JP2014126355A - Missile guide system and missile guide method - Google Patents

Missile guide system and missile guide method Download PDF

Info

Publication number
JP2014126355A
JP2014126355A JP2012286020A JP2012286020A JP2014126355A JP 2014126355 A JP2014126355 A JP 2014126355A JP 2012286020 A JP2012286020 A JP 2012286020A JP 2012286020 A JP2012286020 A JP 2012286020A JP 2014126355 A JP2014126355 A JP 2014126355A
Authority
JP
Japan
Prior art keywords
flying object
error amount
heading error
guidance
terminal guidance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012286020A
Other languages
Japanese (ja)
Other versions
JP5995712B2 (en
Inventor
Keisuke Ando
啓介 安藤
Yoshihiro Sera
義宏 世良
Shojiro Furuya
正二郎 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012286020A priority Critical patent/JP5995712B2/en
Publication of JP2014126355A publication Critical patent/JP2014126355A/en
Application granted granted Critical
Publication of JP5995712B2 publication Critical patent/JP5995712B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem that there is a possibility that an oscillation angle of a missile deviates from or exceeds an oscillation possible range for maintaining a lock-on state, and lock-off is made when thrust for terminal guidance is generated in a multi-pulse type (a plurality of pulses) missile.SOLUTION: In a multi-pulse type missile, time from lock-on to terminal guidance start is effectively used, an attitude angle is gradually changed with the usage of a rotor blade of the missile during a period from lock-on to terminal guidance start, and the attitude angle facing a target direction can be secured in the terminal guidance start. A missile guide system for achieving the enhancement includes an error calculation means for calculating heading error quantity of the missile during the period from lock-on to terminal guidance start, an attitude control means for securing the attitude angle in accordance with the calculated heading error quantity and shifting to terminal guidance in the state of maintaining the attitude angle, and an acceleration thrust generation means for generating thrust for terminal guidance.

Description

本発明は、飛翔体誘導方式に関し、特に終末誘導への移行の際の飛翔体誘導方式に関する。   The present invention relates to a flying object guiding method, and more particularly to a flying object guiding method at the time of transition to terminal guidance.

飛翔体誘導方式の分野における現在の技術では、ロックオン(Lock on:目標捕捉)前に目標との予想会合点を算出し、ロックオン後も終末誘導を行うのに適切なタイミングに達するまで予想会合点の方向に向けて飛翔させ、適切なタイミングに達した時点で、目標の方向に誘導する終末誘導に移行する。   With current technology in the field of flying object guidance methods, an expected meeting point with a target is calculated before lock-on (lock-on), and it is predicted until an appropriate timing is reached for terminal guidance even after lock-on. It flies toward the direction of the meeting point, and when it reaches an appropriate timing, it shifts to terminal guidance that leads to the target direction.

終末誘導時に別途推力を発生させる2パルス式の飛翔体では、終末誘導時には、加速度指令に追従するため、大きな姿勢角(大迎角)を取ることになる。このように姿勢角が変化するような状況においても、飛翔体の機首のシーカ(Seeker:目標捜索装置)に備え付けられたジンバル(Gimbal:回転台)によって目標を捕捉し続ける。そして、シーカからの誘導信号に従って飛翔することで目標と会合する。   In a two-pulse type flying object that separately generates thrust at the time of terminal guidance, a large attitude angle (large angle of attack) is taken at the time of terminal guidance to follow the acceleration command. Even in such a situation in which the attitude angle changes, the target is continuously captured by a gimbal (Gimbal: turntable) provided to the seeker (Seeker: target search device) of the flying object. And it meets with the target by flying according to the guidance signal from Sika.

[関連技術]
関連技術として、特許文献1(特開昭59−052200号公報)に飛翔体誘導方式が開示されている。この技術では、飛翔体と目標との相対的位置を検出する手段によって目標が捕捉されない場合には、飛翔体の姿勢角を変化させることによって目標を視野領域内(照準)に捉え、それによって目標に誘導するようにしたことを特徴としている。
[Related technologies]
As a related technique, a flying object guiding method is disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 59-052200). In this technology, when the target is not captured by the means for detecting the relative position between the projectile and the target, the target is captured within the field of view (sight) by changing the attitude angle of the projectile, and thereby the target It is characterized by being guided to.

