JPH06239849A - Optically active compound, liquid crystal composition containing the same, liquid crystal element having the same composition and display method and display device using the same - Google Patents

Optically active compound, liquid crystal composition containing the same, liquid crystal element having the same composition and display method and display device using the same

Info

Publication number
JPH06239849A
JPH06239849A JP5026808A JP2680893A JPH06239849A JP H06239849 A JPH06239849 A JP H06239849A JP 5026808 A JP5026808 A JP 5026808A JP 2680893 A JP2680893 A JP 2680893A JP H06239849 A JPH06239849 A JP H06239849A
Authority
JP
Japan
Prior art keywords
liquid crystal
optically active
outside
halogen
crystal composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5026808A
Other languages
Japanese (ja)
Inventor
Ikuo Nakazawa
郁郎 中澤
Shinichi Nakamura
真一 中村
Takao Takiguchi
隆雄 滝口
Takashi Iwaki
孝志 岩城
Gouji Tokanou
剛司 門叶
Yoko Yamada
容子 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5026808A priority Critical patent/JPH06239849A/en
Publication of JPH06239849A publication Critical patent/JPH06239849A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furan Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

PURPOSE:To obtain a new compound useful as a ferroelectric liquid crystal element having low temperature-operating characteristics, high speed response, etc. CONSTITUTION:A compound of formula I [R1 is H, halogen, CN or 1-18C alkyl; A1 to A3 are formula II [P1 and P2 are H, halogen, CH3, etc.), etc.; X1 and X2 are single bond, CH2O, etc.; * is optically active; (m) and (n) are 0 or 1], e.g. optically active 5-decyl-[2-(4-tetrahydrofurfuryloxy)phenyl]pyrimidine. The compound of formula I is obtained by reacting a compound of formula III with a compound of the formula R1-(A1-X2-X2)m-A2-X2-A3-OH in the presence of a sodium hydride in a solvent [e.g. DMF]. The compound is a liquid crystalline compound having optically active tetrahydrofuran ring on side chain end and is used by combining with a light source, a driving circuit, etc., as the display element to provide the objective display device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規な光学活性化合
物、それを含有する液晶組成物およびそれを使用した液
晶素子並びに表示装置に関し、さらに詳しくは電界に対
する応答特性が改善された新規な液晶組成物、およびそ
れを使用した液晶表示素子や液晶−光シャッター等に利
用される液晶素子並びに該液晶素子を表示に使用した表
示装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel optically active compound, a liquid crystal composition containing the same, a liquid crystal device and a display device using the same, and more specifically, a novel liquid crystal having improved response characteristics to an electric field. The present invention relates to a composition, a liquid crystal display element using the same, a liquid crystal element used for a liquid crystal-optical shutter, and a display device using the liquid crystal element for display.

【0002】[0002]

【従来の技術】従来より、液晶は電気光学素子として種
々の分野で応用されている。現在実用化されている液晶
素子はほとんどが、例えばエム シャット(M.Sch
adt)とダブリュ ヘルフリッヒ(W.Helfri
ch)著“アプライド フィジックス レターズ”
(“Applied Physics Letter
s”)Vo.18, No.4(1971.2.15)
P.127〜128の“Voltage Depend
ent Optical Activity of a
Twisted Nematic liquid Cr
ystal”に示されたTN(Twisted Nem
atic)型の液晶を用いたものである。
2. Description of the Related Art Conventionally, liquid crystals have been applied as electro-optical elements in various fields. Most of the liquid crystal elements currently in practical use are, for example, M. Sch.
adt) and W. Helfri
ch) "Applied Physics Letters"
("Applied Physics Letter
s ") Vo.18, No.4 (1971.2.15)
P. 127-128 "Voltage Depend"
ent Optical Activity of a
Twisted Nematic liquid Cr
TN (Twisted Nem)
atic) type liquid crystal is used.

【0003】これらは、液晶の誘電的配列効果に基づい
ており、液晶分子の誘電異方性のために平均分子軸方向
が、加えられた電場により特定の方向に向く効果を利用
している。これらの素子の光学的な応答速度の限界はミ
リ秒であるといわれ、多くの応用のためには遅すぎる。
These are based on the dielectric alignment effect of liquid crystals, and utilize the effect that the average molecular axis direction is directed in a specific direction by an applied electric field due to the dielectric anisotropy of liquid crystal molecules. The optical response speed limit of these devices is said to be milliseconds, which is too slow for many applications.

【0004】一方、大型平面ディスプレイへの応用で
は、価格、生産性などを考え合せると単純マトリクス方
式による駆動が最も有力である。単純マトリクス方式に
おいては、走査電極群と信号電極群をマトリクス状に構
成した電極構成が採用され、その駆動のためには、走査
電極群に順次周期的にアドレス信号を選択印加し、信号
電極群には所定の情報信号をアドレス信号と同期させて
並列的に選択印加する時分割駆動方式が採用されてい
る。
On the other hand, in the application to a large flat panel display, the driving by the simple matrix system is the most effective in consideration of price, productivity and the like. The simple matrix method employs an electrode configuration in which a scan electrode group and a signal electrode group are arranged in a matrix, and in order to drive the scan electrode group, an address signal is sequentially and selectively selected and applied to the scan electrode group. Employs a time-division drive system in which a predetermined information signal is synchronized with an address signal and selectively applied in parallel.

【0005】しかし、この様な駆動方式の素子に前述し
たTN型の液晶を採用すると走査電極が選択され、信号
電極が選択されない領域、或いは走査電極が選択され
ず、信号電極が選択される領域(所謂“半選択点”)に
も有限に電界がかかってしまう。
However, when the above-mentioned TN type liquid crystal is adopted for the element of such a driving system, the scan electrode is selected and the signal electrode is not selected, or the scan electrode is not selected and the signal electrode is selected. An electric field is applied to a finite amount (so-called "half selection point").

【0006】選択点にかかる電圧と、半選択点にかかる
電圧の差が充分に大きく、液晶分子を電界に垂直に配列
させるのに要する電圧閾値がこの中間の電圧値に設定さ
れるならば、表示素子は正常に動作するわけであるが、
走査線数(N)を増加して行った場合、画面全体(1フ
レーム)を走査する間に一つの選択点に有効な電界がか
かっている時間(duty比)が1/Nの割合で減少し
てしまう。
If the difference between the voltage applied to the selection point and the voltage applied to the half selection point is sufficiently large and the voltage threshold value required to align the liquid crystal molecules perpendicularly to the electric field is set to an intermediate voltage value, The display element works normally,
When the number of scanning lines (N) is increased, the time (duty ratio) in which an effective electric field is applied to one selected point while scanning the entire screen (one frame) is reduced by 1 / N. Resulting in.

【0007】このために、くり返し走査を行った場合の
選択点と非選択点にかかる実効値としての電圧差は、走
査線数が増えれば増える程小さくなり、結果的には画像
コントラストの低下やクロストークが避け難い欠点とな
っている。
For this reason, the voltage difference as the effective value applied to the selected point and the non-selected point in the case of repeating scanning becomes smaller as the number of scanning lines increases, and as a result, the image contrast is lowered or Crosstalk is an inevitable drawback.

【0008】この様な現象は、双安定性を有さない液晶
(電極面に対し、液晶分子が水平に配向しているのが安
定状態であり、電界が有効に印加されている間のみ垂直
に配向する)を時間的蓄積効果を利用して駆動する(即
ち、繰り返し走査する)ときに生ずる本質的には避け難
い問題点である。
Such a phenomenon is caused by a liquid crystal having no bistability (a stable state in which liquid crystal molecules are aligned horizontally with respect to an electrode surface, and a vertical state only while an electric field is effectively applied). This is an essentially unavoidable problem that occurs when driving (that is, repeatedly scanning) using the temporal accumulation effect.

【0009】この点を改良するために、電圧平均化法、
2周波駆動法や、多重マトリクス法等が既に提案されて
いるが、いずれの方法でも不充分であり、表示素子の大
画面化や高密度化は、走査線数が充分に増やせないこと
によって頭打ちになっているのが現状である。
In order to improve this point, the voltage averaging method,
The two-frequency driving method and the multi-matrix method have already been proposed, but none of them is sufficient, and the increase in the screen size and the density of the display element is stopped because the number of scanning lines cannot be increased sufficiently. It is the current situation.

【0010】この様な従来型の液晶素子の欠点を改善す
るものとして、双安定性を有する液晶素子の使用がクラ
ーク(Clark)およびラガウェル(Lagerwa
ll)により提案されている(特開昭56−10721
6号公報、米国特許第4367924号明細書等)。
In order to improve the drawbacks of the conventional liquid crystal device, the use of a liquid crystal device having bistability is explained by Clark and Lagerwell.
11) (Japanese Patent Laid-Open No. 56-10721).
No. 6, the specification of US Pat. No. 4,367,924).

【0011】双安定性液晶としては、一般にカイラルス
メクチィックC相(SmC*相)又はH相(SmH*相)
を有する強誘電性液晶が用いられる。
Bistable liquid crystals are generally chiral smectic C phase (SmC * phase) or H phase (SmH * phase).
A ferroelectric liquid crystal having is used.

