JPH02279995A - Control device - Google Patents

Control device

Info

Publication number
JPH02279995A
JPH02279995A JP9803189A JP9803189A JPH02279995A JP H02279995 A JPH02279995 A JP H02279995A JP 9803189 A JP9803189 A JP 9803189A JP 9803189 A JP9803189 A JP 9803189A JP H02279995 A JPH02279995 A JP H02279995A
Authority
JP
Japan
Prior art keywords
target
signal
roll
projectile
beam scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9803189A
Other languages
Japanese (ja)
Other versions
JPH0784996B2 (en
Inventor
Katsuyoshi Hayasaka
早坂 勝義
Juichi Hashiguchi
橋口 寿一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9803189A priority Critical patent/JPH0784996B2/en
Publication of JPH02279995A publication Critical patent/JPH02279995A/en
Publication of JPH0784996B2 publication Critical patent/JPH0784996B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To extend the beam-scanning range and improve in the efficiency of following a fast flying fast gyrating target by mounting a phased array antenna on a projectile with an inclination from its body axis, by forming a beam-scanning angle ranging asymmetrically around the body axis, and by controlling the roll of the projectile. CONSTITUTION:A phased array antenna is mounted on a projectile with an inclination from its body axis. A target 6 is picked up in a range 5 of a beam-scannng angle of the projectile. A single-processing device 9 calculates and presumes the projectile to fly to the target 6; if the projectile is judged to be mixing the target, the signal- processing device 9 transmits to a beam-control device 10 a signal respecting the direction of radiowave transmission compensated for the roll angle of the flight. A roll control device 11 according to a command signal from a signel-processing device 9 produces a roll-control signal respecting the rolling direction, angular velocity, and angle of the roll on the basis of targeted motion such as a rate of change to the target 6'. A autopilot 12 inputs signals for controlling the pitch, yaw, and roll, and outputs steering signals to the steering device 13. The projectile 1 rolls so that a widened range compensates a narrowing of the beam-scanning range due to inclination of the antenna.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、フェーズドeアレイ・アンテナを飛しよう
体の機軸から傾斜させて搭載することによって、ビーム
走査角範囲が機軸を中心として非対称をなし、この偏っ
たビーム走査角範囲と飛しよう体をロール制御する機能
とを併用して、見かけ上ビーム走査角範囲を拡大し、目
標を捕捉する能力を向上した制御装置に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a beam scanning angle range that is asymmetrical about the aircraft axis by mounting a phased e-array antenna inclined from the aircraft axis of the flying body. This invention relates to a control device that uses this biased beam scanning angle range in combination with a function for controlling the roll of a flying object to apparently expand the beam scanning angle range and improve the ability to capture a target.

〔従来の技術〕[Conventional technology]

第4図は従来の制御装置を示す図である。 FIG. 4 is a diagram showing a conventional control device.

図において(1)は飛しょう鉢本体、(2)は飛しょう
体板軸、(3)はフエーズド・アレイ・アンテナ、(5
)はビーム走査角範囲、(6)とt61は目標、(7)
は送信機。
In the figure, (1) is the flyball body, (2) is the flywheel plate axis, (3) is the phased array antenna, and (5) is the flyball plate axis.
) is the beam scanning angle range, (6) and t61 are the target, (7)
is the transmitter.

(8)は受信機、(9)は信号処理部、00)はビーム
制御部。
(8) is a receiver, (9) is a signal processing unit, and 00 is a beam control unit.

aZはオートバイロッ)、(11は操舵装置を表わす。aZ represents an autorot), (11 represents a steering device).

従来のものは、フエーズド・アレイ・アンテナ(3)が
飛しよう体機軸(2)に垂直に搭載されていた。
In the conventional model, the phased array antenna (3) was mounted perpendicularly to the flying body axis (2).

