JPH02279651A - Ferroelectric chiral smectic liquid crystal composition and liquid crystal elements using the same - Google Patents

Ferroelectric chiral smectic liquid crystal composition and liquid crystal elements using the same

Info

Publication number
JPH02279651A
JPH02279651A JP10223789A JP10223789A JPH02279651A JP H02279651 A JPH02279651 A JP H02279651A JP 10223789 A JP10223789 A JP 10223789A JP 10223789 A JP10223789 A JP 10223789A JP H02279651 A JPH02279651 A JP H02279651A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal composition
compound
response speed
ferroelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10223789A
Other languages
Japanese (ja)
Inventor
Takashi Iwaki
孝志 岩城
Yoshimasa Mori
省誠 森
Yoko Yamada
容子 山田
Gouji Tokanou
門叶 剛司
Takao Takiguchi
隆雄 滝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10223789A priority Critical patent/JPH02279651A/en
Publication of JPH02279651A publication Critical patent/JPH02279651A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a ferroelectric chiral smectic liquid crystal composition which is useful as a liquid crystal display element, because of its excellent response to electric fields by using at least one of acetophenone derivatives. CONSTITUTION:The subject composition is obtained by using at least one of formula I [R1, R2 are 1 to 16C alkyl; X, Y are single bond, O; A is A1, A1-A2; B is B1, B1-B2 (A1, A2, B1, B2 are 1,4-phenylene)] and at least one of other liquid crystal compounds. The amount of the compound of formula I is 1 to 500 pts.wt. per 100 pts.wt. of the liquid crystal composition. The compound of formula I is, for example, 2-(4-octyloxyphenyl-4'-nonylacetophenone. The compound of formula I is obtained by treating a compound of formula II with thionyl chloride and subjected to the Friedel-Crafts reaction with a compound of the formula: B-Y-R2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、新規な液晶性化合物、それを含有する液晶組
成物およびそれを使用した表示素子に関し、さらに詳し
くは、電界に対する応答特性が改善された新規な液晶組
成物、およびそれを使用した液晶表示素子や液晶−光シ
ャッタ等に利用される液晶素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel liquid crystal compound, a liquid crystal composition containing the same, and a display element using the same. The present invention relates to a novel liquid crystal composition, and a liquid crystal element using the same for use in liquid crystal display elements, liquid crystal-optical shutters, and the like.

〔従来の技術〕[Conventional technology]

従来より、液晶は電気光学素子として種々の分野で応用
されている。現在実用化されている液晶素子はほとんど
が、例えばエム シャット(M、5chadt)とダブ
リュ ヘルフリツヒ(W、He1frich)著“アプ
ライド フィジックス レターズ″(“Applied
Physics  Letters”) Vo、18.
  No、4 (1971゜2.15) P、127〜
128のVoltage DependentOpti
cal  Activity of a Twiste
d NematicLiquid  Crystal″
に示されたTN (TwistedNematic)型
の液晶を用いたものである。
Conventionally, liquid crystals have been applied as electro-optical elements in various fields. Most of the liquid crystal elements currently in practical use are based on, for example, "Applied Physics Letters" by M. Chadt and W. Helfrich.
Physics Letters”) Vo, 18.
No. 4 (1971゜2.15) P. 127~
128 Voltage Dependent Opti
cal Activity of a Twist
d NematicLiquid Crystal"
This uses a TN (Twisted Nematic) type liquid crystal shown in .

これらは、液晶の誘電的配列効果に基づいており、液晶
分子の誘電異方性のために平均分子軸方向が、加えられ
た電場により特定の方向に向(効果を利用している。こ
れらの素子の光学的な応答速度の限界はミリ秒であると
いわれ、多(の応用のためには遅すぎる。一方、大型平
面デイスプレィへの応用では、価格、生産性などを考え
合わせると、単純マトリクス方式による駆動が最も有力
である。単純マトリクス方式においては、走査電極群と
信号電極群をマトリクス状に構成した電極構成が採用さ
れ、その駆動のためには、走査電極群に順次周期的にア
ドレス信号を選択印加し、信号電極群には所定の情報信
号をアドレス信号と同期させて並列的に選択印加する時
分割駆動方式が採用されている。
These are based on the dielectric alignment effect of liquid crystals, and due to the dielectric anisotropy of liquid crystal molecules, the average molecular axis direction is oriented in a specific direction by an applied electric field. It is said that the limit of the optical response speed of an element is milliseconds, which is too slow for large-scale flat display applications.On the other hand, when considering cost and productivity, simple matrix In the simple matrix method, an electrode configuration in which scanning electrode groups and signal electrode groups are arranged in a matrix is adopted, and for driving, the scanning electrode groups are sequentially and periodically addressed. A time division driving method is employed in which signals are selectively applied and predetermined information signals are selectively applied in parallel to the signal electrode group in synchronization with address signals.

しかし、この様な駆動方式の素子に前述したTN型の液
晶を採用すると、走査電極が選択され、信号電極が選択
されない領域、或いは走査電極が選択されず、信号電極
が選択される領域(所謂“半選択点”)にも有限に電界
がかかつてしまう。
However, if the above-mentioned TN type liquid crystal is adopted as an element of such a driving method, there will be an area where the scanning electrode is selected and the signal electrode is not selected, or an area where the scanning electrode is not selected and the signal electrode is selected (so-called A finite electric field is also generated at the “half-selected point”.

選択点にかかる電圧と、半選択点にかかる電圧の差が充
分に太き(、液晶分子を電界に垂直に配列させるのに要
する電圧閾値がこの中間の電圧値に設定されるならば、
表示素子は正常に動作するわけであるが、走査線数(N
)を増加して行なった場合、画面全体(1フレーム)を
走査する間に一つの選択点に有効な電界がかかっている
時間(duty比)が17Nの割合で減少してしまう。
If the difference between the voltage applied to the selected point and the voltage applied to the half-selected point is sufficiently large (and the voltage threshold required to align the liquid crystal molecules perpendicular to the electric field is set to a voltage value in between,
Although the display element operates normally, the number of scanning lines (N
), the time during which an effective electric field is applied to one selected point (duty ratio) while scanning the entire screen (one frame) decreases at a rate of 17N.

このために、くり返し走査を行なった場合の選択点と非
選択点にかかる実効値としての電圧差は、走査線数が増
えれば増える程小さくなり、結果的には画像コントラス
トの低下やクロストークが避は難い欠点となっている。
For this reason, when repeated scanning is performed, the effective voltage difference between selected points and non-selected points becomes smaller as the number of scanning lines increases, resulting in a decrease in image contrast and crosstalk. This is a drawback that is difficult to avoid.

この様な現象は、双安定性を有さない液晶(電極面に対
し、液晶分子が水平に配向しているのが安定状態であり
、電界が有効に印加されている間のみ垂直に配向する)
を錫量的蓄積効果を利用して駆動する(即ち、繰り返し
走査する)ときに生ずる本質的には避は難い問題点であ
る。
This phenomenon is caused by liquid crystals that do not have bistability (the stable state is when the liquid crystal molecules are aligned horizontally with respect to the electrode surface, and they are aligned vertically only while an electric field is effectively applied). )
This is an essentially unavoidable problem that arises when driving (that is, repeatedly scanning) using the tin accumulation effect.

この点を改良する為に、電圧平均化法、2周波駆動法や
、多重マトリクス法等が既に提案されているが、いずれ
の方法でも不充分であり、表示素子の大画面化や高密度
化は走査線数が充分に増やせないことによって頭打ちに
なっているのが現状である。
In order to improve this point, voltage averaging method, dual frequency driving method, multiple matrix method, etc. have already been proposed, but all of these methods are insufficient, and it is necessary to increase the screen size and density of display elements. Currently, the number of scanning lines has reached a plateau due to the inability to increase the number of scanning lines sufficiently.

このような従来型の液晶素子の欠点を改善するものとし
て、双安定性を有する液晶素子の使用がクラーク(C1
ark)およびラガウエル(Lagerwall)によ
り提案されている(特開昭56−107216号公報、
米国特許第4,367.924号明細書等)。
Clark (C1
ark) and Lagerwall (Japanese Unexamined Patent Publication No. 107216/1983,
(U.S. Pat. No. 4,367.924, etc.).

双安定性液晶としては、一般にカイラルスメクテイツク
C相(S m C*相)又はH相(SmH*相)を有す
る強誘電性液晶が用いられる。
As the bistable liquid crystal, a ferroelectric liquid crystal having a chiral smectic C phase (S m C* phase) or H phase (SmH* phase) is generally used.

