JPH02279684A - Production of isocyanuric acid derivative - Google Patents

Production of isocyanuric acid derivative

Info

Publication number
JPH02279684A
JPH02279684A JP9916089A JP9916089A JPH02279684A JP H02279684 A JPH02279684 A JP H02279684A JP 9916089 A JP9916089 A JP 9916089A JP 9916089 A JP9916089 A JP 9916089A JP H02279684 A JPH02279684 A JP H02279684A
Authority
JP
Japan
Prior art keywords
tepic
active hydrogen
hydrogen compound
poor solvent
adduct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9916089A
Other languages
Japanese (ja)
Inventor
Hisao Ikeda
久男 池田
Kenichi Osawa
健一 大澤
Hiroyuki Uehara
上原 弘行
Yoshii Kawashima
川嶋 誉猪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP9916089A priority Critical patent/JPH02279684A/en
Publication of JPH02279684A publication Critical patent/JPH02279684A/en
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

PURPOSE:To obtain the subject compound useful as an electronic material, optical material, etc., by subjecting a higher melting point stereoisomer of tris(epoxypropyl)isocyanurate and an active hydrogen compound to addition reaction, distilling away the unreacted substance and then separating the compound by crystallization with addition of a poor solvent. CONSTITUTION:A stereoisomer (TEPIC-H), with higher melting point, of tris(2,3- epoxypropyl)isocyanurate (TEPIC) and an active hydrogen compound, reactive with epoxy groups, expressed by the formula HA (H represents hydrogen atom; A represents nucleophilic functional group) are subjected to addition reaction and the unreacted active hydrogen compound is distilled away. Then a poor solvent for TEPIC-H is added to separate the TEPIC-H by crystallization and the poor solvent is removed by distillation to afford an adduct of TEPIC-H with one mol active hydrogen compound expressed by formula I and/or formula II.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 電子材料、光学材料、熱可塑性樹脂の架橋剤、レジスト
、写真用試剤、医薬品、熱硬化性樹脂材料、塗料、接着
剤、等の分野に新規な材料を供する。
[Detailed description of the invention] <Industrial application fields> In the fields of electronic materials, optical materials, crosslinking agents for thermoplastic resins, resists, photographic reagents, pharmaceuticals, thermosetting resin materials, paints, adhesives, etc. Provide new materials.

〈従来の技術〉 トリス(2,3−エポキシプロビル)イソシアヌレート
(以下、TEPICと略記する)の3つのエポキシ基の
うち1つ又は2つのエポキシ基に有用な官能基を付加さ
せた官能基複合型の化合物は様々な用途が期待できる。
<Prior art> A functional group in which a useful functional group is added to one or two of the three epoxy groups of tris(2,3-epoxypropyl) isocyanurate (hereinafter abbreviated as TEPIC). Complex compounds can be expected to have a variety of uses.

例えば特開昭56−61374号では細胞有糸核分裂抑
止作用において有用であり、又英国特許1109546
号では写真ゼラチン層形成において有用であると記載さ
れている。
For example, Japanese Patent Application Laid-Open No. 56-61374 discloses that it is useful in inhibiting cell mitosis, and British Patent No. 1109546 discloses that it is useful in inhibiting cell mitosis.
It is described in the issue as being useful in forming photographic gelatin layers.

一方、近年光硬化性樹脂は電子部品封止剤、半導体レジ
スト、プリント配線板用ソルダーレジスト、光学材料等
に使用されるが、同一分子内にエポキシ基とビニル基が
共存する化合物はこの方面で硬化操作および硬化物の性
能に優れた特徴をもつため大いに注目を浴びている。
On the other hand, in recent years, photocurable resins have been used in electronic component encapsulants, semiconductor resists, solder resists for printed wiring boards, optical materials, etc., but compounds in which epoxy groups and vinyl groups coexist in the same molecule are used in this field. It is attracting a lot of attention because of its excellent curing operation and performance of cured products.