飛しよう体はビーム走査角範囲内の目標(6)に向けて
送信機(7)で発生した送信波をフェーズド・アレイψ
アンテナ(3)から放射し、目標(6)からの反射波を
アンテナ(3)で受信し、受信機(8)へ受信信号を出
力する。受信機(8)は受信信号から目標信号を発生し
、これを信号処理部(9)へ送る。信号処理部(9)は
入力した目標信号から目標運動に関する情報を計算・推
定し、ビーム制御部α0ヘビーム走査角指令信号を出力
し、オートパイロットα3を経由して操舵装置a:1へ
誘導信号を出力する。従来方式では。
The flying object sends the transmitted waves generated by the transmitter (7) towards the target (6) within the beam scanning angle range using a phased array ψ.
The antenna (3) emits radiation, the reflected wave from the target (6) is received by the antenna (3), and the received signal is output to the receiver (8). The receiver (8) generates a target signal from the received signal and sends it to the signal processing section (9). The signal processing unit (9) calculates and estimates information regarding the target motion from the input target signal, outputs a beam control unit α0 heavy beam scanning angle command signal, and sends a guidance signal to the steering device a:1 via the autopilot α3. Output. In the conventional method.

ここで目標(6)がj6fへ移行することを計算・推定
しても、それがビーム走査角範囲を越えるものであった
場合には、対処する術をもたなかった。ただし、ビーム
走査角範囲を現状よりも広くできれば課題は解消できる
が、アンテナに関する他の諸性能の多くが劣化するため
に、容易にこの範囲を拡げることはできなかった。
Even if it were calculated and estimated that the target (6) would shift to j6f, there was no way to deal with it if it exceeded the beam scanning angle range. However, although the problem could be solved if the beam scanning angle range could be made wider than the current one, this range could not be easily expanded because many of the other performances related to the antenna would deteriorate.

即チ、従来の技術はフエーズド・アレイ・アンテナの送
受信に関わる諸性能をあるレベル以上に保つために、ビ
ーム走査角範囲がジンバル機構のアンテナよりも小さく
、高速・高旋回性の目標をこの範囲から外す危険性が高
かった。
In other words, in order to maintain the performance related to transmission and reception of phased array antennas above a certain level, conventional technology has a beam scanning angle range that is smaller than that of gimbaled antennas, and targets with high speed and high turning ability can be targeted within this range. There was a high risk of it being removed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

飛しよう体が、高速・高旋回性の目標に対処しようとす
る場合、アンテナのビーム走査範囲か狭いとロックオフ
する危険が高い。従って理想的には、ビーム走査角範囲
を拡げることができれば好ましいが、アンテナの他の諸
性能の多くが劣化するために、無造作にこれを拡げられ
ない。そのため、従来のアンテナはジンバル機構のアン
テナに比べて走査角範囲が狭く、前記のロックオフの危
険が扁かった。
When a flying object attempts to target a high-speed, high-turning target, there is a high risk of lock-off if the antenna's beam scanning range is narrow. Ideally, therefore, it would be desirable to be able to widen the beam scanning angle range, but this cannot be done casually because many of the other performances of the antenna would deteriorate. Therefore, the scanning angle range of conventional antennas is narrower than that of antennas with gimbal mechanisms, and the risk of lock-off described above is low.

この発明は、かかる課題を解決するためになされたもの
であり、他の性能を犠牲にすることなくビーム走査角範
囲を拡け、高速・高旋回性の目標対処時に、これをロッ
クオフする危険を減少させようとするものである。、 この発明に係る制御装置は7エーズド・アレイ・アンテ
ナを飛しよう体機軸から傾斜して搭載し。
This invention was made to solve this problem, and it expands the beam scanning angle range without sacrificing other performance, and eliminates the risk of lock-off when dealing with high-speed, high-turning targets. The aim is to reduce the The control device according to the present invention is equipped with a 7-sided array antenna tilted from the axis of the flying body.