この強誘電性液晶は電界に対して第1の光学的安定状態
と第2の光学的安定状態からなる双安定状態を有し、従
って前述のTN型の液晶で用いられた光学変調素子とは
異なり、例えば一方の電界ベクトルに対して第1の光学
的安定状態に液晶が配向し、他方の電界ベクトルに対し
ては第2の光学的安定状態に液晶が配回されている。ま
た、この型の液晶は、加えられる電界に応答して、上記
2つの安定状態のいずれかを採り、且つ電界の印加のな
いときはその状態を維持する性質(双安定性)を有する
This ferroelectric liquid crystal has a bistable state consisting of a first optically stable state and a second optically stable state in response to an electric field, and therefore is different from the optical modulation element used in the above-mentioned TN type liquid crystal. Differently, for example, the liquid crystal is oriented in a first optically stable state with respect to one electric field vector, and the liquid crystal is oriented in a second optically stable state with respect to the other electric field vector. Further, this type of liquid crystal has a property (bistability) of adopting one of the above two stable states in response to an applied electric field and maintaining that state when no electric field is applied.

以上の様な双安定性を有する特徴に加えて、強誘電性液
晶は高速応答性であるという優れた特徴を持つ。それは
強誘電性液晶の持つ自発分極と印加電場が直接作用して
配向状態の転移を誘起するためであり、誘電率異方性と
電場の作用による応答速度より3〜4オーダー速い。
In addition to the above-mentioned feature of bistability, ferroelectric liquid crystals have the excellent feature of high-speed response. This is because the spontaneous polarization of the ferroelectric liquid crystal and the applied electric field directly act to induce a transition in the orientation state, which is 3 to 4 orders of magnitude faster than the response speed due to the effect of the dielectric anisotropy and the electric field.

このように強誘電性液晶はきわめて優れた特性を潜在的
に有しており、このような性質を利用することにより、
上述した従来のTN型素子の問題点の多くに対して、か
なり本質的な改善が得られる。特に、高速光学光シャッ
ターや高密度、大画面デイスプレィへの応用が期待され
る。このため強誘電性を持つ液晶材料に関しては広く研
究がなされているが、現在までに開発された強誘電性液
晶材料は、低温作動特性、高速応答性等を含めて液晶素
子に用いる十分、な特性を備えているとは云い難い。
In this way, ferroelectric liquid crystals potentially have extremely excellent properties, and by utilizing these properties,
Significant substantial improvements are obtained over many of the problems of conventional TN type devices mentioned above. In particular, it is expected to be applied to high-speed optical shutters and high-density, large-screen displays. For this reason, extensive research has been conducted on liquid crystal materials with ferroelectric properties, but the ferroelectric liquid crystal materials developed to date have sufficient properties for use in liquid crystal devices, including low-temperature operating characteristics and high-speed response. It is hard to say that it has these characteristics.

応答時間τと自発分極の大きさPsおよび粘度ηの間に
は、下記の式[R1 (ただし、Eは印加電界である) の関係が存在する。従って応答速度を速くするには、(
ア)自発分極の大きさPsを大きくする(イ)粘度ηを
小さくする (つ)印加電界Eを大きくする 方法がある。しかじ印加電界は、IC等で駆動するため
上限があり、出来るだけ低い方が望ましい。
The following relationship exists between the response time τ, the magnitude of spontaneous polarization Ps, and the viscosity η as shown in the following equation [R1 (where E is the applied electric field). Therefore, to increase the response speed, (
There is a method of (a) increasing the magnitude of spontaneous polarization Ps, (b) decreasing the viscosity η, and (ii) increasing the applied electric field E. The applied electric field has an upper limit because it is driven by an IC or the like, and it is desirable that it be as low as possible.

よって、実際には粘度ηを小さくするか、自発分極の大
きさPsの値を大きくする必要がある。
Therefore, it is actually necessary to reduce the viscosity η or increase the value of the spontaneous polarization Ps.

−射的に自発分極の大きい強誘電性カイラルスメクチッ
ク液晶化合物においては、自発分極のもたらすセルの内
部電界も大きく、双安定状態をとり得る素子構成への制
約が多(なる傾向にある。
- In ferroelectric chiral smectic liquid crystal compounds that have a large spontaneous polarization, the internal electric field of the cell caused by the spontaneous polarization is also large, and there are many restrictions on device configurations that can achieve a bistable state.

また、いたずらに自発分極を大きくしても、それにつれ
て粘度も大きくなる傾向にあり、結果的には応答速度は
あまり速くならないことが考えられる。
Furthermore, even if the spontaneous polarization is increased unnecessarily, the viscosity tends to increase accordingly, and as a result, it is conceivable that the response speed will not become very fast.

また、実際のデイスプレィとしての使用温度範囲が、例
えば5〜40℃程度とした場合、応答速度の変化が一般
に20倍程もあり、駆動電圧および周波数による調節の
限界を越えているのが現状である。
Furthermore, if the actual operating temperature range for a display is, for example, 5 to 40 degrees Celsius, the response speed will generally change by about 20 times, which is currently beyond the limits of adjustment by drive voltage and frequency. be.

以上述べたように、強誘電性液晶素子を実用化するため
には、粘度が低く高速応答性を有し、かつ応答速度の温
度依存性の小さな強誘電性カイラルスメクチック液晶組
成物が要求される。
As mentioned above, in order to put ferroelectric liquid crystal devices into practical use, a ferroelectric chiral smectic liquid crystal composition that has low viscosity, high-speed response, and small temperature dependence of response speed is required. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、強誘電性液晶素子を実用できるように
するために、応答速度が速く、しかもその応答速度の温
度依存性が軽減された液晶組成物、特に強誘電性カイラ
ルスメクチック液晶組成物、および該液晶組成物を使用
する液晶素子を提供することにある。
An object of the present invention is to provide a liquid crystal composition, particularly a ferroelectric chiral smectic liquid crystal composition, which has a high response speed and reduced temperature dependence of the response speed, in order to make a ferroelectric liquid crystal element practical. , and to provide a liquid crystal element using the liquid crystal composition.

〔課題を解決するための手段および作用〕即ち、本発明
の第一の発明は、下記一般式[I]R,−X−A−CH
2C−B−Y−R2[I ]I (R1,R2はそれぞれ置換基を有してもよい炭素原子
数1〜16のアルキル基を示し、X、  Yはそれぞれ
単結合または一〇−を示す。Aは−A、−または−A、
−A2−を示し、Bは−B1−または−B1−B2−を
示す。AI + A2 +  Bl + B2はそれぞ
れ置換基を有してもよい1.4−)ユニしンを示す。)
で表わされる化合物の少な(とも1種類を含有する強誘
電性カイラルスメクチック液晶組成物に係る。
[Means and effects for solving the problem] That is, the first invention of the present invention is based on the following general formula [I]R, -X-A-CH
2C-B-Y-R2[I]I (R1 and R2 each represent an alkyl group having 1 to 16 carbon atoms which may have a substituent, and X and Y each represent a single bond or 10- .A is -A, - or -A,
-A2-, and B represents -B1- or -B1-B2-. AI + A2 + Bl + B2 each represents 1.4-)unisine which may have a substituent. )
The present invention relates to a ferroelectric chiral smectic liquid crystal composition containing at least one type of compound represented by

また第二の発明は、前記液晶組成物を使用することを特
徴とする液晶素子、環体的には前記強誘電性カイラルス
メクチック液晶組成物を1対の電極基板間に配置してな
る強誘電性液晶素子に係る。
Further, a second invention is a liquid crystal element characterized in that the liquid crystal composition is used; This relates to a liquid crystal element.

一般式[I]で示される化合物において、R1゜R2は
、好ましくは(i)〜(iv )から選ばれる。
In the compound represented by the general formula [I], R1°R2 are preferably selected from (i) to (iv).

(i)  C+=C+aのn−アルキル基、より好まし
くはC3〜C14のn−アルキル基 H3 (ii )  (−CH2)mCHCn H2n+1(
ただし、mは1〜6の整数であり、nは2〜8の整数で
ある。また、光学活性であっても良い。) CH。
(i) C+=C+a n-alkyl group, more preferably C3-C14 n-alkyl group H3 (ii) (-CH2)mCHCn H2n+1(
However, m is an integer of 1 to 6, and n is an integer of 2 to 8. Moreover, it may be optically active. ) CH.

(fjD  +CHz′)−rCH−(−CH2)sO
ctH2t++(ただし、rはO〜6の整数であり、S
はOもしくは1である。また、tは1〜12の整数であ
る。
(fjD +CHz′)-rCH-(-CH2)sO
ctH2t++ (where r is an integer from O to 6, S
is O or 1. Further, t is an integer of 1 to 12.

またこれは光学活性であっても良い。)(iv)  −
CH2CHCXH2X+1* (ただし、Xは1−14の整数である。)本発明者等は
以上の液晶組成物およびそれを使用した液晶素子を用い
ることにより高速応答性、応答速度の温度依存性の軽減
等の緒特性の改良がなされ、良好な表示特性が得られる
ことを見出したものである。
It may also be optically active. )(iv) −
CH2 CHC It was discovered that the display characteristics were improved and good display characteristics could be obtained.

