7 decreases and the set value H
When it becomes smaller, the on-off valve 10 is closed by the controller 13, and the recovery of the hydraulic fluid 12 to the collector 1 is completed. In other words, when the on-off valve 10 is open, the pressure in the sub-tank 14 is applied to the liquid reservoir tank 7, resulting in a high pressure. Enter exchanger 3. The working fluid 12 that has undergone heat exchange and exited the heat exchanger 3 is sent to the lower part of the collector 1 through a return pipe 15 and a check valve 4d. At this time, the working fluid that has exited the heat exchanger 3 and entered the return pipe 8 does not enter the liquid storage tank 7 because the pressure within the liquid storage tank 7 is high. Further, when the on-off valve 10 is in the closed state, the pressure inside the liquid reservoir tank 7 is reduced by the cooled hydraulic fluid 12. Therefore, the working fluid 12 leaving the heat exchanger 3 is sent to the fluid storage tank 7 through the return pipe 8. At this time, the working fluid 12 leaving the heat exchanger 3 does not flow into the collector 1 through the return pipe 15 because the pressure on the collector 1 side is high.

このように上記実施例においては、作動液12
の制御タンク7からコレクタ1への回収時、作動
液12の蒸気の凝縮熱で加熱された作動液12を
熱交換器3で給湯水と熱交換させて冷却してから
コレクタ1へ回収されているため、コレクタ1の
集熱温度は低くなつて集熱効率が向上し、また、
開閉弁10が開閉どちらの状態のときでも熱交換
器3を作動液12が通ることにより熱交換器3は
常に熱交換器として機能し更に慣性による抵抗が
ないため熱交換器3における作動液12の流速が
増大して熱交換能力が高められ、熱搬送性能及び
集熱効率の向上が図られる。
In this way, in the above embodiment, the hydraulic fluid 12
When the working fluid 12 is recovered from the control tank 7 to the collector 1, the working fluid 12 heated by the heat of condensation of the steam of the working fluid 12 is cooled by exchanging heat with hot water in the heat exchanger 3, and then is collected into the collector 1. Therefore, the heat collection temperature of the collector 1 is lowered and the heat collection efficiency is improved.
When the on-off valve 10 is open or closed, the working fluid 12 passes through the heat exchanger 3, so the heat exchanger 3 always functions as a heat exchanger, and since there is no resistance due to inertia, the working fluid 12 in the heat exchanger 3 The flow rate is increased, the heat exchange capacity is enhanced, and the heat transfer performance and heat collection efficiency are improved.

発明の効果 本発明の熱搬送装置は、熱交換器と発生器を接
続し途中に逆止弁が設けられた往管の前記熱交換
器と前記逆止弁との間の部分と、液溜めタンク下
部とを、途中に逆止弁が設けられた戻管で接続さ
せるとともに、復管と発生器とを途中に逆止弁が
設けられた還管で接続させているため、(1)液溜め
タンク内の作動液は熱交換器で熱交換され低温と
なつて発生器に回収された発生器と熱交換器との
温度差が小さくなり低温度差で熱搬送が可能とな
る。(2)液溜めタンクから発生器へ作動液を回収す
るときも作動液は熱交換器において熱交換し更に
間欠運転による作動液の流速低下もないで熱交換
能力の増大が図られる。
Effects of the Invention The heat transfer device of the present invention has a part between the heat exchanger and the check valve of an outgoing pipe that connects a heat exchanger and a generator and is provided with a check valve in the middle, and a liquid reservoir. The lower part of the tank is connected with a return pipe with a check valve in the middle, and the return pipe and the generator are connected with a return pipe with a check valve in the middle. The working fluid in the reservoir tank undergoes heat exchange with the heat exchanger, becomes low temperature, and is recovered by the generator.The temperature difference between the generator and the heat exchanger becomes small, making it possible to transfer heat with a low temperature difference. (2) When the working fluid is recovered from the liquid storage tank to the generator, the working fluid exchanges heat in the heat exchanger, and the heat exchange capacity is increased without reducing the flow rate of the working fluid due to intermittent operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の熱搬送装置のシステム図、第2
図は本発明の一実施例の熱搬送装置のシステム図
である。 1……発生器、2……熱交換タンク、3……熱
交換器、4a,4b,4c,4d、……逆止弁、
5……往管、6……液面検知センサー、7……液
溜めタンク、8……復管、9……戻管、10……
弁機構、11……連通管、12……作動液、15
……還管。
Figure 1 is a system diagram of a conventional heat transfer device, Figure 2 is a system diagram of a conventional heat transfer device.
The figure is a system diagram of a heat transfer device according to an embodiment of the present invention. 1... Generator, 2... Heat exchange tank, 3... Heat exchanger, 4a, 4b, 4c, 4d,... Check valve,
5... Outgoing pipe, 6... Liquid level detection sensor, 7... Liquid reservoir tank, 8... Return pipe, 9... Return pipe, 10...
Valve mechanism, 11... Communication pipe, 12... Hydraulic fluid, 15
...Return tube.