このような化合物としてはビスフェノールA型エポキシ
樹脂の部分(メタ)アクリレート、フェノールノボラッ
クまたはタレゾールノボラック型エポキシ樹脂の部分(
メタ)アクリレート、及びグリシジルメタクリレート等
がある。
Such compounds include the partial (meth)acrylate of bisphenol A type epoxy resin, the partial (meth)acrylate of bisphenol A type epoxy resin, and the partial (meth)acrylate of phenol novolak or Talezol novolac type epoxy resin.
Examples include meth)acrylate and glycidyl methacrylate.

本願発明のTEP I C−Hの1モル付加体及び2モ
ル付加体では活性水素化合物として(メタ)アクリル酸
を使用すればTEPICの部分(メタ)アクリレートと
なり、上記のものと同様の用途が期待できる。
If (meth)acrylic acid is used as the active hydrogen compound in the 1-molar adduct and 2-molar adduct of TEP I C-H of the present invention, it will become a partial (meth)acrylate of TEPIC, and the same uses as above are expected. can.

又、TEPICは3官能性工ポキシ化合物であるが、一
般に3官能工ポキシ化合物の硬化物は剛性には優れてい
るものの可とう性には乏しいといわれる。
Furthermore, TEPIC is a trifunctional poxy compound, and it is generally said that cured products of trifunctional poxy compounds have excellent rigidity but poor flexibility.

本願発明の1モル付加体は2官能のエポキシ化合物であ
るため可とう性が向上する効果がある。
Since the 1 molar adduct of the present invention is a difunctional epoxy compound, it has the effect of improving flexibility.

又、フランス特許F R−017329号には1.3−
ビス−23−ジヒドロキシプロピルイソシアヌレートの
誘導体(式〔■〕)を架橋剤に用いると耐熱性、耐候性
に優れた樹脂が得られるとの記載があるが、本願発明の
1モル付加体を加水分解すれば容易にこれらと同様の性
能をもつ誘導体を得ることができる。
Also, French patent FR-017329 has 1.3-
There is a statement that a resin with excellent heat resistance and weather resistance can be obtained by using a derivative of bis-23-dihydroxypropyl isocyanurate (formula [■]) as a crosslinking agent. By decomposition, derivatives with similar performance to these can be easily obtained.

〔■〕[■]

但し、式中Rはビニル結合を有する官能基を表す。 However, in the formula, R represents a functional group having a vinyl bond.

〈発明が解決しようとする課題〉 特開昭56−61374号でも述べられているように、
TEPICの3つのエポキシ基のうち1つだけに活性水
素化合物を付加せしめようとしても3つのエポキシ基が
ほぼ等価であるため、TEPICIモルに対して活性水
素化合物が1モル付加しただけにとどまらず、2モル付
加体又は3モル付加体が副生ずる。これらの副生を抑制
するため活性水素化合物の添加量を減らしても、未反応
のTEPICが多く残り、分離が困難であるばかりか2
モル付加体の副生も避けられない。
<Problem to be solved by the invention> As stated in JP-A No. 56-61374,
Even if you try to add an active hydrogen compound to only one of the three epoxy groups of TEPIC, the three epoxy groups are almost equivalent, so not only 1 mole of active hydrogen compound is added per mole of TEPICI. A 2-mole or 3-mole adduct is produced as a by-product. Even if the amount of active hydrogen compound added is reduced to suppress these by-products, a large amount of unreacted TEPIC remains, making separation not only difficult but also difficult.
The by-product of molar adducts is also unavoidable.

特開昭56−61374号では1モル付加体とTEP 
ICの混合物をメタノール中に加えることによりTEP
ICがほとんど定量的に沈澱すると記載されているが、
実際にはTEPICと1モル付加体との相溶作用のため
、1モル付加体が溶解するメタノール層にもかなりの量
のTEPICが溶解してしまう。
In JP-A No. 56-61374, 1 molar adduct and TEP
TEP by adding the mixture of IC into methanol
Although it is stated that IC precipitates almost quantitatively,
In reality, due to the compatibility between TEPIC and the 1 molar adduct, a considerable amount of TEPIC is dissolved even in the methanol layer in which the 1 molar adduct is dissolved.