〔発明の詳細な説明〕[Detailed description of the invention]

前記一般式[I]で表わされる化合物の一般的な合成例
を以下に示す。
A general synthesis example of the compound represented by the general formula [I] is shown below.

○ (ただし、R1+  R2r X+  Y+ A+ B
は前記定義のとおりである。) 前記一般式[I]で表わされる化合物の具体的な構造式
の例を以下に示す。
○ (However, R1+ R2r X+ Y+ A+ B
is as defined above. ) Examples of specific structural formulas of the compound represented by the general formula [I] are shown below.

本発明の強誘電性カイラルスメクチック液晶組成物は前
記一般式[I]で示される化合物の少なくとも1種と、
他の液晶性化合物1種以上とを適当な割合で混合するこ
とにより得ることができる。
The ferroelectric chiral smectic liquid crystal composition of the present invention comprises at least one compound represented by the general formula [I],
It can be obtained by mixing with one or more other liquid crystal compounds in an appropriate ratio.

本発明で用いる他の液晶性化合物の具体例を以下に挙げ
る。
Specific examples of other liquid crystal compounds used in the present invention are listed below.

化合物No。Compound No.

H3 H3 ○ H3 H3 * H3 H3 H3 ! 工 工 工 工 ^     ω Ll’)   O qコ 工 Q の  r) 二 (〒 閃 −−○そ −一〇そ F F3 F3 F3 F3 c 、oH2,’o−4巨”)−co =(く)〉→o
 +CH2) 2 CHC4H9* N N C、H、、40砕C6HI3 ○ C、oH2,O−@−CH2o−@−oc 、 H、。
H3 H3 ○ H3 H3 * H3 H3 H3! Engineering engineering engineering ^ ω Ll') O qko engineering Q's r) )〉→o
+CH2) 2 CHC4H9* N N C, H,, 40 crushed C6HI3 ○ C, oH2,O-@-CH2o-@-oc, H,.

C1□H1枢伽CH2O舎QC6H13本発明の化合物
と1種以上の他の液晶性化合物、あるいはそれを含む液
晶組成物(これらは強誘電性液晶化合物および強誘電性
液晶組成物であっても良い。以下、これらを液晶材料と
略す。)との配合割合は、液晶材料100重量部当り本
発明による化合物を1〜500重量部とすることが好ま
しい。
C1 □ H1 Toka CH2Osha QC6H13 The compound of the present invention and one or more other liquid crystal compounds, or a liquid crystal composition containing the same (these may be ferroelectric liquid crystal compounds and ferroelectric liquid crystal compositions) (Hereinafter, these are abbreviated as liquid crystal materials.) The compound according to the present invention is preferably mixed in an amount of 1 to 500 parts by weight per 100 parts by weight of the liquid crystal material.

また、本発明の化合物を2種以上用いる 場合も液晶材
料との配合割合は前述した液晶材料100重量部当り本
発明による化合物の2種以上の混合物を1〜500重量
部とすることが好ましい。
Furthermore, even when two or more compounds of the present invention are used, the blending ratio with the liquid crystal material is preferably 1 to 500 parts by weight of the mixture of two or more compounds of the present invention per 100 parts by weight of the liquid crystal material.

第1図は強誘電性液晶素子の構成の説明のために、本発
明の強誘電性液晶層を有する液晶素子の一例の断面概略
図である。
FIG. 1 is a schematic cross-sectional view of an example of a liquid crystal element having a ferroelectric liquid crystal layer according to the present invention, for explaining the structure of the ferroelectric liquid crystal element.

第1図において符号1は強誘電性液晶層、2はガラス基
板、3は透明電極、4は絶縁性配向制御層、5はスペー
サー、6はリード線、7は電源、8は偏光板、9は光源
を示している。
In FIG. 1, 1 is a ferroelectric liquid crystal layer, 2 is a glass substrate, 3 is a transparent electrode, 4 is an insulating alignment control layer, 5 is a spacer, 6 is a lead wire, 7 is a power source, 8 is a polarizing plate, 9 indicates a light source.

2枚のガラス基板2には、それぞれIn2O3゜Sn○
2あるいはITO(Indium−Tin  0xid
e)等の薄膜から成る透明電極が被覆されている。その
上にポリイミドの様な高分子の薄膜をガーゼやアセテー
ト植毛布等でラビングして、液晶をラビング方向に並べ
る絶縁性配向制御層が形成されている。また絶縁物質と
して例えばシリコン窒化物、水素を含有するシリコン炭
化物、シリコン酸化物、硼素窒化物、水素を含有する硼
素窒化物、セリウム酸化物、アルミニウム酸化物、ジル
コニウム酸化物、チタン酸化物やフッ化マグネシウムな
どの無機物質絶縁層を形成し、その上にポリビニルアル
コール、ポリイミド、ポリアミドイミド、ポリエステル
イミド、ポリバラキシレン、ポリエステル、ポリカーボ
ネート、ポリビニルアセクール、ポリ塩化ビニル、ポリ
酢酸ビニル、ポリアミド、ポリスチレン、セルロース樹
脂、メラミン樹脂、ユリャ樹脂、アクリル樹脂やフォト
レジスト樹脂などの有機絶縁物質を配向制御層として、
2層で絶縁性配向制御層が形成されていてもよく、また
無機物質絶縁性配向制御層あるいは有機物質絶縁性配向
制御層単層であっても良い。この絶縁性配向制御層が無
機系ならば蒸着法などで形成でき、有機系ならば有機絶
縁物質を溶解させた溶液、またはその前駆体溶液(溶剤
に0.1〜20重量%、好ましくは0.2〜10重世%
)を用いて、スピンナー塗布法、浸漬塗布法、スクリー
ン印刷法、スプレー塗布法、ロール塗布法等で塗布し、
所定の硬化条件下(例えば加熱下)で硬化させ形成させ
ることができる。
The two glass substrates 2 each have In2O3゜Sn○
2 or ITO (Indium-Tin Oxid
A transparent electrode made of a thin film such as e) is coated. On top of this, a thin film of a polymer such as polyimide is rubbed with gauze or acetate flocked cloth to form an insulating alignment control layer that aligns the liquid crystals in the rubbing direction. Insulating materials such as silicon nitride, hydrogen-containing silicon carbide, silicon oxide, boron nitride, hydrogen-containing boron nitride, cerium oxide, aluminum oxide, zirconium oxide, titanium oxide, and fluoride An inorganic material insulating layer such as magnesium is formed, and then polyvinyl alcohol, polyimide, polyamideimide, polyesterimide, polyvaraxylene, polyester, polycarbonate, polyvinyl acecool, polyvinyl chloride, polyvinyl acetate, polyamide, polystyrene, cellulose is formed. An organic insulating material such as resin, melamine resin, Yulia resin, acrylic resin or photoresist resin is used as an orientation control layer.
The insulating alignment control layer may be formed of two layers, or may be a single layer of an insulating alignment control layer of an inorganic substance or an insulating alignment control layer of an organic substance. If this insulating alignment control layer is inorganic, it can be formed by a vapor deposition method, or if it is organic, it can be formed by a solution in which an organic insulating substance is dissolved, or its precursor solution (0.1 to 20% by weight in a solvent, preferably 0% by weight). .2-10%
) using a spinner coating method, dip coating method, screen printing method, spray coating method, roll coating method, etc.
It can be cured and formed under predetermined curing conditions (for example, under heating).

絶縁性配向制御層の層厚は通常30人〜1μm、好まし
くは30人〜3000人、さらに好ましくは50人〜1
000人が適している。
The thickness of the insulating orientation control layer is usually 30 to 1 μm, preferably 30 to 3000, more preferably 50 to 1 μm.
000 people is suitable.

この2枚のガラス基板2はスペーサー5によって任意の
間隔に保たれている。例えば所定の直径を持つシリカビ
ーズ、アルミナビーズをスペーサーとしてガラス基板2
枚で挟持し、周囲をシール材、例えばエポキシ系接着材
を用いて密封する方法がある。その他スペーサーとして
高分子フィルムやガラスファイバーを使用しても良い。
These two glass substrates 2 are kept at an arbitrary distance by a spacer 5. For example, using silica beads or alumina beads with a predetermined diameter as spacers, the glass substrate 2
There is a method in which the substrate is held between two sheets and the periphery is sealed using a sealing material such as an epoxy adhesive. In addition, a polymer film or glass fiber may be used as a spacer.

この2枚のガラス基板の間に強誘電性液晶が封入されて
いる。
A ferroelectric liquid crystal is sealed between these two glass substrates.

強誘電性液晶が封入された強誘電性液晶層は、一般には
0.5〜20μm1好ましくは1〜5μmである。
The ferroelectric liquid crystal layer in which the ferroelectric liquid crystal is sealed is generally 0.5 to 20 μm, preferably 1 to 5 μm.