【0012】この強誘電性液晶は電界に対して第1の光
学的安定状態と第2の光学的安定状態からなる双安定状
態を有し、従って前述のTN型の液晶で用いられた光学
変調素子とは異なり、例えば一方の電界ベクトルに対し
て第1の光学的安定状態に液晶が配向し、他方の電界ベ
クトルに対しては第2の光学的安定状態に液晶が配向さ
れている。また、この型の液晶は、加えられる電界に応
答して、上記2つの安定状態のいずれかを取り、且つ電
界の印加のないときはその状態を維持する性質(双安定
性)を有する。
This ferroelectric liquid crystal has a bistable state consisting of a first optical stable state and a second optical stable state with respect to an electric field, and therefore the optical modulation used in the above-mentioned TN type liquid crystal. Unlike the element, for example, the liquid crystal is oriented in the first optically stable state with respect to one electric field vector, and the liquid crystal is oriented in the second optically stable state with respect to the other electric field vector. Further, this type of liquid crystal has a property (bistability) of taking one of the two stable states described above in response to an applied electric field and maintaining that state when no electric field is applied.

【0013】以上の様な双安定性を有する特徴に加え
て、強誘電性液晶は高速応答性であるという優れた特徴
を持つ。それは強誘電性液晶の持つ自発分極と印加電場
が直接作用して配向状態の転移を誘起するためであり、
誘電率異方性と電場の作用による応答速度より3〜4オ
ーダー速い。
In addition to the above-mentioned characteristic of having bistability, the ferroelectric liquid crystal has an excellent characteristic of high-speed response. This is because the spontaneous polarization of the ferroelectric liquid crystal and the applied electric field act directly to induce the transition of the alignment state.
It is 3 to 4 orders faster than the response speed due to the effect of the dielectric anisotropy and the electric field.

【0014】この様に強誘電性液晶はきわめて優れた特
性を潜在的に有しており、このような性質を利用するこ
とにより、上述した従来のTN型素子の問題点の多くに
対して、かなり本質的な改善が得られる。特に、高速光
学光シャッターや高密度、大画面ディスプレイへの応用
が期待される。このため強誘電性を持つ液晶材料に関し
ては広く研究がなされているが、現在までに開発された
強誘電性液晶材料は、低温作動特性、高速応答性等を含
めて液晶素子に用いる十分な特性を備えているとは言い
難い。
As described above, the ferroelectric liquid crystal potentially has extremely excellent characteristics, and by utilizing such characteristics, many of the problems of the conventional TN type element described above are solved. A fairly substantial improvement is obtained. In particular, it is expected to be applied to high-speed optical optical shutters, high-density, large-screen displays. For this reason, research has been conducted extensively on liquid crystal materials with ferroelectricity, but the ferroelectric liquid crystal materials developed to date have sufficient characteristics for use in liquid crystal elements, including low-temperature operating characteristics and high-speed response characteristics. It is hard to say that it has.

【0015】応答時間τと自発分極の大きさPsおよび
粘度ηの間には、下記の式(II)
Between the response time τ, the magnitude Ps of spontaneous polarization and the viscosity η, the following equation (II)

【0016】[0016]

【外35】 (ただし、Eは印加電界である)の関係が存在する。し
たがって応答速度を速くするには、 (ア)自発分極の大きさPsを大きくする (イ)粘度ηを小さくする (ウ)印加電界Eを大きくする 方法がある。しかし印加電界は、IC等で駆動するため
上限があり、出来るだけ低い方が望ましい。よって、実
際には粘度ηを小さくするか、自発分極の大きさPsの
値を大きくする必要がある。
[Outside 35] (However, E is an applied electric field). Therefore, in order to increase the response speed, there are methods of (a) increasing the magnitude Ps of spontaneous polarization (b) decreasing the viscosity η (c) increasing the applied electric field E. However, the applied electric field has an upper limit because it is driven by an IC or the like, and it is desirable that the applied electric field be as low as possible. Therefore, it is actually necessary to reduce the viscosity η or increase the value of the spontaneous polarization magnitude Ps.

【0017】一般的に自発分極の大きい強誘電性カイラ
ルスメクチック液晶化合物においては、自発分極のもた
らすセルの内部電界も大きく、双安定状態をとり得る素
子構成への制約が多くなる傾向にある。又、いたずらに
自発分極を大きくしても、それにつれて粘度も大きくな
る傾向にあり、結果的には応答速度はあまり速くならな
いことが考えられる。
Generally, in a ferroelectric chiral smectic liquid crystal compound having a large spontaneous polarization, the internal electric field of the cell caused by the spontaneous polarization is also large, and there is a tendency that there are many restrictions on the device structure capable of assuming a bistable state. Further, even if the spontaneous polarization is unnecessarily increased, the viscosity tends to increase accordingly, and as a result, the response speed may not be so fast.

【0018】また、実際のディスプレイとしての使用温
度範囲が例えば5〜40℃程度とした場合、応答速度の
変化が一般に20倍程もあり、駆動電圧および周波数に
よる調節の限界を超えているのが現状である。
When the temperature range used as an actual display is, for example, about 5 to 40 ° C., the change in response speed is generally about 20 times, which exceeds the limit of adjustment by the drive voltage and frequency. The current situation.

【0019】以上述べたように、強誘電性液晶素子を実
用化するためには、大きな自発分極と低い粘性高速応答
性を有し、かつ応答速度の温度依存性の小さなカイラル
スメクチック相を示す液晶組成物が要求される。
As described above, in order to put the ferroelectric liquid crystal device into practical use, a liquid crystal exhibiting a large chiral smectic phase having large spontaneous polarization, low viscous high-speed response, and small temperature dependence of response speed. A composition is required.

【0020】さらに、ディスプレイの均一なスイッチン
グ、良好な視角特性、低温保存性、駆動ICへの負荷の
軽減などのために液晶組成物の自発分極、カイラルスメ
クチックCピッチ、Chピッチ、液晶相をとる温度範
囲、光学異方性、チルト角、誘電異方性などを適正化す
る必要がある。
Further, the liquid crystal composition has spontaneous polarization, chiral smectic C pitch, Ch pitch, and liquid crystal phase for uniform switching of the display, good viewing angle characteristics, low temperature storability, and reduction of load on the driving IC. It is necessary to optimize the temperature range, optical anisotropy, tilt angle, dielectric anisotropy and the like.

【0021】[0021]

【発明が解決しようとする課題】本発明の目的は、前述
の強誘電性液晶素子を実用できるようにするために、効
果的な液晶性化合物、これを含む液晶組成物、特に強誘
電性カイラルスメクチック相を示す液晶組成物、および
該液晶組成物を使用する液晶素子、表示装置を提供する
ことにある。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide an effective liquid crystal compound, a liquid crystal composition containing the same, and particularly a ferroelectric chiral compound so that the above-mentioned ferroelectric liquid crystal device can be put to practical use. An object of the present invention is to provide a liquid crystal composition exhibiting a smectic phase, and a liquid crystal element and a display device using the liquid crystal composition.

【0022】[0022]

【課題を解決するための手段および作用】すなわち本発
明は、光学活性テトラヒドロフラン環を側鎖末端に有す
ることを特徴とする光学活性化合物(液晶性化合物)で
あり、特に、本発明は下記一般式(I)で示される光学
活性化合物である。
Means for Solving the Problems The present invention is an optically active compound (liquid crystalline compound) characterized by having an optically active tetrahydrofuran ring at a side chain terminal, and in particular, the present invention has the following general formula: It is an optically active compound represented by (I).

【0023】[0023]

【外36】 (R1はH、ハロゲン、CNまたは炭素数が1から18
までの直鎖状または分岐状のアルキル基であり、該アル
キル基中の1つもしくは隣接しない2つ以上のメチレン
基は、−Y−、
[Outside 36] (R 1 is H, halogen, CN or a carbon number of 1 to 18
Up to a linear or branched alkyl group, wherein one or two or more non-adjacent methylene groups in the alkyl group are -Y-,

【0024】[0024]

【外37】 によって置き換えられてもよい。但し、Yは−O−もし
くは−S−を示し、Wはハロゲン、CF3、CNを示
す。
[Outside 37] May be replaced by However, Y represents a -O- or -S-, W represents a halogen, CF 3, CN.

【0025】m、nはそれぞれ独立に0または1であ
る。A1、A2、A3は、
M and n are independently 0 or 1. A 1 , A 2 and A 3 are

【0026】[0026]

【外38】 からそれぞれ独立に選ばれる。但し、P1、P2はH、ハ
ロゲン、CH3、CF3、CNを示す。
[Outside 38] Each is independently selected. However, P 1 and P 2 represent H, halogen, CH 3 , CF 3 and CN.

【0027】X1、2は単結合、X 1 and X 2 are single bonds,

【0028】[0028]

【外39】 *は光学活性であることを示す。)[Outside 39] * Indicates that it is optically active. )

【0029】また、本発明は、該光学活性化合物の少な
くとも1種類を含有する液晶組成物、および該液晶組成
物を1対の電極基板間に配置してなる液晶素子並びに表
示装置を提供するものである。
The present invention also provides a liquid crystal composition containing at least one kind of the optically active compound, and a liquid crystal element and a display device in which the liquid crystal composition is arranged between a pair of electrode substrates. Is.

【0030】前記(I)式で示される光学活性化合物の
うち、好ましい化合物として(Ia)〜(Ij)が挙げ
られる。
Among the optically active compounds represented by the above formula (I), preferred compounds include (Ia) to (Ij).