そこで1モル付加体とTEPICとの相溶作用を減らす
ためにメタノールを多く使用しても今度はメタノールに
対するTEPICの溶解骨が増加するため、結局メタノ
ール層には1モル付加体とTEPICが共に溶解してく
る。
Therefore, even if a large amount of methanol is used to reduce the compatibility between the 1 molar adduct and TEPIC, the amount of bone dissolved by TEPIC relative to methanol will increase, so in the end both the 1 molar adduct and TEPIC will dissolve in the methanol layer. I'll come.

従ってこのような分別操作だけでは高純度の1モル付加
体を得ることは極めて困難であり、そのため特開昭56
−61374号では更にカラムクロマトグラフィを用い
て精製しているが、カラムクロマトグラフィはカラムが
高価であり、大量の溶媒が必要であり、更に製造能力が
小さい等の点から工業的には有利な方法ではなく、全体
のコストも高いものとなる。
Therefore, it is extremely difficult to obtain a highly pure 1 molar adduct using only such fractionation operations, and therefore, JP-A No. 56
-61374 further uses column chromatography for purification, but column chromatography is not an industrially advantageous method because the columns are expensive, a large amount of solvent is required, and the production capacity is small. Therefore, the overall cost will be high.

く課題を解決するための手段〉 TEPICには融点152〜158°CのH型と融点9
8〜107°CのL型(以下、TEP r C−Lと記
載する)との2種の立体異性体が存在していることは知
られているが、このうちTEP I C−Lは有機溶媒
に比較的溶解するがTEP I C−Hは有機溶媒に極
めて難溶である。
Means to solve the problem〉 TEPIC has two types: H type with melting point 152-158°C and melting point 9
It is known that two types of stereoisomers exist: the L form (hereinafter referred to as TEP r C-L) with a temperature of 8 to 107 °C, and among these, TEP I C-L is an organic Although relatively soluble in solvents, TEP I C-H is extremely sparingly soluble in organic solvents.

通常の合成法で得られるTEPICは大部分がL型で少
量のH型が含有されており、一般に市販されているもの
もこのタイプのものである。
TEPIC obtained by conventional synthesis methods is mostly L-type and contains a small amount of H-type, and commercially available products are also of this type.

ここで通常少量含有されているH型のTEPICは、熔
解性を下げるというように、用途面において不都合なも
のにしている。
H-type TEPIC, which is usually contained in a small amount here, is disadvantageous in terms of use, as it lowers the solubility.

従ってTEPIC−H単独で反応に使用されるというこ
とは、高融点で溶解性が低いという取り扱い上の欠点か
ら殆ど例がない。
Therefore, there are almost no examples of using TEPIC-H alone in a reaction due to the drawbacks of handling such as high melting point and low solubility.

我々は鋭意検討の結果、このTEP I C−Hを出発
原料に用いて活性水素化合物を1モル付加したところ、
意外なことにこの反応生成物の有機溶媒への溶解度が1
曜的に増加することを見出した。
As a result of extensive research, we added 1 mole of an active hydrogen compound to TEP I C-H as a starting material, and found that
Surprisingly, the solubility of this reaction product in organic solvents is 1.
It was found that the amount increases day by day.

即ち、一般に用いられるTEPICとその1モル付加体
とでは、有機溶媒への溶解度には大きな差がないのに対
し、TEP I C−Hとその1モル付加体とでは、有
機溶媒への溶解度には大きな差があることを発見した。
In other words, there is no big difference in solubility in organic solvents between the commonly used TEPIC and its 1 molar adduct, whereas TEP I C-H and its 1 molar adduct have different solubility in organic solvents. found that there was a large difference.

そこでTEP I C−Hと活性水素化合物との反応を
2モル付加体があまり生成しない初期で止めて、未反応
の活性水素化合物を留去した後メタノール等の貧溶媒を
加えると、TEPIC−Hの殆どが分別できるため、溶
媒を留去することにより高純度の1モル付加体を得るこ
とに成功した。
Therefore, if the reaction between TEP I C-H and the active hydrogen compound is stopped at an early stage when not much 2-mole adduct is formed, and after distilling off the unreacted active hydrogen compound, a poor solvent such as methanol is added. Since most of the adducts could be separated, we succeeded in obtaining a highly pure 1 molar adduct by distilling off the solvent.