又、この強誘電性液晶は、室温を含む広い温度域(特に
低温側)でS m C水相(カイラルスメクチック相)
を有し、高速応答性を有することが望ましい。さらに応
答速度の温度依存性が小さいこと、及び駆動電圧マージ
ンが広いことが望まれる。
In addition, this ferroelectric liquid crystal exhibits an S m C aqueous phase (chiral smectic phase) in a wide temperature range including room temperature (especially on the low temperature side).
It is desirable to have high-speed response. Furthermore, it is desired that the temperature dependence of the response speed be small and that the driving voltage margin be wide.

又、特に素子とした場合に、良好な均一配向性を示しモ
ノドメイン状態を得るには、その強誘電性液晶は、等吉
相からch相(コレステリック相)−8mA相(スメク
チック相)=SmC木相(カイラルスメクチックC相)
という相転移系列を有していることが望ましい。
In addition, especially when used as an element, in order to exhibit good uniform alignment and obtain a monodomain state, the ferroelectric liquid crystal should be changed from the Tokichi phase to the ch phase (cholesteric phase) - 8 mA phase (smectic phase) = SmC wood. Phase (chiral smectic C phase)
It is desirable to have the following phase transition series.

透明電極3からはリード線によって外部電源7に接続さ
れている。
The transparent electrode 3 is connected to an external power source 7 by a lead wire.

またガラス基板2の外側には偏光板8が貼り合わせであ
る。
Further, a polarizing plate 8 is bonded to the outside of the glass substrate 2.

第1図は透過型なので光源9を備えている。The device shown in FIG. 1 is of a transmission type, so it is equipped with a light source 9.

第2図は強誘電性液晶素子の動作説明のために、セルの
例を模式的に描いたものである。21aと21bはそれ
ぞれIn2O3,5n02あるいはITO(Indiu
m−Tin  0xide)等の薄膜からなる透明電極
で被覆された基板(ガラス板)であり、その間に液晶分
子層22がガラス面に垂直になるよう配向したSmC*
相又はSmH*相の液晶が封入されている。太線で示し
た線23が液晶分子を表わしており、この液晶分子23
はその分子に直交した方向に双極子モーメント(P工)
24を有している。基板21aと21b上の電極間に一
定の閾値以上の電圧を印加すると、液晶分子23のらせ
ん構造がほどけ、双極子モーメント(P土)24がすべ
て電界方向に向くよう、液晶分子23は配向方向を変え
ることができる。液晶分子23は細長い形状を有してお
り、その長軸方向と短軸方向で屈折率異方性を示し、従
って例えばガラス面の上下に互いにクロスニコルの偏光
子を置けば、電圧印加極性によって光学特性が変わる液
晶光学変調素子となることは、容易に理解される。
FIG. 2 schematically depicts an example of a cell for explaining the operation of a ferroelectric liquid crystal element. 21a and 21b are In2O3, 5n02 or ITO (Indiu
A substrate (glass plate) coated with a transparent electrode made of a thin film such as m-Tin oxide), between which a liquid crystal molecular layer 22 is oriented perpendicular to the glass surface.
Liquid crystal of phase or SmH* phase is sealed. A thick line 23 represents a liquid crystal molecule, and this liquid crystal molecule 23
is the dipole moment (P) in the direction perpendicular to the molecule
It has 24. When a voltage equal to or higher than a certain threshold is applied between the electrodes on the substrates 21a and 21b, the helical structure of the liquid crystal molecules 23 is unraveled, and the liquid crystal molecules 23 are aligned in the direction such that the dipole moment (P) 24 is all directed in the direction of the electric field. can be changed. The liquid crystal molecules 23 have an elongated shape and exhibit refractive index anisotropy in the long axis direction and short axis direction. Therefore, for example, if crossed Nicol polarizers are placed above and below the glass surface, the polarity of the applied voltage will change depending on the voltage applied polarity. It is easily understood that this results in a liquid crystal optical modulation element whose optical properties change.

本発明のお、ける光学変調素子で好ましく用いられる液
晶セルは、その厚さを充分に薄((例えばIOμ以下)
することができる。このように液晶層が薄くなるにした
がい、第3図に示すように電界を印加していない状態で
も液晶分子のらせん構造がほどけ、その双極子モーメン
トPaまたはpbは上向き(34a)又は下向き(34
b)のどちらかの状態をとる。このようなセルに、第3
図に示す如く一定の閾値以上の極性の異る電界Ea又は
Ebを電圧印加手段31aと31bにより付与すると、
双極子モーメントは電界Ea又はEbの電界ベクトルに
対応して上向き34a又は下向き34bと向きを変え、
それに応じて液晶分子は、第1の安定状態33aかある
いは第2の安定状態33bの何れか一方に配向する。
The liquid crystal cell preferably used in the optical modulation element of the present invention has a sufficiently thin thickness (for example, IOμ or less).
can do. As the liquid crystal layer becomes thinner in this way, the helical structure of the liquid crystal molecules unwinds even when no electric field is applied, as shown in Figure 3, and the dipole moment Pa or pb is directed upward (34a) or downward (34).
Either state b) is taken. In such a cell, the third
As shown in the figure, when an electric field Ea or Eb of different polarity above a certain threshold value is applied by the voltage applying means 31a and 31b,
The dipole moment changes direction upward 34a or downward 34b in response to the electric field vector of electric field Ea or Eb,
Accordingly, the liquid crystal molecules are aligned in either the first stable state 33a or the second stable state 33b.

このような強誘電性を光学変調素子として用いることの
利点は先にも述べたが2つある。
As mentioned above, there are two advantages to using such ferroelectricity as an optical modulation element.

その第1は、応答速度が極めて速いことであり、第2は
液晶分子の配向が双安定性を有することである。第2の
点を例えば第3図によって更に説明すると、電界Eaを
印加すると液晶分子は第1の安定状態33aに配向する
が、この状態は電界を切っても安定である。又、逆向き
の電界Ebを印加すると、液晶分子は第2の安定状態3
3bに配向してその分子の向きを変えるが、やはり電界
を切ってもこの状態に留っている。又与える電界Eaあ
るいはEbが一定の閾値を越えない限り、それぞれ前の
配向状態にやはり維持されている。
The first is that the response speed is extremely fast, and the second is that the alignment of liquid crystal molecules has bistability. To further explain the second point with reference to FIG. 3, for example, when the electric field Ea is applied, the liquid crystal molecules are oriented in a first stable state 33a, and this state remains stable even when the electric field is turned off. Moreover, when an electric field Eb in the opposite direction is applied, the liquid crystal molecules enter the second stable state 3.
3b and changes the orientation of the molecule, but it remains in this state even after the electric field is turned off. Further, as long as the applied electric field Ea or Eb does not exceed a certain threshold value, the previous orientation state is maintained.

以下実施例により本発明について更に詳細に説明するが
、本発明はこれらの実施例に限定されるものではない。
EXAMPLES The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples.

合成例1 2−(4−オクチルオキシフェニル)−4′−ノニルア
セトフェノン(例示化合物No、 1−5 )の合成(
1)4−オクチルオキシフェニル酢酸オクチルの合成 4−ヒ、ドロキシフェニル酢酸10.0g (65,7
m m o l )、85%水酸化カリウム9.95g
 (150,7mmol )、n−ブタノール100m
fを加え、室温撹拌下ヨウ化オクチル10m!!を添加
した。ついで加熱し還流下ヨウ化オクチル15m1を滴
下し、2時間加熱還流した。その後室温で一晩撹拌し不
溶物を濾別した。不溶物をエタノールで洗い、この洗液
を濾液に加え、減圧下に留去した。ついで水を加え、酢
酸エチルにて抽出した。有機層を飽和食塩水で洗い無水
硫酸ナトリウムで乾燥した。溶媒留去後、トルエン/n
−ヘキサン(1/2)を展開溶媒としたシリカゲルカラ
ムクロマトにより精製し、。4−オクチルオキシフェニ
ル酢酸オクチル15.84g (収率64.0%)を得
た。
Synthesis Example 1 Synthesis of 2-(4-octyloxyphenyl)-4'-nonylacetophenone (Exemplary Compound No. 1-5) (
1) Synthesis of octyl 4-octyloxyphenylacetate 10.0 g (65,7
m mol ), 9.95 g of 85% potassium hydroxide
(150.7 mmol), n-butanol 100 m
f and 10 m of octyl iodide while stirring at room temperature. ! was added. Then, while heating and refluxing, 15 ml of octyl iodide was added dropwise, and the mixture was heated and refluxed for 2 hours. Thereafter, the mixture was stirred at room temperature overnight and insoluble materials were filtered off. Insoluble matter was washed with ethanol, and this washing liquid was added to the filtrate and evaporated under reduced pressure. Then, water was added and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. After solvent distillation, toluene/n
- Purified by silica gel column chromatography using hexane (1/2) as a developing solvent. 15.84 g (yield 64.0%) of octyl 4-octyloxyphenylacetate was obtained.