【0031】[0031]

【外40】 (R1はH、ハロゲン、CNまたは炭素数が1から18
までの直鎖状または分岐状のアルキル基であり、該アル
キル基中の1つもしくは隣接しない2つ以上のメチレン
基は、−Y−、
[Outside 40] (R 1 is H, halogen, CN or a carbon number of 1 to 18
Up to a linear or branched alkyl group, wherein one or two or more non-adjacent methylene groups in the alkyl group are -Y-,

【0032】[0032]

【外41】 によって置き換えられてもよい。但し、Yは−O−もし
くは−S−を示し、Wはハロゲン、CF3、CNを示
す。
[Outside 41] May be replaced by However, Y represents a -O- or -S-, W represents a halogen, CF 3, CN.

【0033】A1、A2、A3は、A 1 , A 2 and A 3 are

【0034】[0034]

【外42】 からそれぞれ独立に選ばれる。P1、P2はH、ハロゲ
ン、CH3、CF3、CNを示す。
[Outside 42] Each is independently selected. P 1 and P 2 represent H, halogen, CH 3 , CF 3 and CN.

【0035】*は光学活性であることを示す。)* Indicates that it is optically active. )

【0036】前記一般式(Ia)〜(Ij)で表される
各々の化合物のうち、さらに好ましくは(Iaa)〜
(Ija)が挙げられる。
Of the compounds represented by the above general formulas (Ia) to (Ij), more preferred are (Iaa) to
(Ija) may be mentioned.

【0037】[0037]

【外43】 [Outside 43]

【0038】[0038]

【外44】 [Outside 44]

【0039】[0039]

【外45】 (R1はH、ハロゲン、CNまたは炭素数が1から18
までの直鎖状または分岐状のアルキル基であり、該アル
キル基中の1つもしくは隣接しない2つ以上のメチレン
基は、−Y−、
[Outside 45] (R 1 is H, halogen, CN or a carbon number of 1 to 18
Up to a linear or branched alkyl group, wherein one or two or more non-adjacent methylene groups in the alkyl group are -Y-,

【0040】[0040]

【外46】 によって置き換えられてもよい。但し、Yは−O−もし
くは−S−を示し、Wはハロゲン、CF3、CNを示
す。
[Outside 46] May be replaced by However, Y represents a -O- or -S-, W represents a halogen, CF 3, CN.

【0041】P1、P2はH、ハロゲン、CH3、CF3
CNを示す。) 以上述べた各一般式で表わされる化合物において、好ま
しいR1は、下記(1)〜(4)から選ばれる。 (1) −X3−C12l+1−n (但し、lは3〜12の整数を示す。) (2)
P 1 and P 2 are H, halogen, CH 3 , CF 3 ,
Indicates CN. ) In the compounds represented by the above general formulas, preferable R 1 is selected from the following (1) to (4). (1) -X 3 -C 1 H 2l + 1 -n ( where, l is an integer of 3-12.) (2)

【0042】[0042]

【外47】 (但し、mは0〜6の整数、nは1〜8の整数を示す。
また、光学活性であってもよい。) (3)
[Outside 47] (However, m is an integer of 0 to 6, and n is an integer of 1 to 8.
It may also be optically active. ) (3)

【0043】[0043]

【外48】 (但し、rは0〜6の整数、sは0または1、tは1〜
12の整数を示す。また、光学活性であってもよい。) (4)
[Outside 48] (However, r is an integer of 0 to 6, s is 0 or 1, and t is 1 to
Indicates an integer of 12. It may also be optically active. ) (4)

【0044】[0044]

【外49】 (但し、uは0または1、vは1〜14の整数である。
*は光学活性であることを示す。) 上記式中、共通しているX3は、単結合、
[Outside 49] (However, u is 0 or 1, and v is an integer of 1 to 14.
* Indicates that it is optically active. ) In the above formula, the common X 3 is a single bond,

【0045】[0045]

【外50】 次に、前記一般式(I)で示される光学活性化合物の一
般的な合成例を示す。
[Outside 50] Next, general synthetic examples of the optically active compound represented by the general formula (I) will be shown.

【0046】[0046]

【外51】 (尚、R1、A1、A2、A3、X1、X2、mは前記定義の
とおり)
[Outside 51] (Note that R 1 , A 1 , A 2 , A 3 , X 1 , X 2 and m are as defined above)

【0047】次に、前記一般式(I)で示される光学活
性化合物の特に好ましい具体例を以下に構造式を以て示
す。
Next, particularly preferred specific examples of the optically active compound represented by the general formula (I) are shown below by structural formulas.

【0048】[0048]

【外52】 [Outside 52]

【0049】[0049]

【外53】 [Outside 53]

【0050】[0050]

【外54】 [Outside 54]

【0051】[0051]

【外55】 [Outside 55]

【0052】[0052]

【外56】 [Outside 56]

【0053】[0053]

【外57】 [Outside 57]

【0054】[0054]

【外58】 [Outside 58]

【0055】[0055]

【外59】 [Outside 59]

【0056】[0056]

【外60】 [Outside 60]

【0057】[0057]

【外61】 [Outside 61]

【0058】[0058]

【外62】 [Outside 62]

【0059】[0059]

【外63】 [Outside 63]

【0060】[0060]

【外64】 [Outside 64]

【0061】[0061]

【外65】 [Outside 65]

【0062】[0062]

【外66】 [Outside 66]

【0063】[0063]

【外67】 [Outside 67]

【0064】[0064]

【外68】 [Outside 68]

【0065】[0065]

【外69】 [Outside 69]

【0066】[0066]

【外70】 [Outside 70]

【0067】[0067]

【外71】 [Outside 71]

【0068】[0068]

【外72】 [Outside 72]

【0069】[0069]

【外73】 [Outside 73]

【0070】[0070]

【外74】 [Outside 74]

【0071】[0071]

【外75】 [Outside 75]

【0072】[0072]

【外76】 [Outer 76]

【0073】本発明の液晶組成物は前記一般式(I)で
示される光学活性化合物の少なくとも1種と他の液晶性
化合物1種以上とを適当な割合で混合することにより得
ることができる。また、本発明による液晶組成物は強誘
電性液晶組成物、特に強誘電性カイラルスメクチック液
晶組成物が好ましい。
The liquid crystal composition of the present invention can be obtained by mixing at least one kind of the optically active compound represented by the general formula (I) and one or more kinds of other liquid crystal compounds in an appropriate ratio. The liquid crystal composition according to the present invention is preferably a ferroelectric liquid crystal composition, particularly a ferroelectric chiral smectic liquid crystal composition.

【0074】本発明で用いる他の液晶性化合物を一般式
(III)〜(XIII)で次に示す。
Other liquid crystal compounds used in the present invention are represented by the following general formulas (III) to (XIII).

【0075】[0075]

【外77】 [Outside 77]

【0076】(III)式の好ましい化合物として(I
IIa)〜(IIIe)が挙げられる。
Preferred compounds of the formula (III) are (I
IIa) to (IIIe).

【0077】[0077]

【外78】 [Outside 78]

【0078】[0078]

【外79】 [Outside 79]

【0079】(IV)式の好ましい化合物として(IV
a)〜(IVc)が挙げられる。
Preferred compounds of the formula (IV) are (IV
a) to (IVc).

【0080】[0080]

【外80】 [Outside 80]

【0081】[0081]

【外81】 [Outside 81]

【0082】(V)式の好ましい化合物として(V
a)、(Vb)が挙げられる。
As a preferred compound of the formula (V), (V
a) and (Vb) are mentioned.

【0083】[0083]

【外82】 [Outside 82]

【0084】[0084]

【外83】 [Outside 83]

【0085】[0085]

【外84】 [Outside 84]

【0086】[0086]

【外85】 [Outside 85]

【0087】[0087]

【外86】 [Outside 86]

【0088】[0088]

【外87】 [Outside 87]

【0089】[0089]

【外88】 [Outside 88]

【0090】[0090]

【外89】 [Outside 89]

【0091】[0091]

【外90】 [Outside 90]

【0092】[0092]

【外91】 [Outside 91]

【0093】[0093]

【外92】 [Outside 92]

【0094】[0094]

【外93】 [Outside 93]

【0095】[0095]

【外94】 [Outside 94]

【0096】[0096]

【外95】 [Outside 95]

【0097】[0097]

【外96】 [Outside 96]

【0098】[0098]

【外97】 [Outside 97]

【0099】[0099]

【外98】 [Outside 98]

【0100】[0100]

【外99】 [Outside 99]

【0101】[0101]

【外100】 [Outside 100]

【0102】[0102]

【外101】 [Outer 101]

【0103】本発明の光学活性化合物と、1種以上の上
述の液晶性化合物、あるいは液晶組成物とを混合する場
合、混合して得られた液晶組成物中に占める本発明の光
学活性化合物の割合は1重量%〜80重量%、好ましく
は1重量%〜60重量%、さらに好ましくは1重量%〜
40重量%とすることが望ましい。
When the optically active compound of the present invention is mixed with one or more of the above liquid crystalline compounds or the liquid crystal composition, the amount of the optically active compound of the present invention in the liquid crystal composition obtained by mixing is The proportion is from 1% to 80% by weight, preferably from 1% to 60% by weight, more preferably from 1% by weight to
It is preferably 40% by weight.