ここで使用するHAで示される活性水素化合物としては
エポキシ基と反応するものであればいずれでも良く特に
限定されるものではない。
The active hydrogen compound represented by HA used here is not particularly limited, and may be any compound that reacts with an epoxy group.

1(Aの例としては例えば実施例7の如く水でも、良い
がその他、飽和アルコールの例としてはメタノール、エ
タノール、プロパツール、ブタ、ノール、ペンタノール
、ヘキサノール等が挙げられ、不飽和アルコールの例と
してはアリルアルコール、2−ブチン−1−オール、2
−プロピン−1−オール、クロチルアルコール、3−ブ
テン−2−オール、2−ブテン−2−オール等が挙げら
れる。
1 (An example of A is water as shown in Example 7, but other examples of saturated alcohols include methanol, ethanol, propatool, buta, nol, pentanol, hexanol, etc.) Examples include allyl alcohol, 2-butyn-1-ol, 2
-propyn-1-ol, crotyl alcohol, 3-buten-2-ol, 2-buten-2-ol and the like.

環状のアルコールの例としてはシクロヘキサノール、メ
チルシクロヘキサノール等が挙げられる。
Examples of cyclic alcohols include cyclohexanol, methylcyclohexanol, and the like.

チオールの例としてはメタンチオール、エタンチオール
、1−プロパンチオール、2−プロパンチオール、フェ
ニルメルカプタン等が挙げられる。
Examples of thiols include methanethiol, ethanethiol, 1-propanethiol, 2-propanethiol, phenylmercaptan, and the like.

不飽和脂肪酸の例としては例えば、アクリル酸、メタク
リル酸、クロトン酸、マレイン酸モノメチル、マレイン
酸モノエチル、シンナミック酸、等が挙げられる。
Examples of unsaturated fatty acids include acrylic acid, methacrylic acid, crotonic acid, monomethyl maleate, monoethyl maleate, cinnamic acid, and the like.

飽和脂肪酸の例としては酢酸、プロピオン酸、酪酸、カ
プロン酸、カプリル酸等が挙げられ、芳香族脂肪酸の例
としては安息香酸、サリチル酸等が挙げられる。
Examples of saturated fatty acids include acetic acid, propionic acid, butyric acid, caproic acid, caprylic acid, etc., and examples of aromatic fatty acids include benzoic acid, salicylic acid, etc.

更に、2級アミンの例としては、ジメチルアミン、ジエ
チルアミン、ジブチルアミン、ジシクロヘキシルアミン
、ジアリールアミン、モルホリン、ジェタノールアミン
、等が挙げられる。
Furthermore, examples of secondary amines include dimethylamine, diethylamine, dibutylamine, dicyclohexylamine, diarylamine, morpholine, jetanolamine, and the like.

これらの付加反応のための溶媒は使用しても使用しなく
てもいずれでも良いが、使用したほうが反応が円滑に進
行する。
The solvent for these addition reactions may or may not be used, but the reaction proceeds more smoothly when used.

使用する溶媒としては次のものが挙げられるが、選択さ
れた反応条件下で反応性を示さない溶媒であればこれに
限定されるものではない。
Examples of the solvent to be used include the following, but the solvent is not limited thereto as long as it does not show reactivity under the selected reaction conditions.

溶媒としてのハロゲン化炭化水素としては例えハシクロ
ロエタン、1,1.1− )リクロロエタン、1゜L2
,2.−テトラクロロエタン、1,2−ジクロ口エチレ
ン、トリクロロエチレン、クロロベンゼン、オルトジク
ロロベンゼン、等が挙げられる。
Examples of the halogenated hydrocarbon as a solvent include hasychloroethane, 1,1.1-)lichloroethane, 1°L2
,2. -tetrachloroethane, 1,2-dichloroethylene, trichloroethylene, chlorobenzene, orthodichlorobenzene, and the like.

エステル類としては例えば酢酸エチル、酢酸プロピル、
酢酸ブチル、酢酸ペンチル、等が挙げられる。
Examples of esters include ethyl acetate, propyl acetate,
Examples include butyl acetate, pentyl acetate, and the like.

エーテル類としては例えば1.4−ジオキサンが挙げら
れる。
Examples of ethers include 1,4-dioxane.