(2)4−オクチルオキシフェニル酢酸の合成4−オク
チルオキシフェニル酢酸オクチル6.38g(16,9
mmol)、エタノール75 m Il 、水25mj
?、85%水酸化カリウム6.02g室温下撹拌し、つ
いで2時間加熱還流した。反応終了後溶媒の一部を留去
し、水を加え濃塩酸約8mlを加え塩酸酸性(pH〜2
)とした。析出した結晶を酢酸エチルで抽出し、水洗後
、無水硫酸ナトリウムで乾燥した。濾過後溶媒留去しヘ
キサンから再結晶し、4−才クチルオキシフェニル酢酸
3.02g (収率67.4%)を得た。
(2) Synthesis of 4-octyloxyphenylacetic acid Octyl 4-octyloxyphenylacetate 6.38g (16,9
mmol), ethanol 75 m Il, water 25 mj
? , 6.02 g of 85% potassium hydroxide was stirred at room temperature, and then heated under reflux for 2 hours. After the reaction, part of the solvent was distilled off, water was added, and about 8 ml of concentrated hydrochloric acid was added to make the solution acidic with hydrochloric acid (pH ~ 2).
). The precipitated crystals were extracted with ethyl acetate, washed with water, and then dried over anhydrous sodium sulfate. After filtration, the solvent was distilled off and recrystallized from hexane to obtain 3.02 g (yield: 67.4%) of 4-year-old ctyloxyphenylacetic acid.

(3)4−オクチルオキシフェニル酢酸塩化物の合成 4−オクチルオキシフェニル酢酸1.2g、塩化チオニ
ル10 m lを加え、80℃で4時間加熱撹拌した。
(3) Synthesis of 4-octyloxyphenylacetic acid chloride 1.2 g of 4-octyloxyphenylacetic acid and 10 ml of thionyl chloride were added, and the mixture was heated and stirred at 80°C for 4 hours.

反応終了後過剰の塩化チオニルを減圧下に留去した。さ
らにベンゼンを加え減圧下に留去する。この操作を数回
行なう。ついでヘプタンを加え、減圧下に留去し、4−
オクチルオキシフェニル酢酸塩化物を得た。
After the reaction was completed, excess thionyl chloride was distilled off under reduced pressure. Furthermore, benzene was added and distilled off under reduced pressure. Do this operation several times. Then, heptane was added and evaporated under reduced pressure to give 4-
Octyloxyphenylacetic acid chloride was obtained.

(4)2−(4−オクチルオキシフェニル)\−4′−
ノニルアセトフェノンの合成・ノニルベンゼン1.11
g (5,46mmol)に二硫化炭素20mj7を加
え、−8℃(アイスソルトバス中)で撹拌下、粉砕した
塩化アルミニウム0.85g (6,37mmol)を
添加する。この温度で撹拌下、4−オクチルオキシフェ
ニル酢酸塩化物1.28g (4,55mmol)を滴
下する。滴下後−8℃で3時間撹拌した。その後、氷5
0gと濃塩酸12m1との混合物中に注ぎ入れた。つい
で酢酸エチルで抽出し、水洗後、無水硫酸ナトリウムで
乾燥した。濾過後、溶媒を減圧下に留去し、ベンゼンを
展開溶媒としたシリカゲルカラムクロマトにより精製し
、2−(4−オクチルオキシフェニル)−4′ −ノニ
ルアセトフェノン0.64g (収率31,2%)を得
た。
(4) 2-(4-octyloxyphenyl)\-4'-
Synthesis of nonylacetophenone/nonylbenzene 1.11
20 mj7 of carbon disulfide is added to g (5,46 mmol), and 0.85 g (6,37 mmol) of ground aluminum chloride is added while stirring at -8°C (in an ice salt bath). While stirring at this temperature, 1.28 g (4.55 mmol) of 4-octyloxyphenylacetic acid chloride is added dropwise. After the addition, the mixture was stirred at -8°C for 3 hours. Then ice 5
0 g and 12 ml of concentrated hydrochloric acid. It was then extracted with ethyl acetate, washed with water, and dried over anhydrous sodium sulfate. After filtration, the solvent was distilled off under reduced pressure and purified by silica gel column chromatography using benzene as a developing solvent to obtain 0.64 g of 2-(4-octyloxyphenyl)-4'-nonylacetophenone (yield 31.2%). ) was obtained.

相転移温度(0C) 00.5 合成例2〜9 合成例1と同様の合成法により以下に示す合成例2〜9
の化合物を得た。
Phase transition temperature (0C) 00.5 Synthesis Examples 2 to 9 Synthesis Examples 2 to 9 shown below using the same synthesis method as Synthesis Example 1
The compound was obtained.

成 例 例示化合物 実施例1 下記例示化合物を下記の重量部で混合し、液 組成物Aを作成した。Growth example Exemplary compound Example 1 Mix the following exemplified compounds in the following parts by weight and make a liquid. Composition A was created.

例示化合物No。Exemplary compound no.

構 造 式 式 相転移温度(℃) さらにこの液晶組成物Aに対して、以下に示す例示化合
物を各々以下に示す重量部で混合し、液晶組成物Bを作
成した。
Structural Formula Phase Transition Temperature (° C.) Further, the following exemplary compounds were mixed with the liquid crystal composition A in the weight parts shown below to prepare a liquid crystal composition B.

例示化合物No、    構 造 式      重量
部次に、2枚の0 、7 m m厚のガラス板を用意し
、それぞれのガラス板上にITO膜を形成し、電圧印加
電極を作成し、さ−らにこの上に5i02を蒸着させ絶
縁層とした。ガラス板上にシランカップリング剤[信越
化学■製KBM−602] 0.2%イソプロピルアル
コール溶液を回転数200Or、p、mのスピンナーで
15秒間塗布し、表面処理を施した。
Exemplified Compound No. Structural Formula Parts by Weight Next, two glass plates with a thickness of 0 and 7 mm were prepared, an ITO film was formed on each glass plate, a voltage application electrode was created, and 5i02 was deposited on top of this to form an insulating layer. A 0.2% isopropyl alcohol solution of a silane coupling agent [KBM-602, manufactured by Shin-Etsu Chemical Co., Ltd.] was applied onto a glass plate for 15 seconds using a spinner with a rotation speed of 200 Or, p, m, to perform surface treatment.

この後、120℃にて20分間加熱乾燥処理を施した。After that, a heat drying treatment was performed at 120° C. for 20 minutes.

さらに表面処理を行なったITO膜付きのガラス板上に
ポリイミド樹脂前駆体[東し@)SP−510]1.5
%ジメチルアセトアミド溶液を回転数200゜r、p、
mのスピンナーで15秒間塗布した。成膜後、60分間
、300℃加熱縮合焼成処理を施した。この時の塗膜の
膜厚は約250人であった。
Polyimide resin precursor [Toshi @) SP-510] 1.5
% dimethylacetamide solution at a rotational speed of 200°r, p,
It was applied for 15 seconds using a spinner. After the film was formed, a heating condensation firing process was performed at 300° C. for 60 minutes. The thickness of the coating film at this time was approximately 250.

この焼成後の被膜には、アセテート植毛布によるラビン
グ処理がなされ、その後イソプロピルアルコール液で洗
浄し、平均粒径2μmのアルミナビーズを一方のガラス
板上に散布した後、それぞれのラビング処理軸が互いに
平行となる様にし、接着シール剤[リクソンボンド(チ
ッソ(掬)]を用いてガラス板をはり合わせ、60分間
、100°Cにて加熱乾燥しセルを作成した。このセル
のセル厚をベレツク位相板によって測定したところ約2
μmであった。
This fired coating was rubbed with acetate flocked cloth, then washed with isopropyl alcohol solution, and alumina beads with an average particle size of 2 μm were sprinkled on one glass plate, so that the rubbing axes of each plate were aligned with each other. The glass plates were glued together using an adhesive sealant [Rixon Bond (Chisso)] so that they were parallel to each other, and dried by heating at 100°C for 60 minutes to create a cell.The cell thickness of this cell was determined by Approximately 2 as measured by phase plate
It was μm.

このセルに液晶組成物Bを等方性液体状態で注入し、等
吉相から20℃/hで25℃まで徐冷することにより、
強誘電性液晶素子を作成した。
By injecting liquid crystal composition B in an isotropic liquid state into this cell and slowly cooling it from the Tokichi phase to 25°C at a rate of 20°C/h,
A ferroelectric liquid crystal device was created.

この強誘電性液晶素子を使ってピーク・トウ・ピーク電
圧Vpp=20Vの電圧印加により直交ニコル下での光
学的な応答(透過光量変化0〜90%)を検知して応答
速度(以後光学応答速度という)を測定した。
Using this ferroelectric liquid crystal element, the optical response (transmitted light amount change 0 to 90%) under crossed Nicols is detected by applying a voltage of peak-to-peak voltage Vpp = 20V, and the response speed (hereinafter referred to as optical response) is detected. speed) was measured.

その結果を次に示す。The results are shown below.