特開昭59−052200号公報JP 59-052200 A

通常の飛翔体では問題とならないが、終末誘導時に別途推力を発生させる2パルス式の飛翔体では、以下のような問題が発生する。   This is not a problem with a normal flying object, but the following problem occurs with a two-pulse flying object that generates a separate thrust during terminal guidance.

例えば高高度において、図1に示すように、飛翔体の姿勢角が大きく変化するような飛翔を行う場合、飛翔体の首振角がロックオン状態維持のための首振可能範囲を逸脱/超過してしまい、ロックオフしてしまう可能性があった。特に、首振角が上下非対称(下側の首振角が著しく小さい等)の場合において、このような事象が顕著に現れる。   For example, when flying at a high altitude where the attitude angle of the flying object changes greatly as shown in FIG. 1, the swinging angle of the flying object deviates / exceeds the swingable range for maintaining the lock-on state. And could be locked off. In particular, when the swing angle is asymmetrical in the vertical direction (the lower swing angle is extremely small, etc.), such a phenomenon appears remarkably.

本発明では、マルチパルス(複数のパルス)式の飛翔体において、ロックオンから終末誘導開始までの時間を有効活用し、ロックオンから終末誘導開始までの間に、飛翔体の動翼等を使用して徐々に姿勢角を変更し、終末誘導開始時には目標の方向に向けた姿勢角を取っている状態にする飛翔体誘導方式を提案する。   In the present invention, in a multi-pulse (multiple pulse) type flying object, the time from lock-on to the start of terminal guidance is used effectively, and the moving blades of the flying object are used between the lock-on and the start of terminal guidance. Then, we propose a flying object guidance method that gradually changes the posture angle and sets the posture angle toward the target direction at the start of terminal guidance.

本発明に係る飛翔体誘導方式は、マルチパルス式の飛翔体に適用される飛翔体誘導方式であって、ロックオンから終末誘導開始までの間に、飛翔体のヘディングエラー量を算出する誤差算出手段と、算出されたヘディングエラー量に応じた姿勢角を取り、姿勢角を維持した状態で終末誘導に移行する姿勢制御手段と、終末誘導用の推力を発生させる加速推力発生手段を備える。   The flying object guidance method according to the present invention is a flying object guidance method applied to a multi-pulse type flying object, and calculates an error amount for calculating the heading error amount of the flying object between lock-on and the start of terminal guidance. Means, a posture control means for taking a posture angle corresponding to the calculated heading error amount and shifting to terminal guidance while maintaining the posture angle, and acceleration thrust generating means for generating thrust for terminal guidance.

本発明に係る飛翔体誘導方法は、マルチパルス式の飛翔体に適用される飛翔体誘導方法であって、ロックオンから終末誘導開始までの間に、飛翔体のヘディングエラー量を算出することと、算出されたヘディングエラー量に応じた姿勢角を取ることと、姿勢角を維持した状態で終末誘導に移行することと、終末誘導用の推力を発生させることとを含む。   The flying object guidance method according to the present invention is a flying object guidance method applied to a multi-pulse type flying object, and calculates a heading error amount of the flying object between lock-on and the start of terminal guidance. , Taking a posture angle corresponding to the calculated heading error amount, shifting to terminal guidance while maintaining the posture angle, and generating thrust for terminal guidance.

本発明に係るプログラムは、上記の飛翔体誘導方法における処理を、計算機等の電子機器に実行させるためのプログラムである。なお、本発明に係るプログラムは、記憶装置や記憶媒体に格納することが可能である。   The program according to the present invention is a program for causing an electronic device such as a computer to execute the process in the flying object guiding method. The program according to the present invention can be stored in a storage device or a storage medium.

終末誘導用の推力発生時に既に最終的な予想会合点の方向に向けた姿勢角を取っているため、既存方式に比べて終末誘導開始後の首振角の変化が抑制される(微調整の機会減少)。また、既存方式に比べて終末誘導用の推力発生時の旋回性能(加速度の立ち上がり等)が改善し、加速による迎角変化が小さくなる。   Since the attitude angle toward the final expected meeting point is already taken when the thrust for terminal guidance is generated, the change in swing angle after the start of terminal guidance is suppressed compared to the existing method (fine adjustment Opportunity decrease). Moreover, the turning performance (rise of acceleration, etc.) at the time of thrust generation for terminal guidance is improved as compared with the existing method, and the change in the angle of attack due to acceleration is reduced.