【0104】また、本発明の光学活性化合物を2種以上
用いる場合は、混合して得られた液晶組成物中に占める
本発明の光学活性化合物2種以上の混合物の割合は1重
量%〜80重量%、好ましくは1重量%〜60重量%と
することが望ましい。
When two or more optically active compounds of the present invention are used, the proportion of the mixture of two or more optically active compounds of the present invention in the liquid crystal composition obtained by mixing is 1% by weight to 80%. It is desirable to set the content by weight, preferably 1% by weight to 60% by weight.

【0105】次に、本発明の液晶素子は、上述の液晶組
成物を1対の電極基板間に配置してなるが、特に強誘電
性液晶素子における強誘電性液晶層は、先に示したよう
にして作成した強誘電性液晶組成物を真空中、等方性液
体温度まで加熱し、素子セル中に封入し、徐々に冷却し
て液晶層を形成させ常圧に戻すことが好ましい。
Next, the liquid crystal element of the present invention comprises the above-mentioned liquid crystal composition disposed between a pair of electrode substrates. Particularly, the ferroelectric liquid crystal layer in the ferroelectric liquid crystal element is as described above. The ferroelectric liquid crystal composition thus prepared is preferably heated in vacuum to an isotropic liquid temperature, enclosed in an element cell, and gradually cooled to form a liquid crystal layer and then returned to normal pressure.

【0106】図1は強誘電性を利用した液晶素子の構成
を説明するための、カイラルスメクチック液晶層を有す
る液晶素子の一例を示す断面概略図である。
FIG. 1 is a schematic sectional view showing an example of a liquid crystal element having a chiral smectic liquid crystal layer for explaining the structure of a liquid crystal element utilizing ferroelectricity.

【0107】図1を参照して、液晶素子は、それぞれ透
明電極3および絶縁性配向制御層4を設けた1対のガラ
ス基板2間にカイラルスメクチック相を示す液晶層1を
配置し、且つその層厚をスペーサー5で設定してなるも
のであり、1対の透明電極3間にリード線6を介して、
電源7より電圧を印加可能に接続する。また、1対の基
板2は、1対のクロスニコル偏光板8により挟持され、
その一方の外側には光源9が配置される。
Referring to FIG. 1, in the liquid crystal element, a liquid crystal layer 1 exhibiting a chiral smectic phase is arranged between a pair of glass substrates 2 provided with a transparent electrode 3 and an insulating alignment control layer 4, respectively, and The layer thickness is set by the spacer 5, and the lead wire 6 is interposed between the pair of transparent electrodes 3.
The power supply 7 is connected so that a voltage can be applied. In addition, the pair of substrates 2 is sandwiched between the pair of crossed Nicols polarizing plates 8,
The light source 9 is arranged on the outer side of one side.

【0108】すなわち、2枚のガラス基板2には、それ
ぞれIn23、SnO2あるいはITO(インジウム
チン オキサイド;Indium Tin Oxid
e)等の薄膜から成る透明電極3が被覆されている。そ
の上にポリイミドの様な高分子の薄膜をガーゼやアセテ
ート植毛布等でラビングして、液晶をラビング方向に配
列するための絶縁性配向制御層4が形成されている。
That is, In 2 O 3 , SnO 2 or ITO (indium) is provided on each of the two glass substrates 2.
Indium Tin Oxid
The transparent electrode 3 made of a thin film such as e) is covered. An insulating alignment control layer 4 for arranging the liquid crystal in the rubbing direction is formed by rubbing a polymer thin film such as polyimide with gauze or acetate flocking cloth or the like.

【0109】また、絶縁性配向制御層4として、例えば
シリコン窒化物、水素を含有するシリコン窒化物、シリ
コン炭化物、水素を含有するシリコン炭化物、シリコン
酸化物、硼素窒化物、水素を含有する硼素窒化物、セリ
ウム酸化物、アルミニウム酸化物、ジルコニウム酸化
物、チタン酸化物やフッ化マグネシウムなどの無機物質
絶縁層を形成し、その上にポリビニルアルコール、ポリ
イミド、ポリアミドイミド、ポリエステルイミド、ポリ
パラキシレン、ポリエステル、ポリカーボネート、ポリ
ビニルアセタール、ポリ塩化ビニル、ポリ酢酸ビニル、
ポリアミド、ポリスチレン、セルロース樹脂、メラミン
樹脂、ユリヤ樹脂、アクリル樹脂やフォトレジスト樹脂
などの有機絶縁物質を層形成した2層構造であってもよ
く、また無機物質絶縁性配向制御層あるいは有機物質絶
縁性配向制御層単層であっても良い。
As the insulating orientation control layer 4, for example, silicon nitride, silicon nitride containing hydrogen, silicon carbide, silicon carbide containing hydrogen, silicon oxide, boron nitride, boron nitride containing hydrogen. Substance, cerium oxide, aluminum oxide, zirconium oxide, inorganic oxide such as titanium oxide or magnesium fluoride, insulating layer is formed, and polyvinyl alcohol, polyimide, polyamide imide, polyester imide, polyparaxylene, polyester , Polycarbonate, polyvinyl acetal, polyvinyl chloride, polyvinyl acetate,
It may have a two-layer structure in which a layer of an organic insulating material such as polyamide, polystyrene, cellulose resin, melamine resin, urea resin, acrylic resin or photoresist resin is formed, or an inorganic material insulating orientation control layer or an organic material insulating property. The orientation control layer may be a single layer.

【0110】この絶縁性配向制御層が無機系ならば蒸着
法などで形成でき、有機系ならば有機絶縁物質を溶解さ
せた溶液、またはその前駆体溶液(溶剤に0.1〜20
重量%、好ましくは0.2〜10重量%)を用いて、ス
ピンナー塗布法、浸漬塗布法、スクリーン印刷法、スプ
レー塗布法、ロール塗布法等で塗布し、所定の硬化条件
下(例えば加熱下)で硬化させ形成させることができ
る。
If this insulating orientation control layer is an inorganic type, it can be formed by a vapor deposition method or the like, and if it is an organic type, a solution in which an organic insulating substance is dissolved or its precursor solution (0.1 to 20 in a solvent)
% By weight, preferably 0.2 to 10% by weight) and applied by a spinner coating method, a dip coating method, a screen printing method, a spray coating method, a roll coating method, etc. under predetermined curing conditions (for example, under heating). ) And can be formed by curing.

【0111】絶縁性配向制御層4の層厚は通常10Å〜
1μm、好ましくは10Å〜3000Å、さらに好まし
くは10Å〜1000Åが適している。
The layer thickness of the insulating orientation control layer 4 is usually 10Å to
1 μm, preferably 10 Å to 3000 Å, more preferably 10 Å to 1000 Å are suitable.

【0112】この2枚のガラス基板2はスペーサー5に
よって任意の間隔に保たれている。例えば所定の直径を
持つシリカビーズ、アルミナビーズをスペーサーとして
ガラス基板2枚で挟持し、周囲をシール材、例えばエポ
キシ系接着材を用いて密封する方法がある。その他スぺ
ーサーとして高分子フィルムやガラスファイバーを使用
しても良い。この2枚のガラス基板の間にカイラルスメ
クチック相を示す液晶が封入されている。液晶層1は、
一般には0.5〜20μm、好ましくは1〜5μmの厚
さに設定されている。
The two glass substrates 2 are held by the spacer 5 at arbitrary intervals. For example, there is a method in which silica beads and alumina beads having a predetermined diameter are used as spacers and sandwiched between two glass substrates, and the periphery is sealed with a sealing material, for example, an epoxy adhesive material. Alternatively, a polymer film or glass fiber may be used as a spacer. A liquid crystal exhibiting a chiral smectic phase is enclosed between the two glass substrates. The liquid crystal layer 1 is
Generally, the thickness is set to 0.5 to 20 μm, preferably 1 to 5 μm.

【0113】透明電極3からはリード線によって外部の
電源7に接続されている。
The transparent electrode 3 is connected to an external power source 7 by a lead wire.

【0114】また、ガラス基板2の外側には、互いの偏
光軸を例えば直交クロスニコル状態とした一対の偏光板
8が貼り合わせてある。図1の例は透過型であり、光源
9を備えている。
Further, on the outside of the glass substrate 2, a pair of polarizing plates 8 having their polarization axes in the crossed crossed Nicols state, for example, are attached. The example of FIG. 1 is a transmissive type, and includes a light source 9.