Claims (1)

【特許請求の範囲】 1 作動液が封入されその蒸気を発生させる発生
器と、前記発生器の下方に位置する熱交換タンク
内に設けられた熱交換器と、前記発生器の上方に
位置し内部に液面検知センサーが収納された液溜
めタンクと、前記発生器と前記熱交換器を接続し
途中に逆止弁が設けられた往管と、前記熱交換器
と前記液溜めタンクを接続する復管と、前記発生
器上部と前記液溜めタンク上部を接続し前記液面
検知センサーにより制御される弁機構が途中に設
けられた連通管と、前記熱交換器と前記逆止弁の
間の前記往管と前記液溜めタンク下部を接続し途
中に逆止弁が設けられた戻管と、前記復管と前記
発生器を接続し途中に逆止弁が設けられた還管と
からなる熱搬送装置。 2 復管上の、還管との接続部と液溜めタンクと
の間に逆止弁を設けた特許請求の範囲第1項記載
の熱搬送装置。
[Scope of Claims] 1. A generator in which a working fluid is sealed and generates steam, a heat exchanger provided in a heat exchange tank located below the generator, and a heat exchanger located above the generator. A liquid reservoir tank in which a liquid level detection sensor is housed, an outgoing pipe that connects the generator and the heat exchanger and is provided with a check valve in the middle, and connects the heat exchanger and the liquid reservoir tank. a return pipe that connects the upper part of the generator and the upper part of the liquid storage tank and is provided with a valve mechanism in the middle that is controlled by the liquid level detection sensor, and between the heat exchanger and the check valve. A return pipe connects the outgoing pipe and the lower part of the liquid storage tank and is provided with a check valve in the middle, and a return pipe connects the return pipe and the generator and is provided with a check valve in the middle. Heat transfer equipment. 2. The heat transfer device according to claim 1, wherein a check valve is provided between the connection part with the return pipe and the liquid storage tank on the return pipe.
JP58236614A 1983-12-15 1983-12-15 Heat transfer device Granted JPS60129565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58236614A JPS60129565A (en) 1983-12-15 1983-12-15 Heat transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58236614A JPS60129565A (en) 1983-12-15 1983-12-15 Heat transfer device

Publications (2)

Publication Number Publication Date
JPS60129565A JPS60129565A (en) 1985-07-10
JPH0140261B2 true JPH0140261B2 (en) 1989-08-28

Family

ID=17003248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58236614A Granted JPS60129565A (en) 1983-12-15 1983-12-15 Heat transfer device

Country Status (1)

Country Link
JP (1) JPS60129565A (en)

Also Published As

Publication number Publication date
JPS60129565A (en) 1985-07-10

Similar Documents

Publication Publication Date Title
JPS6152559A (en) Heat transfer device
JPH0140261B2 (en)
US4407129A (en) Closed loop solar collecting system operating a thermoelectric generator system
JPH0423181B2 (en)
JPH0228792B2 (en) NETSUHANSOSOCHI
JPH0243994B2 (en)
JPH0243993B2 (en)
JPH0117003Y2 (en)
US4354483A (en) Closed loop solar collector system with dual reservoirs and fluid bypass
JPH0423179B2 (en)
JPH0228077B2 (en) NETSUHANSOSOCHI
US4412529A (en) Closed loop solar collector system with dual reservoirs and fluid bypass
US4397300A (en) Closed loop solar collector system with dual chamber fluid supply arrangement
JPS60233463A (en) Heat transfer device
JPH0510598B2 (en)
JPH0245791B2 (en)
JPS61114090A (en) Heat transmission device
JPS5952159A (en) Heat collecting device
JPS6069458A (en) Heat transmission device
JPS5878056A (en) Heater for air-conditioning
JPS61138091A (en) Heat carrying device
JPS61153490A (en) Heat transfer device
JPH0246860B2 (en)
JPS61197955A (en) Heat transfer device
JPS59217451A (en) Heat collector utilizing solar heat