既存技術についての説明図である。It is explanatory drawing about the existing technique. 本発明に係る飛翔体誘導方式の構成例についての説明図である。It is explanatory drawing about the structural example of the flying body guidance system which concerns on this invention. ヘディングエラーについての説明図である。It is explanatory drawing about a heading error. 本発明の第1実施形態についての説明図である。It is explanatory drawing about 1st Embodiment of this invention. 本発明の第2実施形態についての説明図である。It is explanatory drawing about 2nd Embodiment of this invention.

本発明は、マルチパルス式の飛翔体に適用される飛翔体誘導方式を対象としている。ここでは、2パルス式の飛翔体に適用される飛翔体誘導方式について説明する。   The present invention is directed to a flying object guiding method applied to a multi-pulse flying object. Here, a flying object guidance method applied to a two-pulse flying object will be described.

<第1実施形態>
以下に、本発明の第1実施形態について添付図面を参照して説明する。
<First Embodiment>
Hereinafter, a first embodiment of the present invention will be described with reference to the accompanying drawings.

[飛翔体誘導方式の構成例]
図2に示すように、本実施形態に係る飛翔体誘導方式は、誤差算出部10と、姿勢制御部20と、加速推力発生部30を備える。
[Configuration example of flying object guidance method]
As shown in FIG. 2, the flying object guidance method according to the present embodiment includes an error calculation unit 10, an attitude control unit 20, and an acceleration thrust generation unit 30.

誤差算出部10は、ロックオンから終末誘導開始までの間に、ロックオン前に算出された予想会合点と、ロックオン後に算出された真の会合点との誤差を示すヘディングエラー量を算出する。図3に、ヘディングエラーについての説明図を示す。   The error calculation unit 10 calculates a heading error amount indicating an error between an expected meeting point calculated before the lock-on and a true meeting point calculated after the lock-on between the lock-on and the end guidance start. . FIG. 3 is an explanatory diagram for a heading error.

姿勢制御部20は、ロックオンから終末誘導開始までの間に、算出されたヘディングエラー量に応じた姿勢角(迎角/横滑り角)を取り、飛翔体の機首を予想会合点の方向ではなく目標の方向に向ける。例えば、姿勢制御部20は、ヘディングエラー量に基づいて、動翼等の操向装置(操舵翼、可動ノズル、推力偏向板等)を制御して姿勢角を変更するための指示(姿勢角指令)を行い、飛翔体をピッチ回転(左右を軸とした回転:上下首振)/ヨー回転(上下を軸とした回転:左右首振)させて姿勢角を変更し、終末誘導開始までに飛翔体の機首を徐々に目標の方向に向ける。姿勢制御部20は、終末誘導開始時に、上記の姿勢角を維持した状態で終末誘導に移行する。   The attitude control unit 20 takes an attitude angle (attack angle / slip angle) according to the calculated heading error amount from the lock-on to the start of terminal guidance, and moves the nose of the flying object in the direction of the expected meeting point. Direct toward the goal. For example, the posture control unit 20 controls a steering device such as a moving blade (steering blade, movable nozzle, thrust deflector plate, etc.) based on the heading error amount to change the posture angle (attitude angle command). ) To change the attitude angle by pitch rotation (rotation about the left and right axis: vertical swing) / yaw rotation (rotation about the vertical axis: left and right swing), and fly before the end guidance starts Gradually point the nose of the body toward the target. At the start of terminal guidance, the posture control unit 20 shifts to terminal guidance while maintaining the posture angle.

加速推力発生部30は、終末誘導に移行した際に、終末誘導用の推力を発生させる。例えば、加速推力発生部30は、飛翔体の主エンジンをラムジェットエンジンからスクラムジェットエンジンに切り替える。或いは、推進ブースターを作動させる。但し、実際には、これらの例に限定されない。   The acceleration thrust generating unit 30 generates thrust for terminal guidance when the terminal thrust is shifted to terminal guidance. For example, the acceleration thrust generating unit 30 switches the main engine of the flying object from a ramjet engine to a scramjet engine. Alternatively, activate the propulsion booster. However, actually, it is not limited to these examples.

[本実施形態の詳細]
図4を参照して、本実施形態の詳細について説明する。
[Details of this embodiment]
Details of the present embodiment will be described with reference to FIG.

飛翔体は、飛翔中に目標を捕捉(ロックオン)した場合、その目標との予想会合点を算出し、その予想会合点の方向に向けて飛翔する。この動作自体は、既存技術と同様である。   When a flying object captures (locks on) a target during flight, it calculates an expected meeting point with the target and flies in the direction of the predicted meeting point. This operation itself is the same as that of the existing technology.