ビーム走査角範囲を機軸まわシに非対称とし、非対称に
することによって、走査角範囲が機軸から広い域と、狭
い域が生じ、この広い走査角範囲で目標を捕捉するよう
に、飛しよう体はロール制御装置にてロール制御を行う
ものである。
By making the beam scanning angle range asymmetric around the aircraft axis, the scanning angle range will be wide and narrow from the aircraft axis, and the flying object will be able to capture the target within this wide scanning angle range. Roll control is performed by a roll control device.

〔作用〕[Effect]

この発明においては、フエーズド・アレイ・アンテナを
飛しよう体機軸から傾斜して搭載し、飛しよう体を適切
にロール制御することによって。
In this invention, the phased array antenna is mounted at an angle from the axis of the flying body, and the flying body is appropriately controlled in roll.

フエーズド・アレイ・アンテナの性能を劣化させること
なく、ビーム走査角範囲を拡げ、目標をロックオンする
危険性を減少させることができる。
The beam scanning angle range can be expanded and the risk of target lock-on can be reduced without degrading the performance of the phased array antenna.

〔実施例〕〔Example〕

第1図〜第3図は、この発明の一実施例を示す図で、第
1図の(1)は飛しよう鉢本体、(2)は飛しよう体機
軸、(3)は7エーズド・アレイ・アンテナ。
Figures 1 to 3 are diagrams showing one embodiment of the present invention, in which (1) in Figure 1 is the main body of the flying bowl, (2) is the axis of the flying body, and (3) is the 7 aided array. ·antenna.

(4)はアンテナ軸、(5)はビーム走査角範囲、(6
)と(6fは目標、(7)は送信機、(8)は受信機、
(9)は信号処理部、Hはビーム制御部、011はロー
ル制御装置、鰺はオートパイロット、αJは操舵装置を
表わす。第2図、第3図の(1)〜α2は第1図の同符
号に相半する。
(4) is the antenna axis, (5) is the beam scanning angle range, (6
) and (6f is the target, (7) is the transmitter, (8) is the receiver,
(9) represents a signal processing unit, H represents a beam control unit, 011 represents a roll control device, Saba represents an autopilot, and αJ represents a steering device. (1) to α2 in FIGS. 2 and 3 correspond to the same symbols in FIG. 1.

ここでは、目標がビーム走査角の狭い範囲から外れよう
とする状況での実施例を示す。第1図で目標(6)は飛
しよう体のビーム走査角範囲(5)に捕捉されている。
Here, an example will be shown in which the target is about to deviate from a narrow beam scanning angle range. In FIG. 1, the target (6) is captured within the beam scanning angle range (5) of the flying object.

飛しよう体はフエーズド・アレイ・アンテナ(3)から
目標(6)へ照射した電波の、目標からの反射波をアン
テナ(3)で入力し、受信機(8)で受信する。信号処
理部(9)は受信した信号から、目標の運動を計算、あ
るいは推定する。信号処理部(9)によって目標(6)
が+61へ移行することを計算・推定し、その結果目標
(6fがビーム走査角範囲から外れる。もしくは外れる
直前のレベルまで達したと判定した場合、ロール制御装
置α1)へロール指令信号をビーム制御部a1へは機体
のロール角を補償した電波の送信方向に関する信号を送
る。ロール制御装置aυは信号処理部(9)からの指令
信号によって。
The flying object inputs the reflected waves from the target of the radio waves irradiated from the phased array antenna (3) to the target (6) through the antenna (3) and receives them at the receiver (8). The signal processing unit (9) calculates or estimates the movement of the target from the received signal. Target (6) by signal processing unit (9)
As a result, it calculates and estimates that 6f will shift to +61, and as a result, if it is determined that 6f is out of the beam scanning angle range, or has reached the level just before it goes out, beam control sends a roll command signal to the roll control device α1. A signal related to the transmission direction of radio waves that compensates for the roll angle of the aircraft is sent to part a1. The roll control device aυ is controlled by a command signal from the signal processing section (9).

目標(6)の(6rへの変化率等の目標運動に基づいた
ロール回転方向、角速度、角度に関するロール制御信号
を発生し、オートパイロットazへ出力する。
A roll control signal regarding the roll rotation direction, angular velocity, and angle based on the target movement such as the rate of change of target (6) to (6r) is generated and output to the autopilot az.