15℃    25℃    35℃ 応答速度    124 μsec     84 μ
sec     70 μsec比較例1 実施例1で混合した液晶組成物Aをセル内に注入する以
外は全〈実施例1と同様の方法で強誘電性液晶素子を作
成し、光学応答速度を測定した。
15℃ 25℃ 35℃ Response speed 124 μsec 84 μ
sec 70 μsec Comparative Example 1 A ferroelectric liquid crystal element was prepared in the same manner as in Example 1 except that the liquid crystal composition A mixed in Example 1 was injected into the cell, and the optical response speed was measured.

その結果を次に示す。The results are shown below.

15°C25℃       35°C応答速度   
  155 μsec     100 μsec  
   80 μsec実施例2 実施例1で使用した例示化合物1−2.1−5のかわり
に以下に示す例示化合物を各々以下に示す重量部で混合
し、液晶組成物Cを作成した。
15°C25°C 35°C response speed
155 μsec 100 μsec
80 μsec Example 2 In place of Exemplified Compound 1-2.1-5 used in Example 1, the following Exemplified Compounds were mixed in the weight parts shown below to prepare Liquid Crystal Composition C.

例示化合物No、    構 造 式     重量部
この液晶組成物を用いた以外は全(実施例1と同様の方
法で強誘電性液晶素子を作成し、実施例1と同様の方法
で光学応答速度を測定した。
Exemplary Compound No. Structural Formula Part by Weight All except for using this liquid crystal composition (A ferroelectric liquid crystal element was prepared in the same manner as in Example 1, and the optical response speed was measured in the same manner as in Example 1. did.

測定結果を次に示す。The measurement results are shown below.

15’C 25℃ 35℃ 応答速度 123 μ5ec 82μ5ec 71μsec 実施例3 実施例1で使用した例示化合物1−2.1−5のかわり
に以下に示す例示化合物を各々以下に示す重量部で混合
し、液晶組成物りを作成した。
15'C 25°C 35°C Response speed 123 μ5ec 82 μ5ec 71 μsec Example 3 In place of Exemplified Compound 1-2.1-5 used in Example 1, the following exemplary compounds were mixed in the weight parts shown below, A liquid crystal composition was created.

例示化合物No、    構 造 式      重量
部この液晶組成物を用いた以外は全〈実施例1と同様の
方法で強誘電性液晶素子を作成し、実施例1と同様の方
法で光学応答速度を測定した。
Exemplary Compound No. Structural Formula Part by Weight A ferroelectric liquid crystal device was prepared in the same manner as in Example 1, except that this liquid crystal composition was used, and the optical response speed was measured in the same manner as in Example 1. did.

測定結果を次に示す。The measurement results are shown below.

15℃ 25℃ 35℃ 応答速度 144 p 5ec 90μ5ec 80μsec 実施例4 実施例1で使用した例示化合物1−2.1−5のかわり
に以下に示す例示化合物を各々以下に示す重量部で混合
し、液晶組成物Eを作成した。
15°C 25°C 35°C Response speed 144 p 5 ec 90 μ5 ec 80 μsec Example 4 In place of Exemplified Compound 1-2.1-5 used in Example 1, the following exemplary compounds were mixed in the weight parts shown below, A liquid crystal composition E was prepared.

例示化合物No、    構 造 式      重量
部この液晶組成物を用いた以外は全〈実施例1と同様の
方法で強誘電性液晶素子を作成し、実施例1と同様の方
法で光学応答速度を測定した。
Exemplary Compound No. Structural Formula Part by Weight A ferroelectric liquid crystal device was prepared in the same manner as in Example 1, except that this liquid crystal composition was used, and the optical response speed was measured in the same manner as in Example 1. did.

測定結果を次に示す。The measurement results are shown below.

15℃ 25℃ 35°C 応答速度 133 μsec 85μ5ec 74μsec す 実施例5 実施例1で使用した例示化合物1−2. 1−5のかわ
りに以下に示す例示化合物を各々以下に示す重量部で混
合し、液晶組成物Fを作成した。
15°C 25°C 35°C Response speed 133 μsec 85 μ5ec 74 μsec Example 5 Exemplary compound 1-2 used in Example 1. Liquid crystal composition F was prepared by mixing the following exemplified compounds in the weight parts shown below in place of 1-5.

例示化合物No、    構 造 式     重量部
この液晶組成物を用いた以外は全(実施例1と同様の方
法で強誘電性液晶素子を作成し、実施例1と同様の方法
で光学応答速度を測定した。
Exemplary Compound No. Structural Formula Part by Weight All except for using this liquid crystal composition (A ferroelectric liquid crystal element was prepared in the same manner as in Example 1, and the optical response speed was measured in the same manner as in Example 1. did.

測定結果を次に示す。The measurement results are shown below.

15℃    25°C35°C 応答速度   134 μsec     86 μs
ec     74 μsecυ 実施例6 実施例1で使用した例示化合物1−2.1−5のかわり
に以下に示す例示化合物を各々以下に示す重量部で混合
し、液晶組成物Gを作成した。
15°C 25°C35°C Response speed 134 μsec 86 μs
ec 74 μsecυ Example 6 In place of Exemplified Compound 1-2.1-5 used in Example 1, the following exemplary compounds were mixed in the weight parts shown below to prepare a liquid crystal composition G.

例示化合物No、    構 造 式      重量
部この液晶組成物を用いた以外は全〈実施例1と同様の
方法で強誘電性液晶素子を作成し、実施例1と同様の方
法で光学応答速度を測定した。
Exemplary Compound No. Structural Formula Part by Weight A ferroelectric liquid crystal device was prepared in the same manner as in Example 1, except that this liquid crystal composition was used, and the optical response speed was measured in the same manner as in Example 1. did.

測定結果を次に示す。The measurement results are shown below.

15℃    25℃    35°C応答速度   
133 μsec     85 μsec     
73 μsec実施例7 下記例示化合物を下記の重量部で混合し、液晶組成物H
を作成した。
15°C 25°C 35°C response speed
133 μsec 85 μsec
73 μsec Example 7 The following exemplified compounds were mixed in the following parts by weight to form a liquid crystal composition H.
It was created.

例示化合物No、    構 造 式      重量
部す さらに、この液晶組成物Hに対して以下に示す例示化合
物を各々以下に示す重量部で混合し、液晶組成物Iを作
成した。
Exemplified Compound No. Structural Formula Parts by weight Furthermore, the following exemplary compounds were mixed with this liquid crystal composition H in the weight parts shown below to prepare a liquid crystal composition I.

例示化合物No、    構 造 式      重量
部この液晶組成物を用いた以外は全〈実施例1と同様の
方法で強誘電性液晶素子を作成し、実施例1と同様の方
法で光学応答速度を測定し、スイッチング状態を観察し
た。
Exemplary Compound No. Structural Formula Part by Weight A ferroelectric liquid crystal device was prepared in the same manner as in Example 1, except that this liquid crystal composition was used, and the optical response speed was measured in the same manner as in Example 1. and observed the switching state.

この液晶素子内の均−配向性は良好であり、モノドメイ
ン状態が得られた。
The uniform alignment within this liquid crystal element was good, and a monodomain state was obtained.

測定結果を次に示す。The measurement results are shown below.

15°C25°C35°C 応答速度   430 μsec     257 p
 sec     190 μsec比較例 実施例7で混合した液晶組成物Hをセル内に注入する以
外は全〈実施例1と同様の方法で強誘電性液晶素子を作
成し、光学応答速度を測定した。
15°C25°C35°C Response speed 430 μsec 257 p
sec 190 μsec Comparative Example A ferroelectric liquid crystal element was prepared in the same manner as in Example 1 except that the liquid crystal composition H mixed in Example 7 was injected into the cell, and the optical response speed was measured.

その結果を次に示す。The results are shown below.

15℃    25℃    35°C応答速度   
450 μsec     270 p sec   
  1951t sec実施例8 実施例7で使用した例示化合物1−3.1−17のかわ
りに以下に示す例示化合物を各々以下に示す重量部で混
合し、液晶組成物Jを作成した。
15°C 25°C 35°C response speed
450 μsec 270 psec
1951t sec Example 8 In place of Exemplified Compound 1-3.1-17 used in Example 7, the following exemplary compounds were mixed in the weight parts shown below to prepare Liquid Crystal Composition J.

例示化合物No、    構 造 式      重量
部この液晶組成物を用いた以外は全(実施例1と同様の
方法で強誘電性液晶素子を作成し、実施例1と同様の方
法で光学応答速度を測定し、スイッチング状態等を観察
した。
Exemplary Compound No. Structural Formula Part by Weight All except for using this liquid crystal composition (A ferroelectric liquid crystal element was prepared in the same manner as in Example 1, and the optical response speed was measured in the same manner as in Example 1. The switching state, etc., were observed.

この液晶素子内の均−配向性は良好であり、モノドメイ
ン状態が得られた。
The uniform alignment within this liquid crystal element was good, and a monodomain state was obtained.