誤差算出部10は、ロックオンから終末誘導開始までの間に、ヘディングエラー量を算出する。なお、誤差算出部10は、ロックオンから終末誘導開始までの間、周期的にヘディングエラー量を算出しても良い。   The error calculation unit 10 calculates the heading error amount from the lock-on to the end guidance start. Note that the error calculation unit 10 may periodically calculate the heading error amount from the lock-on to the end guidance start.

姿勢制御部20は、算出されたヘディングエラー量に応じて、飛翔体の動翼に対して姿勢角指令を行い、飛翔体をピッチ回転/ヨー回転させて姿勢角を徐々に調整して、最終的に飛翔体の機首を目標の方向に向け、その姿勢角を維持する。   The attitude control unit 20 issues an attitude angle command to the flying blades of the flying object according to the calculated heading error amount, and gradually adjusts the attitude angle by rotating the flying object by pitch rotation / yaw rotation. The nose of the flying object is pointed in the target direction and its attitude angle is maintained.

加速推力発生部30は、飛翔体の機首を目標の方向に向けた姿勢角を維持した状態で、飛翔体の動力機関に対して指令を出力し、終末誘導用の推力を発生させ、飛翔体を加速させる。   The acceleration thrust generation unit 30 outputs a command to the power engine of the flying object while maintaining the attitude angle with the nose of the flying object oriented in the target direction, generates thrust for terminal guidance, and Accelerate your body.

[本実施形態の作用・効果]
本実施形態では、加速後に飛翔体の姿勢角を調整する必要性が従来に比べて大きく減少するため、加速開始時点において最大限の推力を発生させることができる。従って、旋回性能(加速度の立ち上がり等)が大幅に改善される。また、終末誘導中の加速度指令が減少する。
[Operation and effect of this embodiment]
In the present embodiment, the necessity of adjusting the attitude angle of the flying object after acceleration is greatly reduced as compared to the conventional case, and therefore the maximum thrust can be generated at the time of starting acceleration. Accordingly, the turning performance (such as acceleration rise) is greatly improved. In addition, the acceleration command during the terminal guidance decreases.

<第2実施形態>
以下に、本発明の第2実施形態について説明する。
Second Embodiment
The second embodiment of the present invention will be described below.

本実施形態に係る飛翔体誘導方式の構成自体については、基本的に、第1実施形態と同様である。すなわち、図2に示すように、本実施形態に係る飛翔体誘導方式は、誤差算出部10と、姿勢制御部20と、加速推力発生部30を備える。   The configuration of the flying object guidance method according to this embodiment is basically the same as that of the first embodiment. That is, as shown in FIG. 2, the flying object guidance method according to the present embodiment includes an error calculation unit 10, a posture control unit 20, and an acceleration thrust generation unit 30.

誤差算出部10及び加速推力発生部30については、基本的に、第1実施形態と同様である。   The error calculation unit 10 and the acceleration thrust generation unit 30 are basically the same as those in the first embodiment.

本実施形態では、姿勢制御部20は、算出されたヘディングエラー量に応じてロール回転(前後を軸とした回転)し、首振範囲が大きい方向に姿勢角(ロール角)を変更する。予想会合点に対して目標及び真の会合点が大きく乖離しており、ピッチ回転/ヨー回転だけでは対応が十分ではない場合に有効である。無論、本実施形態に係る姿勢制御部20も、第1実施形態と同様の機能を有していても良い。   In the present embodiment, the posture control unit 20 performs roll rotation (rotation about the front and rear axes) according to the calculated heading error amount, and changes the posture angle (roll angle) in a direction in which the swing range is large. This is effective when the target meeting point and the true meeting point are greatly deviated from the expected meeting point, and the response cannot be sufficiently achieved only by the pitch rotation / yaw rotation. Of course, the attitude control unit 20 according to the present embodiment may also have the same function as that of the first embodiment.

[本実施形態の詳細]
図5を参照して、本実施形態の詳細について説明する。
[Details of this embodiment]
Details of this embodiment will be described with reference to FIG.

本実施形態では、飛翔体は、飛翔中に目標を捕捉(ロックオン)した場合、その目標との予想会合点を算出し、その予想会合点の方向に向けて飛翔する。この動作自体は、既存技術と同様である。   In this embodiment, when a flying object captures (locks on) a target during flight, it calculates an expected meeting point with the target and flies in the direction of the predicted meeting point. This operation itself is the same as that of the existing technology.