ケトン類としては例えばメチルエチルケトン、メチルイ
ソブチルケトン、シクロヘキサノン、メチルシクロヘキ
サノン、等が挙・げられる。
Examples of ketones include methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methylcyclohexanone, and the like.

その他ジメチルホルムアミド、セロソルブ等が挙げられ
る。
Other examples include dimethylformamide and cellosolve.

TEP (C−Hを晶析させるための貧溶媒としては、
TEPIC−Hを溶解しにくくかつ生成する1モル付加
体をよく溶解するものであればいずれでも良く、単独で
有っても混合溶媒であっても良いが、望ましくはメタノ
ール、エタノール、インプロパツール等のアルコール類
が挙げられ、コストの面からメタノールが有利である。
TEP (as a poor solvent for crystallizing C-H,
Any solvent may be used as long as it is difficult to dissolve TEPIC-H and dissolves well the 1 molar adduct formed, and may be used alone or in a mixed solvent, but methanol, ethanol, and impropanol are preferable. Among them, methanol is advantageous from the viewpoint of cost.

貧溶媒の量としては溶媒種によっても変動するが、TE
PIC付加体に対して0.5〜3重量倍が望ましく、更
に望ましくは0.7〜1.5重量倍が望ましい。
The amount of poor solvent varies depending on the solvent type, but TE
It is preferably 0.5 to 3 times the weight of the PIC adduct, more preferably 0.7 to 1.5 times the weight.

これより貧溶媒の量が多い場合にはTEPIC−Hの溶
解量が増えるため分別効率は低下し、これより少ない場
合は粘性が上がるためTEPIC−Hのろ別に長時間を
要する。
If the amount of the poor solvent is larger than this, the amount of dissolved TEPIC-H increases and the fractionation efficiency decreases, and if it is smaller than this, the viscosity increases and it takes a long time to filter and separate the TEPIC-H.

TEP I C−Hの晶析温度は実用の範囲でできる限
り低温が望ましく、通常は0°C付近で行われる。TE
P I C−Hの晶析時間は実用の範囲でできる限り長
い方が望ましく通常は12時間程度が良い。
The crystallization temperature of TEP I C-H is desirably as low as possible within a practical range, and is usually performed around 0°C. T.E.
The crystallization time of P I C-H is desirably as long as possible within a practical range, and is usually about 12 hours.

以下に実施例を示し、更に詳細に説明する。Examples will be shown below and explained in more detail.

〈実施例〉 実施例1 日産化学工業■製 TEPIC−H(エポキシ当量99
.3) 297 g(1,0モル)、アクリル酸72 
g(1モル)、ジクロロエタン120 gおよびハイド
ロキノン0.6 gを仕込み、還流温度下で60分反応
させた後、真空下で100″Cに加熱して揮発成分を留
去した。次いでメタノール220gを加えて攪拌しなか
らO′Cに徐冷すると未反応のTEP I C−Hが析
出するのでこれをろ別し、ろ液を高真空下で100°C
に加熱してメタノールを留去すると無色の粘稠液体であ
る生成物が107g  得られた。
<Example> Example 1 TEPIC-H manufactured by Nissan Chemical Industries (epoxy equivalent: 99
.. 3) 297 g (1,0 mol), acrylic acid 72
(1 mol), 120 g of dichloroethane, and 0.6 g of hydroquinone were reacted for 60 minutes at reflux temperature, and then heated to 100"C under vacuum to distill off volatile components. Next, 220 g of methanol was added. If the mixture is added and slowly cooled to O'C without stirring, unreacted TEP I C-H will precipitate, so this is filtered off and the filtrate is heated to 100°C under high vacuum.
The methanol was distilled off by heating to give 107 g of a colorless viscous liquid product.

このもののエポキシ価は5.0であった。The epoxy value of this product was 5.0.