【0115】図2は強誘電性を利用した液晶素子の動作
説明のために、セルの例を模式的に描いたものである。
21aと21bはそれぞれIn23、SnO2あるいは
ITO(インジウム チン オキサイド;Indium
Tin Oxide)等の薄膜からなる透明電極で被
覆された基板(ガラス板)であり、その間に液晶分子層
22がガラス面に垂直になるように配向したSmC*
又はSmH*相の液晶が封入されている。太線で示した
線23が液晶分子を表わしており、この液晶分子23は
その分子に直交した方向に双極子モーメント(P⊥)2
4を有している。基板21aと21b上の電極間に一定
の閾値以上の電圧を印加すると、液晶分子23のらせん
構造がほどけ、双極子モーメント(P⊥)24がすべて
電界方向に向くよう、液晶分子23は配向方向を変える
ことができる。液晶分子23は細長い形状を有してお
り、その長軸方向と短軸方向で屈折率異方性を示し、従
って例えばガラス面の上下に互いにクロスニコルの偏光
子を置けば、電圧印加極性によって光学特性が変わる液
晶光学変調素子となることは、容易に理解される。
FIG. 2 is a schematic drawing of an example of a cell for explaining the operation of a liquid crystal element utilizing ferroelectricity.
21a and 21b are In 2 O 3 , SnO 2 and ITO (indium tin oxide; Indium), respectively.
It is a substrate (glass plate) covered with a transparent electrode made of a thin film such as Tin Oxide), in which liquid crystal of SmC * phase or SmH * phase in which the liquid crystal molecular layer 22 is oriented perpendicular to the glass surface is enclosed. Has been done. A thick line 23 represents a liquid crystal molecule, and the liquid crystal molecule 23 has a dipole moment (P⊥) 2 in a direction orthogonal to the molecule.
Have four. When a voltage of a certain threshold value or more is applied between the electrodes on the substrates 21a and 21b, the helical structure of the liquid crystal molecules 23 is unraveled, and the dipole moment (P⊥) 24 is entirely oriented in the electric field direction. Can be changed. The liquid crystal molecule 23 has an elongated shape and exhibits refractive index anisotropy in the major axis direction and the minor axis direction thereof. Therefore, for example, if crossed Nicols polarizers are placed above and below the glass surface, the voltage application polarity It will be easily understood that the liquid crystal optical modulator has optical characteristics that change.

【0116】本発明における光学変調素子で好ましく用
いられる液晶セルは、その厚さを充分に薄く(例えば1
0μ以下)することができる。このように液晶層が薄く
なるにしたがい、図3に示すように電界を印加していな
い状態でも液晶分子のらせん構造がほどけ、その双極子
モーメントPaまたはPbは上向き(34a)又は下向
き(34b)のどちらかの状態をとる。このようなセル
に、図3に示す如く一定の閾値以上の極性の異なる電界
Ea又はEbを電圧印加手段31aと31bにより付与
すると、双極子モーメントは電界Ea又はEbの電界ベ
クトルに対応して上向き34a又は下向き34bと向き
を変え、それに応じて液晶分子は、第1の安定状態33
aかあるいは第2の安定状態33bの何れか一方に配向
する。
The liquid crystal cell preferably used in the optical modulator of the present invention has a sufficiently thin thickness (for example, 1
0 μ or less). As the liquid crystal layer becomes thinner in this way, as shown in FIG. 3, the helical structure of the liquid crystal molecules is unwound even when no electric field is applied, and the dipole moment Pa or Pb thereof is directed upward (34a) or downward (34b). Take either state. When an electric field Ea or Eb having different polarities equal to or higher than a certain threshold is applied to such a cell by the voltage applying means 31a and 31b, the dipole moment is directed upward corresponding to the electric field vector of the electric field Ea or Eb. 34a or the downward direction 34b, and the liquid crystal molecules are changed to the first stable state 33 accordingly.
a or the second stable state 33b.

【0117】このような強誘電性液晶素子を光学変調素
子として用いることの利点は先にも述べたが2つある。
As described above, there are two advantages of using such a ferroelectric liquid crystal element as an optical modulation element.

【0118】その第1は応答速度が極めて速いことであ
り、第2は液晶分子の配向が双安定性を有することであ
る。第2の点を例えば図3によって更に説明すると、電
界Eaを印加すると液晶分子は第1の安定状態33aに
配向するが、この状態は電界を切っても安定である。
又、逆向きの電界Ebを印加すると、液晶分子は第2の
安定状態33bに配向してその分子の向きを変えるが、
やはり電界を切ってもこの状態に留っている。又、与え
る電界EaあるいはEbが一定の閾値を越えない限り、
それぞれ前の配向状態にやはり維持されている。
The first is that the response speed is extremely fast, and the second is that the alignment of the liquid crystal molecules has bistability. Explaining the second point further with reference to FIG. 3, for example, when the electric field Ea is applied, the liquid crystal molecules are aligned in the first stable state 33a, but this state is stable even when the electric field is cut off.
When an electric field Eb in the opposite direction is applied, the liquid crystal molecules are oriented in the second stable state 33b and change their orientation.
After all, it remains in this state even when the electric field is turned off. Also, unless the applied electric field Ea or Eb exceeds a certain threshold value,
Each is also maintained in the previous orientation.

【0119】本発明の液晶素子を表示パネル部に使用
し、図4及び図5に示した走査線アドレス情報をもつ画
像情報なるデータフォーマット及びSYNC信号による
通信同期手段をとることにより、液晶表示装置を実現す
る。
By using the liquid crystal device of the present invention in the display panel section and taking the communication information synchronizing means by the data format as the image information having the scanning line address information and the SYNC signal shown in FIGS. 4 and 5, the liquid crystal display device is obtained. To realize.

【0120】図中、符号はそれぞれ以下の通りである。 101 強誘電性液晶表示装置 102 グラフィックコントローラ 103 表示パネル 104 走査線駆動回路 105 情報線駆動回路 106 デコーダ 107 走査信号発生回路 108 シフトレジスタ 109 ラインメモリ 110 情報信号発生回路 111 駆動制御回路 112 GCPU 113 ホストCPU 114 VRAMIn the figure, the symbols are as follows. 101 ferroelectric liquid crystal display device 102 graphic controller 103 display panel 104 scanning line driving circuit 105 information line driving circuit 106 decoder 107 scanning signal generating circuit 108 shift register 109 line memory 110 information signal generating circuit 111 driving control circuit 112 GCPU 113 host CPU 114 VRAM

【0121】画像情報の発生は、本体装置側のグラフィ
ックスコントローラ102にて行われ、図4及び図5に
示した信号転送手段にしたがって表示パネル103に転
送される。グラフィックスコントローラ102は、CP
U(中央演算処理装置、以下GCPU112と略す)及
びVRAM(画像情報格納用メモリ)114を核に、ホ
ストCPU113と液晶表示装置101間の画像情報の
管理や通信をつかさどっており、本発明の制御方法は主
にこのグラフィックスコントローラ102上で実現され
るものである。
The image information is generated by the graphics controller 102 on the main body side, and transferred to the display panel 103 according to the signal transfer means shown in FIGS. The graphics controller 102 is a CP
U (central processing unit, hereinafter abbreviated as GCPU 112) and VRAM (memory for storing image information) 114 are used as cores for managing image information and communication between the host CPU 113 and the liquid crystal display device 101, and controlling the present invention. The method is mainly implemented on the graphics controller 102.

【0122】なお、該表示パネルの裏面には、光源が配
置されている。
A light source is arranged on the back surface of the display panel.

【0123】[0123]

【実施例】以下実施例により本発明についてさらに詳細
に説明するが、本発明はこれらの実施例に限定されるも
のではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0124】実施例1 光学活性5−デシル−[2−(4−テトラヒドロフルフ
リルオキシ)フェニル]ピリミジン(例示化合物1)の
製造 下記の工程に従い製造した。
Example 1 Production of Optically Active 5-decyl- [2- (4-tetrahydrofurfuryloxy) phenyl] pyrimidine (Exemplified Compound 1) It was produced according to the following steps.

【0125】[0125]

【外102】 [Outside 102]

【0126】(工程1)光学活性テトラヒドロフルフリ
ルアルコールの製造 窒素条件下において、リチウムアルミニウムハイドライ
ド0.62g(12mmol)、テトラヒドロフラン1
0mlを0℃で攪拌し、これに10mlのテトラヒドロ
フランで希釈したR−(+)−テトラヒドロフラン−2
−カルボン酸1.2g(10.3mmol)を滴下し
た。滴下終了後、50℃まで加熱し3時間攪拌した。そ
の後飽和硫酸ナトリウム水溶液を加え、結晶を析出させ
た後、それをデカンテーションにより除去した。その
後、硫酸ナトリウムを加えて乾燥させた後、硫酸ナトリ
ウムをろ別・除去した。ろ液を濃縮した後、常圧蒸留に
より精製を行い、光学活性テトラヒドロフルフリルアル
コール0.64g(6.27mmol)を収率61%で
得た(bp.174−178℃)。
(Step 1) Production of Optically Active Tetrahydrofurfuryl Alcohol Under nitrogen conditions, 0.62 g (12 mmol) of lithium aluminum hydride and 1 tetrahydrofuran
0 ml was stirred at 0 ° C., and R-(+)-tetrahydrofuran-2 diluted with 10 ml of tetrahydrofuran was added thereto.
-1.2 g (10.3 mmol) of carboxylic acid was added dropwise. After the completion of dropping, the mixture was heated to 50 ° C. and stirred for 3 hours. Then, a saturated aqueous sodium sulfate solution was added to precipitate crystals, which were then removed by decantation. Then, sodium sulfate was added and dried, and then sodium sulfate was filtered off and removed. The filtrate was concentrated and then purified by atmospheric distillation to obtain 0.64 g (6.27 mmol) of optically active tetrahydrofurfuryl alcohol in a yield of 61% (bp.174-178 ° C).