誤差算出部10は、ロックオンから終末誘導開始までの間に、ヘディングエラー量を算出する。なお、誤差算出部10は、ロックオンから終末誘導開始までの間、周期的にヘディングエラー量を算出しても良い。   The error calculation unit 10 calculates the heading error amount from the lock-on to the end guidance start. Note that the error calculation unit 10 may periodically calculate the heading error amount from the lock-on to the end guidance start.

姿勢制御部20は、算出されたヘディングエラー量に応じて、飛翔体の動翼に対して姿勢角指令を行い、飛翔体をロール回転させて姿勢角を徐々に調整して、最終的に飛翔体の機首を首振範囲が大きいと予想される方向に向け、その姿勢角を維持する。   The attitude control unit 20 issues an attitude angle command to the flying blades of the flying object according to the calculated heading error amount, rolls the flying object to gradually adjust the attitude angle, and finally makes the flight. Direct the nose of the body in the direction where the swing range is expected to be large, and maintain its posture angle.

加速推力発生部30は、飛翔体の機首を首振範囲が大きいと予想される方向に向けた姿勢角を維持した状態で、飛翔体の動力機関に対して指令を出力し、終末誘導用の推力を発生させ、飛翔体を加速させる。   The acceleration thrust generating unit 30 outputs a command to the power engine of the flying object while maintaining a posture angle in which the flying object's nose is directed in a direction in which the swing range is expected to be large, and is used for terminal guidance. The thrust is generated and the flying object is accelerated.

図5に示すように、本実施形態では、終末誘導を開始した際に、予想会合点に対して目標及び真の会合点が大きく乖離している場合、旋回加速度については、目標に会合するため、大きな旋回加速度が必要となり、大きな加速度指令が発生することになる。また、迎角については、大きな旋回加速度を発生させるため、大きな迎角を取ることになる。しかし、首振角については、首振範囲の大きい方向等に飛翔体を回転(旋回)させるため、飛翔体の首振角が首振可能範囲を逸脱/超過しない。   As shown in FIG. 5, in this embodiment, when the end guidance is started, if the target and the true meeting point are greatly deviated from the expected meeting point, the turning acceleration is related to the target. A large turning acceleration is required, and a large acceleration command is generated. Also, with respect to the angle of attack, a large angle of attack is taken in order to generate a large turning acceleration. However, with regard to the swing angle, the flying object is rotated (turned) in a direction in which the swing range is large, so that the swing angle of the flying object does not deviate or exceed the swingable range.

[本実施形態の作用・効果]
本実施形態では、首振可能範囲の大きい方向や、首振のみでは対応困難な方向に、飛翔体を回転(旋回)させることで、飛翔体の首振角がロックオン状態維持のための首振可能範囲を逸脱/超過することによるロックオフの発生を防止する。
[Operation and effect of this embodiment]
In this embodiment, by rotating (turning) the flying object in a direction in which the swingable range is large or in a direction that is difficult to handle only by swinging, the swinging angle of the flying object is a neck for maintaining the lock-on state. Prevents the occurrence of lock-off due to deviation / exceeding the swing range.

<各実施形態の関係>
なお、上記の各実施形態は、組み合わせて実施することも可能である。また、上記の各実施形態では、指令誘導方式であるものとして説明しているが、実際には、指令誘導方式に限らず、ホーミング誘導方式やプログラム誘導方式、或いは他の誘導方式と組み合わせた複合誘導方式を採用することも考えられる。
<Relationship between each embodiment>
Note that the above embodiments can be implemented in combination. In each of the above embodiments, the command guidance method is described. However, in actuality, the command guidance method is not limited, and the homing guidance method, the program guidance method, or a combination of other guidance methods is combined. It is also possible to adopt a guidance method.

<ハードウェアの例示>
以下に、上記の各実施形態に係る飛翔体誘導方式を実現するための具体的なハードウェアの例について説明する。
<Example of hardware>
Below, the example of the concrete hardware for implement | achieving the flying object guidance system which concerns on said each embodiment is demonstrated.