組成を求めるため常法に従いGPC法にて各成分の面積
比率を求めた結果は次の通りであり、TEPIC−H2
X 1モル付加体   86χ 2モル付加体   11% 3モル付加体   lχ この面積比率を重量比率に置き換えエポキシ価の計算値
を算出すると5.1となり、実験値とよ(−致したこと
からGPC法の面積比率は重量比率とほぼ一致すること
を確認した。
In order to determine the composition, the area ratio of each component was determined using the GPC method according to a conventional method.The results are as follows.TEPIC-H2
X 1 mole adduct 86χ 2 mole adduct 11% 3 mole adduct lχ When this area ratio is replaced with a weight ratio and the calculated value of the epoxy value is calculated, it is 5.1, which is the experimental value. It was confirmed that the area ratio of is almost the same as the weight ratio.

実施例2〜10及び比較例1〜4 実施例1における各試剤の種類、量、反応条件を表−1
の如くに変更し、他は実施例1と同じ条件で処理したと
ころ、表−1及び表−2に記載の如くの収量と組成の粘
稠液体である生成物がそれぞれ得られた。
Examples 2 to 10 and Comparative Examples 1 to 4 Table 1 shows the types, amounts, and reaction conditions of each reagent in Example 1.
When the treatment was carried out under the same conditions as in Example 1 except for the following changes, products as viscous liquids with yields and compositions as shown in Tables 1 and 2 were obtained, respectively.

表−1反応仕込比 表−2 反応条件と結果 3υ“C 30分 TEPIC−H TEPIC−5 TEPIC−G Q ■ ■ ■ 表中の略号は以下の通りである。Table-1 Reaction preparation ratio Table-2 Reaction conditions and results 3υ“C 30 minutes TEPIC-H TEPIC-5 TEPIC-G Q ■ ■ ■ The abbreviations in the table are as follows.

日量化学工業製高融点異性体エポキシ当量99゜3口座
化学工業製高純度品  工Hシ当199.5口座化学工
業製一般品   エポキシ当量104.2ハイドロキノ
ン 活性水素化合物の1モル付加体 活性水素化合物の2モル付加体 活性水素化合物の3モル付加体
High melting point isomer epoxy equivalent weight: 99°, manufactured by Nichiryo Chemical Industry Co., Ltd. High-purity product manufactured by Chemical Industry Co., Ltd., 199.5 account amount, General product manufactured by Chemical Industry Co., Ltd. Epoxy equivalent weight: 104.2 1 mole adduct of hydroquinone active hydrogen compound, active hydrogen 2 molar adduct of compound 3 molar adduct of active hydrogen compound

Claims (3)

【特許請求の範囲】[Claims] (1)トリス(2,3−エポキシプロピル)イソシアヌ
レート(以下TEPICと略記する)のうち高融点の立
体異性体(以下TEPIC−Hと略記する)と、HA(
H:水素、A:求核性の官能基を表す)で示されるエポ
キシ基と反応し得る活性水素化合物とを付加反応させた
後、未反応の活性水素化合物を留去した後、次いでTE
PIC−Hの貧溶媒を加えてTEPIC−Hを晶析せし
め分離した後、貧溶媒を留去することにより式〔 I 〕
及び/又は式〔II〕で示されるTEPIC−Hの活性水
素化合物1モル付加体を製造する方法。 ▲数式、化学式、表等があります▼〔 I 〕 ▲数式、化学式、表等があります▼〔II〕
(1) A stereoisomer with a high melting point (hereinafter abbreviated as TEPIC-H) of tris(2,3-epoxypropyl)isocyanurate (hereinafter abbreviated as TEPIC) and HA (hereinafter abbreviated as TEPIC-H).
H: hydrogen, A: nucleophilic functional group) After conducting an addition reaction with an active hydrogen compound capable of reacting with the epoxy group, the unreacted active hydrogen compound was distilled off, and then TE
After adding a poor solvent for PIC-H to crystallize and separate TEPIC-H, the poor solvent is distilled off to obtain the formula [I]
and/or a method for producing a 1 mol adduct of an active hydrogen compound of TEPIC-H represented by formula [II]. ▲There are mathematical formulas, chemical formulas, tables, etc.▼〔I〕 ▲There are mathematical formulas, chemical formulas, tables, etc.▼〔II〕
(2)TEPIC−Hの活性水素化合物1モル付加体の
純度が70重量%以上である請求項第1項記載の製造方
法。
(2) The manufacturing method according to claim 1, wherein the purity of the 1 mol adduct of TEPIC-H with an active hydrogen compound is 70% by weight or more.
(3)TEPIC−Hと、HAで示されるエポキシ基と
反応し得る活性水素化合物とを付加反応させた後、未反
応の活性水素化合物を留去し、次いでTEPIC−Hの
貧溶媒を加えてTEPIC−Hを晶析分離した後貧溶媒
を留去することによりTEPIC−Hの活性水素化合物
1モル付加体及びTEPIC−Hの活性水素化合物2モ
ル付加体を得る方法において、その純度の合計が85重
量%以上であるTEPIC−Hの活性水素化合物付加体
の製造方法。
(3) After causing an addition reaction between TEPIC-H and an active hydrogen compound capable of reacting with the epoxy group represented by HA, unreacted active hydrogen compounds are distilled off, and then a poor solvent for TEPIC-H is added. In the method of obtaining a 1 mol adduct of an active hydrogen compound of TEPIC-H and a 2 mol adduct of an active hydrogen compound of TEPIC-H by crystallizing and separating TEPIC-H and then distilling off the poor solvent, the total purity is A method for producing an active hydrogen compound adduct of TEPIC-H having a content of 85% by weight or more.
JP9916089A 1989-04-19 1989-04-19 Production of isocyanuric acid derivative Pending JPH02279684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9916089A JPH02279684A (en) 1989-04-19 1989-04-19 Production of isocyanuric acid derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9916089A JPH02279684A (en) 1989-04-19 1989-04-19 Production of isocyanuric acid derivative