【0127】(工程2)光学活性p−トルエンスルホン
酸テトラヒドロフルフリルの製造 R−(+)−テトラヒドロフルフリルアルコール0.6
4g(6.27mmol)とジクロロメタン5mlを室
温で攪拌し、これにp−トルエンスルホン酸クロライド
1.20g(6.27mmol)、ピリジン3mlを加
え、室温で約1時間攪拌した。その後これを濃縮し、シ
リカゲルカラムクロマトグラフィー(酢酸エチル/トル
エン=1/1)により、光学活性p−トルエンスルホン
酸テトラヒドロフルフリル0.32g(1.25mmo
l)を収率20%で得た。
(Step 2) Production of optically active tetrahydrofurfuryl p-toluenesulfonate R-(+)-tetrahydrofurfuryl alcohol 0.6
4 g (6.27 mmol) and 5 ml of dichloromethane were stirred at room temperature, 1.20 g (6.27 mmol) of p-toluenesulfonic acid chloride and 3 ml of pyridine were added, and the mixture was stirred at room temperature for about 1 hour. Then, this was concentrated and subjected to silica gel column chromatography (ethyl acetate / toluene = 1/1) to give 0.32 g (1.25 mmo) of optically active tetrahydrofurfuryl p-toluenesulfonate.
l) was obtained with a yield of 20%.

【0128】(工程3)光学活性5−デシル−[2−
(4−テトラヒドロフルフリルオキシ)フェニル]ピリ
ミジンの製造 5−デシル−2−(p−ヒドロキシフェニル)ピリミジ
ン0.32g(1.02mmol)、ジメチルホルムア
ミド(DMF)5ml、ナトリウムハイドライド0.0
45gを室温で攪拌し、これに光学活性p−トルエンス
ルホン酸テトラヒドロフルフリル0.26g(1.02
mmol)、DMF3mlを加え100℃で約2時間攪
拌した。その後これに水を加え酢酸エチルで有機層を抽
出し、これを飽和食塩水で洗浄、硫酸ナトリウムを加え
て乾燥させた。その後、硫酸ナトリウムをろ別、濃縮し
た後、シリカゲルカラムクロマトグラフィー(酢酸エチ
ル/トルエン=1/10)により、光学活性5−デシル
−[2−(4−テトラヒドロフルフリルオキシ)フェニ
ル]ピリミジン0.21g(0.46mmol)を収率
45%で得た。
(Step 3) Optically active 5-decyl- [2-
Preparation of (4-tetrahydrofurfuryloxy) phenyl] pyrimidine 5-decyl-2- (p-hydroxyphenyl) pyrimidine 0.32 g (1.02 mmol), dimethylformamide (DMF) 5 ml, sodium hydride 0.0
45 g was stirred at room temperature, and 0.26 g (1.02 g) of optically active tetrahydrofurfuryl p-toluenesulfonate was added thereto.
mmol) and 3 ml of DMF were added, and the mixture was stirred at 100 ° C. for about 2 hours. After that, water was added thereto, an organic layer was extracted with ethyl acetate, washed with a saturated saline solution, added with sodium sulfate, and dried. Then, sodium sulfate was filtered off and concentrated, and then, by silica gel column chromatography (ethyl acetate / toluene = 1/10), optically active 5-decyl- [2- (4-tetrahydrofurfuryloxy) phenyl] pyrimidine. 21 g (0.46 mmol) was obtained with a yield of 45%.

【0129】[0129]

【外103】 [Outside 103]

【0130】実施例2 光学活性4−(5−デシルピリミジン−2−イル)安息
香酸テトラヒドロフルフリル(例示化合物32)の製造 下記の工程に従い製造した。
Example 2 Preparation of Optically Active Tetrahydrofurfuryl 4- (5-decylpyrimidin-2-yl) benzoate (Exemplified Compound 32) It was prepared according to the following steps.

【0131】[0131]

【外104】 [Outside 104]

【0132】4−(5−デシルピリミジン−2−イル)
安息香酸0.60g(1.76mmol)、R−(+)
−テトラヒドロフルフリルアルコール0.18g(1.
76mmol)、ジクロロメタン10mlを室温で攪拌
し、これにN,N′−ジシクロヘキシルカルボジイミド
0.36g(1.75mmol)と4−ピロリジノピリ
ジン0.02gを加え、室温で約6時間攪拌した。析出
した結晶をろ別・除去し、ろ液を濃縮した後、シリカゲ
ルカラムクロマトグラフィー(トルエン/酢酸エチル=
10/1)、再結晶(トルエン/エタノール)して、光
学活性4−(5−デシルピリミジン−2−イル)安息香
酸テトラヒドロフルフリル0.30g(0.71mmo
l)を収率41%で得た。mp.54℃。
4- (5-decylpyrimidin-2-yl)
Benzoic acid 0.60 g (1.76 mmol), R-(+)
-Tetrahydrofurfuryl alcohol 0.18 g (1.
76 mmol) and 10 ml of dichloromethane were stirred at room temperature, 0.36 g (1.75 mmol) of N, N'-dicyclohexylcarbodiimide and 0.02 g of 4-pyrrolidinopyridine were added thereto, and the mixture was stirred at room temperature for about 6 hours. The precipitated crystals were separated by filtration and removed, and the filtrate was concentrated, and then subjected to silica gel column chromatography (toluene / ethyl acetate =
10/1), recrystallized (toluene / ethanol) to give optically active tetrahydrofurfuryl 4- (5-decylpyrimidin-2-yl) benzoate 0.30 g (0.71 mmo)
l) was obtained with a yield of 41%. mp. 54 ° C.

【0133】実施例3 実施例1で製造した例示化合物1を含む下記化合物を下
記の重量部で混合し、液晶組成物Aを作成した。
Example 3 A liquid crystal composition A was prepared by mixing the following compounds including the exemplified compound 1 produced in Example 1 in the following parts by weight.

【0134】[0134]

【外105】 [Outside 105]

【0135】[0135]

【外106】 この組成物Aは下記の相転移温度を示す。[Outside 106] This composition A exhibits the following phase transition temperatures.

【0136】[0136]

【外107】 [Outside 107]

【0137】実施例4 2枚の0.7mm厚のガラス板を用意し、それぞれのガ
ラス板上にITO膜を形成し、電圧印加電極を作成し、
さらにこの上にSiO2を蒸着させ絶縁層とした。ガラ
ス板上にシランカップリング剤[信越化学(株)製KB
M−602]0.2%イソプロピルアルコール溶液を回
転数2000r.p.mのスピードで15秒間塗布し、
表面処理を施した。この後120℃にて20分間加熱乾
燥処理を施した。
Example 4 Two 0.7 mm thick glass plates were prepared, an ITO film was formed on each glass plate, and voltage application electrodes were prepared.
Further, SiO 2 was vapor-deposited on this to form an insulating layer. Silane coupling agent on glass plate [KB manufactured by Shin-Etsu Chemical Co., Ltd.
M-602] 0.2% isopropyl alcohol solution was rotated at a rotation speed of 2000 r. p. Apply for 15 seconds at m speed,
A surface treatment was applied. After that, a heat drying treatment was performed at 120 ° C. for 20 minutes.

【0138】さらに表面処理を行なったITO膜付きの
ガラス板上にポリイミド樹脂前駆体[東レ(株)SP−
510]1.5%ジメチルアセトアミド溶液を、回転数
2000r.p.mのスピンナーで15秒間塗布した。
成膜後、60分間、300℃加熱縮合焼成処理を施し
た。この時の塗膜の膜厚は約250Åであった。
A polyimide resin precursor [Toray Industries, Inc. SP-
510] 1.5% dimethylacetamide solution was rotated at a rotation speed of 2000 r.p.m. p. m spinner for 15 seconds.
After the film formation, the film was heat-condensed and baked at 300 ° C. for 60 minutes. At this time, the film thickness of the coating film was about 250Å.

【0139】この焼成後の被膜にはアセテート植毛布に
よるラビング処理がなされ、その後、イソプロピルアル
コール液で洗浄し、平均粒径2μmのアルミナビーズを
一方のガラス板上に散布した後、それぞれのラビング処
理軸が互いに平行となる様にし、接着シール剤[リクソ
ンボンド(チッソ(株))]を用いてガラス板をはり合
わせ、60分間、100℃にて加熱乾燥しセルを作成し
た。
The film after firing was rubbed with an acetate flocked cloth, then washed with an isopropyl alcohol solution and sprayed with alumina beads having an average particle size of 2 μm on one glass plate, and then each rubbed treatment. The axes were made parallel to each other, the glass plates were bonded together using an adhesive sealant [Rixon Bond (Chisso Corporation)], and dried by heating at 100 ° C. for 60 minutes to prepare a cell.

【0140】このセルに実施例3で混合した液晶組成物
Aを等方性液体状態で注入し、等方相から20℃/hで
25℃まで徐冷することにより、強誘電性液晶素子を作
成した。このセルのセル厚をベレツク位相板によって測
定したところ、約2μmであった。
The liquid crystal composition A mixed in Example 3 was poured into this cell in an isotropic liquid state and gradually cooled from the isotropic phase to 25 ° C. at 20 ° C./h to obtain a ferroelectric liquid crystal element. Created. When the cell thickness of this cell was measured with a Beret phase plate, it was about 2 μm.