図示しないが、上記の各実施形態に係る飛翔体誘導方式は、プログラムに基づいて駆動し所定の処理を実行するプロセッサと、当該プログラムや各種データを記憶するメモリを備えた計算機等の電子機器によって実現される場合がある。   Although not shown, the flying object guidance system according to each of the embodiments described above is based on an electronic device such as a computer that is driven based on a program and executes predetermined processing and a memory that stores the program and various data. May be realized.

上記のプロセッサの例として、CPU(Central Processing Unit)、ネットワークプロセッサ(NP:Network Processor)、マイクロプロセッサ(microprocessor)、マイクロコントローラ(microcontroller)、或いは、専用の機能を有する半導体集積回路(LSI:Large Scale Integration)等が考えられる。   Examples of the processor include a CPU (Central Processing Unit), a network processor (NP), a microprocessor, a microcontroller (microcontroller), or a semiconductor integrated circuit (LSI: Large Scale) having a dedicated function. Integration) or the like.

上記のメモリの例として、RAM(Random Access Memory)、ROM(Read Only Memory)、EEPROM(Electrically Erasable and Programmable Read Only Memory)やフラッシュメモリ等の半導体記憶装置、HDD(Hard Disk Drive)やSSD(Solid State Drive)等の補助記憶装置、又は、DVD(Digital Versatile Disk)等のリムーバブルディスクや、SDメモリカード(Secure Digital memory card)等の記憶媒体(メディア)等が考えられる。また、バッファ(buffer)やレジスタ(register)等でも良い。   Examples of the memory include semiconductor storage devices such as a RAM (Random Access Memory), a ROM (Read Only Memory), an EEPROM (Electrically Erasable and Programmable Read Only Memory), a flash memory, and an HDD (Hold SMD). An auxiliary storage device such as State Drive), a removable disk such as a DVD (Digital Versatile Disk), a storage medium such as an SD memory card (Secure Digital memory card), or the like is conceivable. Further, a buffer, a register, or the like may be used.

なお、上記のプロセッサ及び上記のメモリは、一体化していても良い。例えば、近年では、マイコン等の1チップ化が進んでいる。従って、電子機器等に搭載される1チップマイコンが、上記のプロセッサ及び上記のメモリを備えている事例も考えられる。   Note that the processor and the memory may be integrated. For example, in recent years, a single chip such as a microcomputer has been developed. Therefore, a case where a one-chip microcomputer mounted on an electronic device or the like includes the processor and the memory can be considered.

また、上記の計算機等の電子機器は、飛翔体自体に搭載されていることを想定しているが、実際には、外部から飛翔体に対して指令誘導を行うものでも良い。この場合、上記の計算機等の電子機器及び飛翔体の各々は、アンテナ等の通信装置又は通信用インターフェースを備えているものとする。   In addition, it is assumed that the electronic device such as the computer is mounted on the flying object itself, but actually, it may be a device that performs a command guidance to the flying object from the outside. In this case, it is assumed that each of the electronic devices such as the computer and the flying object includes a communication device such as an antenna or a communication interface.

但し、実際には、これらの例に限定されない。   However, actually, it is not limited to these examples.

<備考>
以上、本発明の実施形態を詳述してきたが、実際には、上記の実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の変更があっても本発明に含まれる。
<Remarks>
As mentioned above, although embodiment of this invention was explained in full detail, actually, it is not restricted to said embodiment, Even if there is a change of the range which does not deviate from the summary of this invention, it is included in this invention.

10… 誤差算出部
20… 姿勢制御部
30… 加速推力発生部
DESCRIPTION OF SYMBOLS 10 ... Error calculation part 20 ... Attitude control part 30 ... Acceleration thrust generation part

Claims (9)