Publications (1)

Publication Number Publication Date
JPH02279684A true JPH02279684A (en) 1990-11-15

Family

ID=14239913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9916089A Pending JPH02279684A (en) 1989-04-19 1989-04-19 Production of isocyanuric acid derivative

Country Status (1)

Country Link
JP (1) JPH02279684A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001014288A1 (en) * 1999-08-19 2001-03-01 Nissan Chemical Industries, Ltd. Optically active isocyanurate and optical resolver comprising derivative of the same
WO2002048235A1 (en) * 2000-12-11 2002-06-20 Nippon Steel Chemical Co., Ltd. Epoxy resins, process for production thereof, epoxy resin compositions and cured articles
WO2006035641A1 (en) * 2004-09-29 2006-04-06 Nissan Chemical Industries, Ltd. Modified epoxy resin composition
WO2007148822A1 (en) * 2006-06-23 2007-12-27 Canon Kabushiki Kaisha Polyfunctional epoxy compound, epoxy resin, cationic photopolymerizable epoxy resin composition, micro structured member, producing method therefor and liquid discharge head
JP2008045014A (en) * 2006-08-14 2008-02-28 Mitsubishi Chemicals Corp Epoxy resin composition and its use
JP2009107979A (en) * 2007-10-31 2009-05-21 Japan Epoxy Resin Kk Method for producing carboxylic acid-modified triglycidyl isocyanurate, epoxy resin composition, and cured product of epoxy resin
CN102675602A (en) * 2011-11-07 2012-09-19 南京大学 Biomimetic monolithic material with affine selectivity similar to that of protein A and preparation method and application thereof
JP2017128546A (en) * 2016-01-22 2017-07-27 四国化成工業株式会社 (meth) acryl epoxy isocyanurate compound, method for synthesizing the same, and use of isocyanurate compound
CN108203502A (en) * 2018-01-13 2018-06-26 宏峰行化工(深圳)有限公司 A kind of water-soluble cross-linker and its application in water-base resin