測定結果を次に示す。The measurement results are shown below.

15℃    25°0    35°C応答速度  
 360 μsec     221 μsec   
  172 μsecまた、駆動時には明瞭なスイッチ
ング動作が観察され、電圧印加を止めた際の双安定性も
良好であった。
15°C 25°0 35°C response speed
360 μsec 221 μsec
172 μsec Also, clear switching behavior was observed during driving, and good bistability was observed when voltage application was stopped.

す 実施例9 実施例7で使用した例示化合物1−3.1−17のかわ
りに以下に示す例示化合物を各々以下に示す重量部で混
合し、液晶組成物Kを作成した。
Example 9 In place of Exemplified Compound 1-3.1-17 used in Example 7, the following Exemplary Compounds were mixed in the weight parts shown below to prepare Liquid Crystal Composition K.

例示化合物No、    構 造 式      重量
部!−10 す この液晶組成物を用いた以外は全(実施例1と同様の方
法で強誘電性液晶素子を作成し、実施例1と同様の方法
で光学応答速度を測定し、スイッチング状態を観察した
Exemplary compound No. Structural formula Weight part! -10 All except that a liquid crystal composition was used (a ferroelectric liquid crystal element was created in the same manner as in Example 1, the optical response speed was measured in the same manner as in Example 1, and the switching state was observed. did.

この液晶素子内の均一配向性は良好であり、モノドメイ
ン状態が得られた。
The uniform alignment within this liquid crystal element was good, and a monodomain state was obtained.

測定結果を次に示す。The measurement results are shown below.

15℃    25℃    35℃ 応答速度   355 p sec     215 
p sec     169 μsecまた、駆動時に
は明瞭なスイッチング動作が観察され、電圧印加を止め
た際の双安定性も良好であった。
15℃ 25℃ 35℃ Response speed 355 p sec 215
p sec 169 μsec Further, a clear switching operation was observed during driving, and good bistability was observed when voltage application was stopped.

す 実施例10 実施例7で使用した例示化合物1−3.1−17のかわ
りに以下に示す例示化合物を各々以下に示す重量部で混
合し、液晶組成物りを作成した。
Example 10 In place of Exemplified Compound 1-3.1-17 used in Example 7, the following exemplary compounds were mixed in the weight parts shown below to prepare a liquid crystal composition.

例示化合物NO,構 造 式      重量部この液
晶組成物を用いた以外は全〈実施例1と同様の方法で強
誘電性液晶素子を作成し、実施例1と同様の方法で光学
応答速度を測定し、スイッチング状態を観察した。
Exemplary Compound No. Structural Formula Parts by Weight A ferroelectric liquid crystal device was prepared in the same manner as in Example 1, except that this liquid crystal composition was used, and the optical response speed was measured in the same manner as in Example 1. and observed the switching state.

この液晶素子内の均−配向性は良好であり、モノドメイ
ン状態が得られた。
The uniform alignment within this liquid crystal element was good, and a monodomain state was obtained.

測定結果を次に示す。The measurement results are shown below.

15℃    25℃    35°C応答速度   
390μsec     228 μsec     
170 μsecまた、駆動時には明瞭なスイッチング
動作が観察され、電圧印加を止めた際の双安定性も良好
であった。
15°C 25°C 35°C response speed
390μsec 228μsec
170 μsec Also, clear switching behavior was observed during driving, and good bistability was observed when voltage application was stopped.

実施例11 実施例7で使用した例示化合物1−3.1−7のかわり
に以下に示す例示化合物を各々以下に示す重量部で混合
し、液晶組成物Mを作成した。
Example 11 In place of Exemplified Compound 1-3.1-7 used in Example 7, the following exemplary compounds were mixed in the weight parts shown below to prepare a liquid crystal composition M.

例示化合物No、    構 造 式      重量
部す この液晶組成物を用いた以外は全〈実施例1と同様の方
法で強誘電性液晶素子を作成し、実施例1と同様の方法
で光学応答速度を測定し、スイッチング状態を観察した
A ferroelectric liquid crystal element was prepared in the same manner as in Example 1, and the optical response speed was determined in the same manner as in Example 1. The switching state was observed.

この液晶素子内の均一配向性は良好であり、モノドメイ
ン状態が得られた。
The uniform alignment within this liquid crystal element was good, and a monodomain state was obtained.

測定結果を次に示す。The measurement results are shown below.

15℃    25℃    35°C応答速度   
396 μsec     249 μsec    
 180 p secまた、′駆動時には明瞭なスイッ
チング動作が観察され、電圧印加を止めた際の双安定性
も良好であった。
15°C 25°C 35°C response speed
396 μsec 249 μsec
180 p sec Furthermore, a clear switching operation was observed during '' driving, and good bistability was observed when the voltage application was stopped.

実施例12 実施例7で使用した例示化合物1−3.1−17のかわ
りに以下に示す例示化合物を各々以下に示す重量部で混
合し、液晶組成物Nを作成した。
Example 12 In place of Exemplified Compound 1-3.1-17 used in Example 7, the following exemplary compounds were mixed in the weight parts shown below to prepare a liquid crystal composition N.

例示化合物No、    構 造 式      重量
部この液晶組成物を用いた以外は全〈実施例1と同様の
方法で強誘電性液晶素子を作成し、実施例1と同様の方
法で光学応答速度を測定し、スイッチング状態を観察し
た。
Exemplary Compound No. Structural Formula Part by Weight A ferroelectric liquid crystal device was prepared in the same manner as in Example 1, except that this liquid crystal composition was used, and the optical response speed was measured in the same manner as in Example 1. and observed the switching state.

この液晶素子内の均一配向性は良好であり、モノドメイ
ン状態が得られた。
The uniform alignment within this liquid crystal element was good, and a monodomain state was obtained.

測定結果を次に示す。The measurement results are shown below.

15℃    25℃    35°C応答速度   
360 μsec     242 p sec   
  170 μsecまた、駆動時には明瞭なスイッチ
ング動作が観察され、電圧印加を止めた際の双安定性も
良好であった。
15°C 25°C 35°C response speed
360 μsec 242 psec
170 μsec Also, clear switching behavior was observed during driving, and good bistability was observed when voltage application was stopped.

実施例13 実施例7で使用した例示化合物1−3.1−17のかわ
りに以下に示す例示化合物を各々以下に示す重量部で混
合し、液晶組成物0を作成した。
Example 13 In place of Exemplified Compound 1-3.1-17 used in Example 7, the following Exemplified Compounds were mixed in the weight parts shown below to prepare Liquid Crystal Composition 0.

例示化合物No、    構 造 式      重量
部この液晶組成物を用いた以外は全〈実施例1と同様の
方法で強誘電性液晶素子を作成し、実施例1と同様の方
法で光学応答速度を測定し、スイッチング状態を観察し
た。
Exemplary Compound No. Structural Formula Part by Weight A ferroelectric liquid crystal device was prepared in the same manner as in Example 1, except that this liquid crystal composition was used, and the optical response speed was measured in the same manner as in Example 1. and observed the switching state.

この液晶素子内の均一配向性は良好であり、モノドメイ
ン状態が得られた。
The uniform alignment within this liquid crystal element was good, and a monodomain state was obtained.

測定結果を次に示す。The measurement results are shown below.

15°C25°C35°C 応答速度   3461t sec     235 
p sec     165 μsecまた、駆動時に
は明瞭なスイッチング動作が観察され、電圧印加を止め
た際の双安定性も良好であった。
15°C25°C35°C Response speed 3461t sec 235
p sec 165 μsec Also, clear switching behavior was observed during driving, and good bistability was observed when voltage application was stopped.

実施例14 実施例1で使用したポリイミド樹脂前駆体1.5%ジメ
チルアセトアミド溶液に代えて、ポリビニルアルコール
樹脂[クラレ■製PUA−117] 2%水溶液を用い
た他は全(同様の方法で強誘電性液晶素子を作成し、実
施例1と同様の方法で光学応答速度を測定した。
Example 14 In place of the 1.5% dimethylacetamide solution of the polyimide resin precursor used in Example 1, a 2% aqueous solution of polyvinyl alcohol resin [PUA-117 manufactured by Kuraray ■] was used. A dielectric liquid crystal element was prepared, and the optical response speed was measured in the same manner as in Example 1.

その結果を次に示す。The results are shown below.

15°C25°0    35℃ 117 μsec   83 μsec    ##p
 sec実施例15 実施例1で使用したSiO2を用いずに、ポリイミド樹
脂だけで配向制御層を作成した以外は全(実施例1と同
様の方法で強誘電性液晶素子を作成し、実施例1と同様
の方法で光学応答速度を測定した。
15°C25°0 35°C 117 μsec 83 μsec ##p
sec Example 15 A ferroelectric liquid crystal element was created in the same manner as in Example 1, except that the alignment control layer was created only with polyimide resin without using SiO2 used in Example 1. The optical response speed was measured in the same manner.