マルチパルス式の飛翔体に適用される飛翔体誘導方式であって、
ロックオンから終末誘導開始までの間に、飛翔体のヘディングエラー量を算出する誤差算出手段と、
前記算出されたヘディングエラー量に応じた姿勢角を取り、前記姿勢角を維持した状態で終末誘導に移行する姿勢制御手段と、
終末誘導用の推力を発生させる加速推力発生手段と
を具備する
飛翔体誘導方式。
A flying object guidance method applied to a multi-pulse flying object,
An error calculating means for calculating the heading error amount of the flying object between the lock-on and the terminal guidance start;
A posture control means for taking a posture angle corresponding to the calculated heading error amount and shifting to terminal guidance while maintaining the posture angle;
A flying object guidance system comprising acceleration thrust generating means for generating thrust for terminal guidance.
請求項1に記載の飛翔体誘導方式であって、
前記姿勢制御手段は、前記算出されたヘディングエラー量に応じてピッチ回転及びヨー回転のうち少なくとも1つを行い、目標に対する姿勢角を取る
飛翔体誘導方式。
The flying object guiding method according to claim 1,
The attitude control means performs at least one of pitch rotation and yaw rotation according to the calculated heading error amount, and takes an attitude angle with respect to a target.
請求項1又は2に記載の飛翔体誘導方式であって、
前記姿勢制御手段は、前記算出されたヘディングエラー量に応じてロール回転し、首振可能範囲が大きい方向に姿勢角を取る
飛翔体誘導方式。
The flying object guiding method according to claim 1 or 2,
The attitude control means rolls according to the calculated heading error amount and takes an attitude angle in a direction where the swingable range is large.
マルチパルス式の飛翔体に適用される飛翔体誘導方法であって、
ロックオンから終末誘導開始までの間に、飛翔体のヘディングエラー量を算出することと、
前記算出されたヘディングエラー量に応じた姿勢角を取ることと、
前記姿勢角を維持した状態で終末誘導に移行することと、
終末誘導用の推力を発生させることと
を含む
飛翔体誘導方法。
A flying object guidance method applied to a multi-pulse flying object,
Calculating the heading error amount of the flying object between the lock-on and the start of terminal guidance;
Taking an attitude angle according to the calculated heading error amount;
Shifting to terminal guidance while maintaining the posture angle;
A flying object guidance method including generating thrust for terminal guidance.
請求項4に記載の飛翔体誘導方法であって、
前記算出されたヘディングエラー量に応じた姿勢角を取る際、前記算出されたヘディングエラー量に応じてピッチ回転及びヨー回転のうち少なくとも1つを行い、目標に対する姿勢角を取ること
を更に含む
飛翔体誘導方法。
The flying object guiding method according to claim 4,
The method further includes taking at least one of pitch rotation and yaw rotation in accordance with the calculated heading error amount and taking a posture angle with respect to the target when taking the posture angle in accordance with the calculated heading error amount. Body guidance method.
請求項4又は5に記載の飛翔体誘導方法であって、
前記算出されたヘディングエラー量に応じた姿勢角を取る際、前記算出されたヘディングエラー量に応じてロール回転し、首振可能範囲が大きい方向に姿勢角を取ること
を更に含む
飛翔体誘導方法。
The flying object guiding method according to claim 4 or 5,
The method for guiding a flying object further includes taking a posture angle in a direction in which a swingable range is large when the posture angle corresponding to the calculated heading error amount is taken to roll according to the calculated heading error amount .
マルチパルス式の飛翔体におけるロックオンから終末誘導開始までの間に、飛翔体のヘディングエラー量を算出するステップと、
前記算出されたヘディングエラー量に応じた姿勢角を取るステップと、
前記姿勢角を維持した状態で終末誘導に移行するステップと、
終末誘導用の推力を発生させるステップと
を電子機器に実行させるための
プログラム。
A step of calculating the heading error amount of the flying object between the lock-on and the start of terminal guidance in the multi-pulse flying object;
Taking a posture angle according to the calculated heading error amount;
Transition to terminal guidance while maintaining the posture angle;
A program for causing an electronic device to execute a step of generating thrust for terminal guidance.
請求項7に記載のプログラムであって、
前記算出されたヘディングエラー量に応じた姿勢角を取る際、前記算出されたヘディングエラー量に応じてピッチ回転及びヨー回転のうち少なくとも1つを行い、目標に対する姿勢角を取るステップ
を更に電子機器に実行させるための
プログラム。
The program according to claim 7,
The electronic apparatus further includes a step of taking at least one of pitch rotation and yaw rotation according to the calculated heading error amount and taking the posture angle with respect to the target when taking the posture angle according to the calculated heading error amount. A program to be executed.
請求項7又は8に記載のプログラムであって、
前記算出されたヘディングエラー量に応じた姿勢角を取る際、前記算出されたヘディングエラー量に応じてロール回転し、首振可能範囲が大きい方向に姿勢角を取るステップ
を更に電子機器に実行させるための
プログラム。
The program according to claim 7 or 8,
When the posture angle corresponding to the calculated heading error amount is taken, the electronic device further executes a step of rotating the roll according to the calculated heading error amount and taking the posture angle in a direction where the swingable range is large. Program for.
JP2012286020A 2012-12-27 2012-12-27 Flying object guidance method, flying object guidance method Active JP5995712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012286020A JP5995712B2 (en) 2012-12-27 2012-12-27 Flying object guidance method, flying object guidance method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012286020A JP5995712B2 (en) 2012-12-27 2012-12-27 Flying object guidance method, flying object guidance method