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6641784B1 (en) 1999-08-19 2003-11-04 Nissan Chemical Industries, Ltd. Optically active isocyanurate and optical resolver comprising derivative of the same
WO2001014288A1 (en) * 1999-08-19 2001-03-01 Nissan Chemical Industries, Ltd. Optically active isocyanurate and optical resolver comprising derivative of the same
WO2002048235A1 (en) * 2000-12-11 2002-06-20 Nippon Steel Chemical Co., Ltd. Epoxy resins, process for production thereof, epoxy resin compositions and cured articles
US6903180B2 (en) 2000-12-11 2005-06-07 Nippon Steel Chemical Co., Ltd. Epoxy resins, process for preparation thereof, epoxy resin compositions and cured articles
KR100724996B1 (en) * 2000-12-11 2007-06-04 신닛테츠가가쿠 가부시키가이샤 Epoxy resins, process for production thereof, epoxy resin compositions and cured articles
US9598528B2 (en) 2004-09-29 2017-03-21 Nissan Chemical Industries, Ltd. Modified epoxy resin composition
WO2006035641A1 (en) * 2004-09-29 2006-04-06 Nissan Chemical Industries, Ltd. Modified epoxy resin composition
WO2007148822A1 (en) * 2006-06-23 2007-12-27 Canon Kabushiki Kaisha Polyfunctional epoxy compound, epoxy resin, cationic photopolymerizable epoxy resin composition, micro structured member, producing method therefor and liquid discharge head
US8147036B2 (en) 2006-06-23 2012-04-03 Canon Kabushiki Kaisha Polyfunctional epoxy compound, epoxy resin, cationic photopolymerizable epoxy resin composition, micro structured member, producing method therefor and liquid discharge head
JP2008045014A (en) * 2006-08-14 2008-02-28 Mitsubishi Chemicals Corp Epoxy resin composition and its use
JP2009107979A (en) * 2007-10-31 2009-05-21 Japan Epoxy Resin Kk Method for producing carboxylic acid-modified triglycidyl isocyanurate, epoxy resin composition, and cured product of epoxy resin
CN102675602A (en) * 2011-11-07 2012-09-19 南京大学 Biomimetic monolithic material with affine selectivity similar to that of protein A and preparation method and application thereof
JP2017128546A (en) * 2016-01-22 2017-07-27 四国化成工業株式会社 (meth) acryl epoxy isocyanurate compound, method for synthesizing the same, and use of isocyanurate compound
CN108203502A (en) * 2018-01-13 2018-06-26 宏峰行化工(深圳)有限公司 A kind of water-soluble cross-linker and its application in water-base resin

Similar Documents

Publication Publication Date Title
KR101257121B1 (en) High-Purity Alicyclic Diepoxy Compound and Process for Producing the Same
JP4663893B2 (en) Method for producing epoxy compound
US20070179256A1 (en) High-purity alicyclic epoxy compound, process for production of the same, curable epoxy resin composition, cured product thereof, and application thereof
TW200808753A (en) Aliphatic diepoxy compound, epoxy resin composition and cured material
JPH02279684A (en) Production of isocyanuric acid derivative
US5207874A (en) Process for the purification of glycidyl (meth)acrylate
US6187946B1 (en) Jasmonic acid compounds and process for the preparation thereof
JPS5918378B2 (en) Method for inhibiting polymerization of acrylic acid or methacrylic acid or their esters
EP0487305B1 (en) Method of purifying crude glycidyl (meth)acrylate
US6696595B2 (en) Process of the preparation of high-purity alkyladamantyl esters
JPH03120263A (en) Preparation of (meth)acrylate compound
US11932598B2 (en) Polyacyloxymethyl-4,4′-acyloxybiphenyl compound
JPS6233166A (en) Manufacture of alicyclic diepoxide
JP4651178B2 (en) Method for producing 2-glycidyloxyethyl (meth) acrylate
JP3583843B2 (en) Unsaturated carboxylic diester of bicyclohexyl-4,4&#39;-diol
JP2003246766A (en) Method for manufacturing ester
JPH07126214A (en) Production of 4-hydroxybutyl acrylate
AU2016215954B2 (en) Method for producing 2-aminoethylmethacrylate hydrochloride
US4260811A (en) Process for the removal of cyclic imidic ester impurities from an isocyanatoalkyl ester of an organic carboxylic acid
JPH02172969A (en) Production of dithiol di(meth)acrylate
KR20240037607A (en) Preparation and purification method of high purity methyl 2-hydroxyisobutyrate for euv semiconductor process
JP3763625B2 (en) Epoxy acrylate compound
JPH0217149A (en) Production of high-purity acrylate or methacrylate
JP2009007304A (en) Method for preparing adamantyl(meth)acrylates
KR20130079400A (en) Method for purification of 2-alkyl-2-adamantyl (meth)acrylates