その結果を次に示す。The results are shown below.

15°C25°C35°C 115μsec     82 μsec    70
 μsec実施例14. 15より明らかな様に、素子
構成を変えた場合でも本発明に従う強誘電性液晶組成物
を含有する素子は、実施例1と同様に低昆作動特性の非
常に改善され、かつ、応答速度の温度依存性が軽減され
たものとなっている。
15°C25°C35°C 115μsec 82μsec 70
μsec Example 14. As is clear from Example 15, even when the device configuration is changed, the device containing the ferroelectric liquid crystal composition according to the present invention has significantly improved low voltage actuation characteristics and response speed, as in Example 1. Temperature dependence is reduced.

〔発明の効果〕〔Effect of the invention〕

本発明の液晶性化合物を含有する素子は、スイッチング
特性が良好で、低温作動特性の改善された液晶素子、及
び応答速度の温度依存性の軽減された液晶素子とするこ
とができる。
A device containing the liquid crystal compound of the present invention can be a liquid crystal device with good switching characteristics, improved low-temperature operation characteristics, and a liquid crystal device with reduced temperature dependence of response speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は強誘電性液晶を用いた液晶素子の一例の断面概
略図。 第2図および第3図は強誘電性液晶素子の動作説明のた
めに、素子セルの一例を模式的に表わす斜視図。 第1図において、 1・・・・・・・・・・・・・強誘電性液晶層2・・・
・・・・・・・・・・・・ガラス基板3・・・・・・・
・・・・・・・・・透明電極4・・・・・・・・・・・
・絶縁性配向制御層5・・・・・・・・・・・・・・・
スペーサー6 ・・・・・・・・・・・・・・・・リー
ド線7・・・・・・・・・・・・・・・・・・電源8・
・・・・・・・・・・・・・・・・偏光板9・・・・・
・・・・・・・・・・・・・光源I0 ・・・・・・・
・・・・・・・・・入射光!・・・・・・・・・・・・
・・・・・透過光第2図において、 2ja ・・・・・・・・・曲・・・・凹・・曲・基板
1b 24 ・・・・・・・・ 第3図において、 1a 1b 3a 3b 34 a・・・・・・・ 34b・・・・・・・ a b 基板 強誘電性液晶層 液晶分子 双極子モーメント(P工) 電圧印加手段 電圧印加手段 第1の安定状態 第2の安定状態 上向きの双極子モーメント 下向きの双極子モーメント 上向きの電界 下向きの電界
FIG. 1 is a schematic cross-sectional view of an example of a liquid crystal element using ferroelectric liquid crystal. 2 and 3 are perspective views schematically showing an example of an element cell for explaining the operation of a ferroelectric liquid crystal element. In FIG. 1, 1... Ferroelectric liquid crystal layer 2...
......Glass substrate 3...
......Transparent electrode 4...
・Insulating orientation control layer 5・・・・・・・・・・・・・・・
Spacer 6・・・・・・・・・・・・・・・Lead wire 7・・・・・・・・・・・・・・・・・・Power supply 8・
・・・・・・・・・・・・・・・Polarizing plate 9・・・・・・
・・・・・・・・・・・・Light source I0 ・・・・・・・・・
・・・・・・・・・Incoming light!・・・・・・・・・・・・
......Transmitted light in Figure 2, 2ja...Curved...Concave...Curved, Substrate 1b 24...In Fig. 3, 1a 1b 3a 3b 34 a... 34b... a b Substrate Ferroelectric liquid crystal layer Liquid crystal molecule dipole moment (P) Voltage application means Voltage application means First stable state Second Steady state Upward dipole moment Downward dipole moment Upward electric field Downward electric field

Claims (2)

【特許請求の範囲】[Claims] (1)下記一般式[ I ] ▲数式、化学式、表等があります▼[ I ] (R_1、R_2はそれぞれ置換基を有してもよい炭素
数1〜16のアルキル基を示し、X、Yはそれぞれ単結
合または−O−を示す。Aは−A_1−または−A_1
−A_2−を示し、Bは−B_1−または−B_1−B
_2−を示す。A_1、A_2、B_1、B_2はそれ
ぞれ置換基を有してもよい1,4−フェニレンを示す。 )で表わされる化合物の少なくとも1種類を含有する強
誘電性カイラルスメクチツク液晶組成物。
(1) The following general formula [I] ▲ Numerical formulas, chemical formulas, tables, etc. are available▼ [I] (R_1 and R_2 each represent an alkyl group with 1 to 16 carbon atoms that may have a substituent, X, Y each represents a single bond or -O-.A represents -A_1- or -A_1
-A_2-, B is -B_1- or -B_1-B
_2- is shown. A_1, A_2, B_1, and B_2 each represent 1,4-phenylene which may have a substituent. ) A ferroelectric chiral smectic liquid crystal composition containing at least one compound represented by:
(2)請求項1記載の強誘電性カイラルスメクチツク液
晶組成物を1対の電極基板間に配置してなることを特徴
とする液晶素子。
(2) A liquid crystal device comprising the ferroelectric chiral smectic liquid crystal composition according to claim 1 disposed between a pair of electrode substrates.
JP10223789A 1989-04-20 1989-04-20 Ferroelectric chiral smectic liquid crystal composition and liquid crystal elements using the same Pending JPH02279651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10223789A JPH02279651A (en) 1989-04-20 1989-04-20 Ferroelectric chiral smectic liquid crystal composition and liquid crystal elements using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10223789A JPH02279651A (en) 1989-04-20 1989-04-20 Ferroelectric chiral smectic liquid crystal composition and liquid crystal elements using the same

Publications (1)

Publication Number Publication Date
JPH02279651A true JPH02279651A (en) 1990-11-15

Family

ID=14322030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10223789A Pending JPH02279651A (en) 1989-04-20 1989-04-20 Ferroelectric chiral smectic liquid crystal composition and liquid crystal elements using the same

Country Status (1)

Country Link
JP (1) JPH02279651A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062137A1 (en) * 2016-09-29 2018-04-05 Dic株式会社 Liquid crystal display element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062137A1 (en) * 2016-09-29 2018-04-05 Dic株式会社 Liquid crystal display element
JPWO2018062137A1 (en) * 2016-09-29 2019-06-24 Dic株式会社 Liquid crystal display device

Similar Documents

Publication Publication Date Title
JP2801279B2 (en) Compound, liquid crystal composition containing the same, and liquid crystal device using the same
JP2801269B2 (en) Compound, liquid crystal composition containing the same, and liquid crystal device using the same
JPH0269440A (en) Optically active liquid-crystallizable compound, liquid crystal composition containing the same compound and liquid crystal element
JP2691946B2 (en) Liquid crystal compound, liquid crystal composition containing the same, and liquid crystal device using the same
JP2952053B2 (en) Optically active compound, liquid crystal composition containing the same, method of using the same, liquid crystal element using the same, and display device
JP2832028B2 (en) Compound, liquid crystal composition containing the same, and liquid crystal device using the same
JP2819332B2 (en) Liquid crystal compound and liquid crystal composition containing the same
JPH04217973A (en) Liquid crystal compound, liquid crystal composition containing the compound and liquid crystal element and display device produced by using the same
JPH04211674A (en) Liquid crystalline compound, liquid crystal composition containing the same, its use and liquid crystal element and display device using the same
JPS63137986A (en) Ferroelectric liquid crystal device
JPH02255635A (en) Liquid crystal compound and liquid crystal composition containing same and liquid crystal element
JP2796753B2 (en) Chiral smectic liquid crystal composition and liquid crystal device using the same
JPH0446162A (en) Liquid crystal compound, liquid crystal composition containing the compound and liquid crystal element using the same
JPH0426679A (en) Liquid crystalline compound, liquid crystal composition containing the same and liquid crystal element using the same
JPH02279651A (en) Ferroelectric chiral smectic liquid crystal composition and liquid crystal elements using the same
JP2749822B2 (en) Liquid crystal composition and liquid crystal device containing the same
JP2872372B2 (en) Liquid crystal compound, liquid crystal composition containing the same, and liquid crystal device using the same
JP2756262B2 (en) Liquid crystal composition and liquid crystal device containing the same
JPH04247076A (en) Liquid crystal compound, liquid crystal composition containing the same, its use and liquid crystal element and display produced by using the same
JP2510681B2 (en) Liquid crystal composition and liquid crystal device containing the same
JPH04300871A (en) Optically active compound, liquid crystal composition containing the compound, liquid crystal element containing the composition and display and display device using the element or the like
JPH04264052A (en) Optically active compound, liquid crystal composition containing the same, liquid crystal element having the same and method for display and display device using the same
JP2739373B2 (en) Liquid crystal compound, liquid crystal composition containing the same, and liquid crystal device using the same
JPH06239849A (en) Optically active compound, liquid crystal composition containing the same, liquid crystal element having the same composition and display method and display device using the same
JPH02272088A (en) Liquid crystal composition and liquid crystal element containing the same