【0141】この強誘電性液晶素子を使って、自発分極
の大きさPsとピーク・トゥ・ピーク電圧Vpp=20
Vの電圧印加により直交ニコル下での光学的な応答(透
過光量変化0〜90%)を検知して応答速度(以後光学
応答速度という)を測定した。
Using this ferroelectric liquid crystal element, the magnitude Ps of spontaneous polarization and the peak-to-peak voltage Vpp = 20.
The response speed (hereinafter referred to as optical response speed) was measured by detecting the optical response (change in transmitted light amount 0 to 90%) under the crossed Nicols by applying the voltage V.

【0142】その結果を次に示す。The results are shown below.

【0143】[0143]

【外108】 [Outer 108]

【0144】実施例5 実施例2で製造した例示化合物32を含む下記化合物を
下記の重量部で混合し、液晶組成物Bを作成した。
Example 5 A liquid crystal composition B was prepared by mixing the following compounds, including the exemplified compound 32 produced in Example 2, in the following parts by weight.

【0145】[0145]

【外109】 [Outside 109]

【0146】[0146]

【外110】 この組成物Bは下記の相転移温度を示す。[Outside 110] This composition B has the following phase transition temperatures.

【0147】[0147]

【外111】 [Outside 111]

【0148】この液晶組成物を用いた以外は全く実施例
4と同様の方法で強誘電性液晶素子を作成し、実施例4
と同様の方法で光学応答速度と自発分極の大きさPsを
測定した。
A ferroelectric liquid crystal device was prepared in the same manner as in Example 4 except that this liquid crystal composition was used.
The optical response speed and the magnitude Ps of the spontaneous polarization were measured by the same method as in.

【0149】測定結果を次に示す。The measurement results are shown below.

【0150】[0150]

【外112】 [Outside 112]

【0151】実施例6 下記化合物を下記の重量部で混合し、液晶組成物Cを作
成した。
Example 6 The following compounds were mixed in the following parts by weight to prepare a liquid crystal composition C.

【0152】[0152]

【外113】 [Outside 113]

【0153】[0153]

【外114】 [Outside 114]

【0154】さらに、この液晶組成物Cに対して、以下
に示す例示化合物を各々以下に示す重量部で混合し、液
晶組成物Dを作成した。
Further, with respect to this liquid crystal composition C, the following exemplary compounds were mixed in the respective parts by weight shown below to prepare a liquid crystal composition D.

【0155】[0155]

【外115】 [Outside 115]

【0156】液晶組成物Dをセル内に注入する以外は全
く実施例4と同様の方法で強誘電性液晶素子を作成し、
光学応答速度を測定した。
A ferroelectric liquid crystal device was prepared in the same manner as in Example 4 except that the liquid crystal composition D was injected into the cell.
The optical response speed was measured.

【0157】その結果を次に示す。The results are shown below.

【0158】[0158]

【外116】 [Outside 116]

【0159】比較例1 実施例6で混合した液晶組成物Cをセル内に注入する以
外は全く実施例4と同様の方法で強誘電性液晶素子を作
成し、光学応答速度を測定した。
Comparative Example 1 A ferroelectric liquid crystal device was prepared in the same manner as in Example 4 except that the liquid crystal composition C mixed in Example 6 was injected into the cell, and the optical response speed was measured.

【0160】その結果を次に示す。The results are shown below.

【0161】[0161]

【外117】 [Outside 117]

【0162】実施例7 実施例6で使用した例示化合物2、4のかわりに以下に
示す例示化合物を各々以下に示す重量部で混合し、液晶
組成物Eを作成した。
Example 7 A liquid crystal composition E was prepared by mixing the exemplified compounds shown below in place of the exemplified compounds 2 and 4 used in Example 6 in the weight parts shown below.

【0163】[0163]

【外118】 [Outside 118]

【0164】この液晶組成物を用いた以外は全く実施例
4と同様の方法で強誘電性液晶素子を作成し、実施例4
と同様の方法で光学応答速度を測定した。
A ferroelectric liquid crystal device was prepared in the same manner as in Example 4 except that this liquid crystal composition was used.
The optical response speed was measured by the same method.

【0165】測定結果を次に示す。The measurement results are shown below.

【0166】[0166]

【外119】 [Outer 119]

【0167】実施例8 実施例6で使用した例示化合物2、4のかわりに以下に
示す例示化合物を各々以下に示す重量部で混合し、液晶
組成物Fを作成した。
Example 8 A liquid crystal composition F was prepared by mixing the following Exemplified Compounds in place of Exemplified Compounds 2 and 4 used in Example 6 in the following parts by weight.

【0168】[0168]

【外120】 [Outside 120]

【0169】この液晶組成物を用いた以外は、全く実施
例4と同様の方法で強誘電性液晶素子を作成し、実施例
4と同様の方法で光学応答速度を測定した。
A ferroelectric liquid crystal device was prepared in the same manner as in Example 4 except that this liquid crystal composition was used, and the optical response speed was measured in the same manner as in Example 4.

【0170】測定結果を次に示す。The measurement results are shown below.

【0171】[0171]

【外121】 [Outside 121]

【0172】実施例9 下記化合物を下記の重量部で混合し、液晶組成物Gを作
成した。
Example 9 Liquid crystal composition G was prepared by mixing the following compounds in the following parts by weight.

【0173】[0173]

【外122】 [Outside 122]

【0174】[0174]

【外123】 [Outside 123]

【0175】さらに、この液晶組成物Gに対して、以下
に示す例示化合物を各々以下に示す重量部で混合し、液
晶組成物Hを作成した。
Furthermore, the liquid crystal composition H was prepared by mixing the following exemplary compounds with the liquid crystal composition G in the following parts by weight.

【0176】[0176]

【外124】 [Outside 124]

【0177】液晶組成物Hをセル内に注入する以外は、
全く実施例4と同様の方法で強誘電性液晶素子を作成
し、光学応答速度を測定し、スイッチング状態等を観察
した。
Except for injecting the liquid crystal composition H into the cell,
A ferroelectric liquid crystal device was prepared by exactly the same method as in Example 4, the optical response speed was measured, and the switching state and the like were observed.

【0178】この液晶素子内の均一配向性は良好であ
り、モノドメイン状態が得られた。
The uniform alignment in this liquid crystal element was good, and a monodomain state was obtained.

【0179】測定結果を次に示す。The measurement results are shown below.

【0180】[0180]

【外125】 [Outside 125]

【0181】また、駆動時には明瞭なスイッチング動作
が観察され、電圧印加を止めた際の双安定性も良好であ
った。
Further, a clear switching operation was observed during driving, and the bistability when the voltage application was stopped was good.

【0182】比較例2 実施例9で混合した液晶組成物Gをセル内に注入する以
外は全く実施例4と同様の方法で強誘電性液晶素子を作
成し、光学応答速度を測定した。
Comparative Example 2 A ferroelectric liquid crystal device was prepared in the same manner as in Example 4 except that the liquid crystal composition G mixed in Example 9 was injected into the cell, and the optical response speed was measured.

【0183】その結果を次に示す。The results are shown below.

【0184】[0184]

【外126】 [Outside 126]

【0185】実施例10 実施例9で使用した例示化合物54、90のかわりに以
下に示す例示化合物を各々以下に示す重量部で混合し、
液晶組成物Iを作成した。
Example 10 Instead of the Exemplified Compounds 54 and 90 used in Example 9, the Exemplified Compounds shown below were mixed in the respective parts by weight shown below,
A liquid crystal composition I was prepared.

【0186】[0186]

【外127】 [Outer 127]

【0187】この液晶組成物を用いた以外は、全く実施
例4と同様の方法で強誘電性液晶素子を作成し、光学応
答速度を測定し、スイッチング状態等を観察した。
A ferroelectric liquid crystal device was prepared in the same manner as in Example 4 except that this liquid crystal composition was used, and the optical response speed was measured to observe the switching state and the like.

【0188】この液晶素子内の均一配向性は良好であ
り、モノドメイン状態が得られた。
The uniform alignment in this liquid crystal element was good, and a monodomain state was obtained.

【0189】測定結果を次に示す。The measurement results are shown below.

【0190】[0190]

【外128】 [Outside 128]

【0191】実施例11 実施例9で使用した例示化合物54、90のかわりに以
下に示す例示化合物を各々以下に示す重量部で混合し、
液晶組成物Jを作成した。
Example 11 Instead of the Exemplified Compounds 54 and 90 used in Example 9, the Exemplified compounds shown below were mixed in the respective parts by weight shown below,
A liquid crystal composition J was prepared.

【0192】[0192]

【外129】 [Outside 129]

【0193】この液晶組成物を用いた以外は、全く実施
例4と同様の方法で強誘電性液晶素子を作成し、光学応
答速度を測定し、スイッチング状態等を観察した。
A ferroelectric liquid crystal device was prepared in the same manner as in Example 4 except that this liquid crystal composition was used, and the optical response speed was measured to observe the switching state and the like.

【0194】この液晶素子内の均一配向性は良好であ
り、モノドメイン状態が得られた。
The uniform alignment in this liquid crystal element was good, and a monodomain state was obtained.

【0195】測定結果を次に示す。The measurement results are shown below.

【0196】[0196]

【外130】 [Outside 130]

【0197】実施例12 下記化合物を下記の重量部で混合し、液晶組成物Kを作
成した。
Example 12 The following compounds were mixed in the following parts by weight to prepare a liquid crystal composition K.