オートパイロットa2は、ピッチ・ヨーの運動制御と、
ロール制御信号を入力し、操舵装置o:1へ操舵信号を
出力する。操舵信号を入力した操舵装置αJは、信号に
見合った舵角に操舵翼を操舵し、よって飛しよう体(1
)はロールする。第2図は第1図の状態から181fロ
ールした状態を表わし、第1図で飛しよう体のビーム走
査範囲から外れる危険があった目標+61. (6fけ
、第2図では十分にビーム走査範囲内に捕捉される。
Autopilot a2 controls pitch and yaw motion,
It inputs a roll control signal and outputs a steering signal to the steering device o:1. The steering device αJ inputting the steering signal steers the steering blade to a rudder angle commensurate with the signal, so that the flying object (1
) rolls. Figure 2 shows a state in which the target was rolled 181f from the state shown in Figure 1, and the target +61. (6f is captured well within the beam scanning range in FIG. 2).

また、第1図・第2図ではアンテナを傾斜させ狭くなっ
たビーム走査範囲を広くなった範囲で補う例を示したが
、第3図は第1図、第2図の同じ動作原理で、広くなっ
たビーム走査範囲か任意の方向に有効に作用することを
示している。
In addition, although Figures 1 and 2 show an example in which the antenna is tilted to compensate for the narrowed beam scanning range with a wider range, Figure 3 uses the same operating principle as in Figures 1 and 2. This shows that the widened beam scanning range is effective in any direction.

〔発明の効果〕〔Effect of the invention〕

この発明は1以上説明した構成にょハ飛しょう体のビー
ム走査範囲を拡げ、高速・高旋回目標に対する追随性能
を向上させることができる。
The present invention can expand the beam scanning range of a projectile having one or more of the above-described configurations, and can improve tracking performance for high-speed, high-turning targets.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はこの発明の一実施例の構成及び動作原
理を示す図、第3図は第1図、第2図に示した例と異っ
た実施例を示す図、第4図は従来技術の構成を示す図で
ある。 図中、(1)は飛しよう鉢本体、(2)は飛しよう体機
軸、(3)はフエーズド・アレイ・アンテナ、(4)は
アンテナ基準線、(5)はアンテナビーム走査範囲、(
6)は目標、(7)は送信機、(8)は受信機、(9)
は信号処理部、 +IQ+はビーム制御部、αυはロー
ル制御装置、azはオートパイロット、αJは操舵装シ
ーを示す。 尚2図中同一もしくは相当部分には同一符号を付して示
しである。
1 and 2 are diagrams showing the configuration and operating principle of an embodiment of the present invention, FIG. 3 is a diagram showing an embodiment different from the example shown in FIGS. 1 and 2, and FIG. The figure is a diagram showing the configuration of a conventional technique. In the figure, (1) is the flying bowl body, (2) is the flying body axis, (3) is the phased array antenna, (4) is the antenna reference line, (5) is the antenna beam scanning range, (
6) is the target, (7) is the transmitter, (8) is the receiver, (9)
is a signal processing unit, +IQ+ is a beam control unit, αυ is a roll control device, az is an autopilot, and αJ is a steering system. In the two figures, the same or corresponding parts are designated by the same reference numerals.

Claims (1)