Publications (2)

Publication Number Publication Date
JP2014126355A true JP2014126355A (en) 2014-07-07
JP5995712B2 JP5995712B2 (en) 2016-09-21

Family

ID=51405987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012286020A Active JP5995712B2 (en) 2012-12-27 2012-12-27 Flying object guidance method, flying object guidance method

Country Status (1)

Country Link
JP (1) JP5995712B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112284194A (en) * 2019-07-22 2021-01-29 航宇救生装备有限公司 Missile attitude adjusting device based on high-speed airflow blowing
CN112817339A (en) * 2019-11-15 2021-05-18 中国北方工业有限公司 Instruction fusion algorithm for composite guided aircraft

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02279995A (en) * 1989-04-18 1990-11-15 Mitsubishi Electric Corp Control device
JP2008280967A (en) * 2007-05-14 2008-11-20 Mitsubishi Heavy Ind Ltd Two pulse rocket motor
JP2011242105A (en) * 2010-05-21 2011-12-01 Mitsubishi Electric Corp Flying object guidance method, and guidance calculation device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02279995A (en) * 1989-04-18 1990-11-15 Mitsubishi Electric Corp Control device
JP2008280967A (en) * 2007-05-14 2008-11-20 Mitsubishi Heavy Ind Ltd Two pulse rocket motor
JP2011242105A (en) * 2010-05-21 2011-12-01 Mitsubishi Electric Corp Flying object guidance method, and guidance calculation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112284194A (en) * 2019-07-22 2021-01-29 航宇救生装备有限公司 Missile attitude adjusting device based on high-speed airflow blowing
CN112284194B (en) * 2019-07-22 2024-05-24 航宇救生装备有限公司 Missile attitude adjusting device based on high-speed airflow blowing
CN112817339A (en) * 2019-11-15 2021-05-18 中国北方工业有限公司 Instruction fusion algorithm for composite guided aircraft
CN112817339B (en) * 2019-11-15 2022-12-23 中国北方工业有限公司 Instruction fusion algorithm for composite guided aircraft

Also Published As

Publication number Publication date
JP5995712B2 (en) 2016-09-21

Similar Documents

Publication Publication Date Title
US10875631B2 (en) Unmanned aerial vehicle angular reorientation
US8816260B2 (en) Flight-control system for canard-controlled flight vehicles and methods for adaptively limiting acceleration
JP5995712B2 (en) Flying object guidance method, flying object guidance method
US20210349461A1 (en) Unmanned aerial vehicle, method for controlling unmanned aerial vehicle, control apparatus, and computer-readable storage medium
CN110254696B (en) Unmanned aerial vehicle mode switching control method and device, storage medium and electronic equipment
CA2886122A1 (en) Flight vehicle autopilot
US11119512B2 (en) Guiding device, flying object and guiding method
US10480904B2 (en) Gbias for rate based autopilot
CN110799422A (en) Unmanned aerial vehicle control method and unmanned aerial vehicle
US8071926B2 (en) Stability multiplexed autopilot
CN112902768B (en) Carrier rocket rolling control method and device, carrier rocket and storage medium
JP2008282195A (en) Control device for flying object
JP2016070578A (en) Flying object, flying system, and flying control method
CN112577503B (en) Path planning method, device and equipment for vehicle starting point area
RU105882U1 (en) DEVICE FOR MANAGING UNMANNED AIRCRAFT
KR101936321B1 (en) Control method and system of guided weapon
JP2008224115A (en) Guided missile, and guidance control device and method for guided missile
EP2975482B1 (en) Projectile control systems and methods
JP3885475B2 (en) Guidance device
CN112783221B (en) Ship body speed control method and device and electronic equipment
US8209065B2 (en) Steering logic for spacecraft slew maneuvers
JP5995734B2 (en) Flying body control device, flying body and flying body control method
Du et al. Trajectory optimization for agile-turn of vertically launched missile
CN103486916A (en) Double-pulse ignition method for actively suppressing swing of pulse force control missile body
JPH11270999A (en) Steering control method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160823

R151 Written notification of patent or utility model registration

Ref document number: 5995712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151