【特許請求の範囲】[Claims] 目標に照射する送信波と送信信号を発生する送信機と、
送信波を目標へ向けて放射し、目標からの反射波を受信
するフエーズドアレイアンテナと、上記アンテナが受信
した受信信号から目標情報信号を発生する受信機と、上
記目標情報信号から誘導信号とビーム走査角指令信号を
発生する信号処理部と、上記ビーム走査角指令信号によ
り送信波を放射する方向を制御するビーム制御部と、目
標をビーム走査範囲から外さないように飛しよう体をロ
ール制御するロール制御装置と、ロール制御装置からの
ロール制御信号と信号処理部からの誘導信号より飛しよ
う体の運動を制御する操舵角指令信号を発生するオート
パイロットと、操舵角指令信号から操舵翼を駆動する操
舵装置とで構成し上記フエーズド・アレイ・アンテナを
飛しよう体の機軸と傾斜して搭載することによつて、ビ
ーム走査角範囲に機軸を中心として広い範囲と狭い範囲
とが生じるようにし、このビーム走査範囲の偏つた分布
と飛しよう体をロール制御する機能を併用することによ
つて、ビーム走査角範囲を見かけ上、拡大することを特
徴とする制御装置。
a transmitter that generates a transmission wave and a transmission signal to irradiate the target;
A phased array antenna that emits a transmitted wave toward a target and receives a reflected wave from the target, a receiver that generates a target information signal from the received signal received by the antenna, and a guidance signal that is generated from the target information signal. A signal processing section that generates a beam scanning angle command signal, a beam control section that controls the direction in which the transmitted wave is radiated using the beam scanning angle command signal, and a roll control section of the flying object so as not to remove the target from the beam scanning range. an autopilot that generates a steering angle command signal that controls the motion of the flying object based on the roll control signal from the roll control device and a guidance signal from the signal processing section; By mounting the above-mentioned phased array antenna at an angle with respect to the aircraft axis of the flying object, the beam scanning angle range is made to have a wide range and a narrow range around the aircraft axis. A control device characterized in that the beam scanning angle range is apparently expanded by using both the biased distribution of the beam scanning range and the function of controlling the roll of the flying object.
JP9803189A 1989-04-18 1989-04-18 Control device Expired - Lifetime JPH0784996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9803189A JPH0784996B2 (en) 1989-04-18 1989-04-18 Control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9803189A JPH0784996B2 (en) 1989-04-18 1989-04-18 Control device

Publications (2)

Publication Number Publication Date
JPH02279995A true JPH02279995A (en) 1990-11-15
JPH0784996B2 JPH0784996B2 (en) 1995-09-13

Family

ID=14208632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9803189A Expired - Lifetime JPH0784996B2 (en) 1989-04-18 1989-04-18 Control device

Country Status (1)

Country Link
JP (1) JPH0784996B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126355A (en) * 2012-12-27 2014-07-07 Mitsubishi Heavy Ind Ltd Missile guide system and missile guide method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126355A (en) * 2012-12-27 2014-07-07 Mitsubishi Heavy Ind Ltd Missile guide system and missile guide method

Also Published As

Publication number Publication date
JPH0784996B2 (en) 1995-09-13

Similar Documents

Publication Publication Date Title
CN106712866B (en) Communication-in-motion terminal station system and tracking method thereof
US20180031074A1 (en) Spatial stabilization apparatus and spatial stabilization method
US5153594A (en) Electronic counter-measure system for aircraft
US4129866A (en) Method of scanning a radar antenna to effect improved radar operation
US4142695A (en) Vehicle guidance system
JPH02279995A (en) Control device
JP2001153596A (en) Apparatus and method for missile guidance
JPS63271182A (en) Automatic controller for antenna beam direction
JPH0245783A (en) Radar equipment
JPS61502740A (en) Rotating stabilized satellite with nutation control subsystem
JPH07321534A (en) Antenna system
JPS6269179A (en) Semi-active radar guidance controlling system
JP2518086B2 (en) Tracking device
JPH0329878A (en) Control apparatus
JPH0794960B2 (en) Control device
JP3157976B2 (en) Mobile antenna mount
JP2001165598A (en) Guided airframe
KR102632252B1 (en) Radar device for aircraft with radiation angle control function and radiation angle control method of radar device for aircraft
JP2000258531A (en) Radar apparatus and control method
JPH07117357B2 (en) Control device
JP2536667B2 (en) Tracking device
JPH0444238B2 (en)
JPS62112403A (en) Ship radar with stabilizer
JPH0413098A (en) Guided airframe
CA1101968A (en) Vehicle guidance system