【0198】[0198]

【外131】 [Outer 131]

【0199】[0199]

【外132】 [Outside 132]

【0200】さらに、この液晶組成物Kに対して、以下
に示す例示化合物を各々以下に示す重量部で混合し、液
晶組成物Lを作成した。
Further, with respect to this liquid crystal composition K, the following exemplary compounds were mixed in the respective parts by weight shown below to prepare a liquid crystal composition L.

【0201】[0201]

【外133】 [Outside 133]

【0202】この液晶組成物を用いた以外は、全く実施
例4と同様の方法で強誘電性液晶素子を作成し、光学応
答速度を測定し、スイッチング状態等を観察した。
A ferroelectric liquid crystal device was prepared in the same manner as in Example 4 except that this liquid crystal composition was used, the optical response speed was measured, and the switching state and the like were observed.

【0203】この液晶素子内の均一配向性は良好であ
り、モノドメイン状態が得られた。
The uniform alignment in this liquid crystal element was good, and a monodomain state was obtained.

【0204】測定結果を次に示す。The measurement results are shown below.

【0205】[0205]

【外134】 [Outside 134]

【0206】比較例3 実施例12で混合した液晶組成物Kをセル内に注入する
以外は全く実施例4と同様の方法で強誘電性液晶素子を
作成し、光学応答速度を測定した。
Comparative Example 3 A ferroelectric liquid crystal device was prepared in the same manner as in Example 4 except that the liquid crystal composition K mixed in Example 12 was injected into the cell, and the optical response speed was measured.

【0207】その結果を次に示す。The results are shown below.

【0208】[0208]

【外135】 [Outside 135]

【0209】実施例13 実施例12で使用した例示化合物144、146のかわ
りに以下に示す例示化合物を各々以下に示す重量部で混
合し、液晶組成物Mを作成した。
Example 13 A liquid crystal composition M was prepared by mixing the exemplary compounds shown below in place of the exemplary compounds 144 and 146 used in Example 12 in the following parts by weight.

【0210】[0210]

【外136】 [Outer 136]

【0211】この液晶組成物を用いた以外は全く実施例
4と同様の方法で強誘電性液晶素子を作成し、実施例4
と同様の方法で光学応答速度を測定した。
A ferroelectric liquid crystal device was prepared in the same manner as in Example 4 except that this liquid crystal composition was used.
The optical response speed was measured by the same method.

【0212】測定結果を次に示す。The measurement results are shown below.

【0213】[0213]

【外137】 [Outer 137]

【0214】実施例14 実施例12で使用した例示化合物144、146のかわ
りに以下に示す例示化合物を各々以下に示す重量部で混
合し、液晶組成物Nを作成した。
Example 14 A liquid crystal composition N was prepared by mixing the exemplified compounds shown below instead of the exemplified compounds 144 and 146 used in Example 12 in the weight parts shown below.

【0215】[0215]

【外138】 [Outer 138]

【0216】この液晶組成物を用いた以外は全く実施例
4と同様の方法で強誘電性液晶素子を作成し、実施例4
と同様の方法で光学応答速度を測定した。
A ferroelectric liquid crystal device was prepared in the same manner as in Example 4 except that this liquid crystal composition was used.
The optical response speed was measured by the same method.

【0217】測定結果を次に示す。The measurement results are shown below.

【0218】[0218]

【外139】 [Outside 139]

【0219】実施例3〜14より明らかなように、本発
明による液晶組成物D,E,F,H,I,J,L,Mお
よびNを含有する強誘電性液晶素子は、低温における作
動特性、高速応答性が改善され、また応答速度の温度依
存性も軽減されたものとなっている。
As is clear from Examples 3 to 14, the ferroelectric liquid crystal device containing the liquid crystal compositions D, E, F, H, I, J, L, M and N according to the present invention operates at a low temperature. The characteristics and high-speed response are improved, and the temperature dependence of response speed is also reduced.

【0220】実施例15 実施例6で使用したポリイミド樹脂前駆体1.5%ジメ
チルアセトアミド溶液に代えて、ポリビニルアルコール
樹脂[クラレ(株)製PUA−117」2%水溶液を用
いた他は全く同様の方法で強誘電性液晶素子を作成し、
実施例6同様の方法で光学応答速度を測定した。
Example 15 Except that the polyimide resin precursor 1.5% dimethylacetamide solution used in Example 6 was replaced with a 2% aqueous solution of polyvinyl alcohol resin [PUA-117 manufactured by Kuraray Co., Ltd.]. Create a ferroelectric liquid crystal element by the method of
The optical response speed was measured in the same manner as in Example 6.

【0221】その結果を次に示す。The results are shown below.

【0222】[0222]

【外140】 [Outside 140]

【0223】実施例16 実施例6で使用したSiO2を用いずに、ポリイミド樹
脂だけで配向制御層を作成した以外は全く実施例6と同
様の方法で強誘電性液晶素子を作成し、実施例6と同様
の方法で光学応答速度を測定した。
Example 16 A ferroelectric liquid crystal device was prepared and carried out in the same manner as in Example 6 except that the alignment control layer was prepared only with a polyimide resin without using SiO 2 used in Example 6. The optical response speed was measured in the same manner as in Example 6.

【0224】その結果を次に示す。The results are shown below.

【0225】[0225]

【外141】 [Outer 141]

【0226】実施例15,16より明らかな様に、素子
構成を変えた場合でも本発明に従う強誘電性液晶組成物
を含有する素子は、実施例6と同様に、低温作動特性が
非常に改善され、かつ、応答速度の温度依存性の軽減さ
れたものとなっている。
As is apparent from Examples 15 and 16, even when the element structure was changed, the element containing the ferroelectric liquid crystal composition according to the present invention had much improved low-temperature operating characteristics as in Example 6. In addition, the temperature dependence of the response speed is reduced.

【0227】[0227]

【発明の効果】本発明の強誘電性液晶組成物を含有する
素子は、スイッチング特性が良好で、低温作動特性の改
善された液晶素子、及び応答速度の温度依存性の軽減さ
れた液晶素子とすることができる。
The element containing the ferroelectric liquid crystal composition of the present invention is a liquid crystal element having good switching characteristics and improved low temperature operation characteristics, and a liquid crystal element having reduced temperature dependence of response speed. can do.

【0228】なお、本発明の液晶素子を表示素子として
光源、駆動回路等と組み合わせた表示装置は良好な装置
となる。
A display device in which the liquid crystal device of the present invention is used as a display device in combination with a light source, a drive circuit, etc. is a good device.

【図面の簡単な説明】[Brief description of drawings]

【図1】カイラルスメクチック相を示す液晶を用いた液
晶素子の一例の断面概略図である。
FIG. 1 is a schematic cross-sectional view of an example of a liquid crystal element using a liquid crystal exhibiting a chiral smectic phase.

【図2】液晶のもつ強誘電性を利用した液晶素子の動作
説明のために素子セルの一例を模式的に表わす斜視図で
ある。
FIG. 2 is a perspective view schematically showing an example of an element cell for explaining the operation of a liquid crystal element utilizing the ferroelectricity of liquid crystal.

【図3】液晶のもつ強誘電性を利用した液晶素子の動作
説明のために素子セルの一例を模式的に表わす斜視図で
ある。
FIG. 3 is a perspective view schematically showing an example of an element cell for explaining the operation of a liquid crystal element utilizing the ferroelectricity of liquid crystal.

【図4】強誘電性を利用した液晶素子を有する液晶表示
装置とグラフィックスコントローラを示すブロック構成
図である。
FIG. 4 is a block diagram showing a liquid crystal display device having a liquid crystal element utilizing ferroelectricity and a graphics controller.

【図5】液晶表示装置とグラフィックスコントローラと
の間の画像情報通信タイミングチャート図である。
FIG. 5 is a timing chart of image information communication between the liquid crystal display device and the graphics controller.

【符号の説明】[Explanation of symbols]

1 カイラルスメクチック相を有する液晶層 2 ガラス基板 3 透明電極 4 絶縁性配向制御層 5 スぺーサー 6 リード線 7 電源 8 偏光板 9 光源 Io 入射光 I 透過光 21a 基板 21b 基板 22 カイラルスメクチック相を有する液晶層 23 液晶分子 24 双極子モーメント(P⊥) 31a 電圧印加手段 31b 電圧印加手段 33a 第1の安定状態 33b 第2の安定状態 34a 上向きの双極子モーメント 34b 下向きの双極子モーメント Ea 上向きの電界 Eb 下向きの電界 101 強誘電性液晶表示装置 102 グラフィックスコントローラ 103 表示パネル 104 走査線駆動回路 105 情報線駆動回路 106 デコーダ 107 走査信号発生回路 108 シフトレジスタ 109 ラインメモリ 110 情報信号発生回路 111 駆動制御回路 112 GCPU 113 ホストCPU 114 VRAM 1 Liquid crystal layer having a chiral smectic phase 2 Glass substrate 3 Transparent electrode 4 Insulating orientation control layer 5 Spacer 6 Lead wire 7 Power source 8 Polarizing plate 9 Light source Io Incident light I Transmitted light 21a Substrate 21b Substrate 22 Having chiral smectic phase Liquid crystal layer 23 Liquid crystal molecule 24 Dipole moment (P⊥) 31a Voltage applying means 31b Voltage applying means 33a First stable state 33b Second stable state 34a Upward dipole moment 34b Downward dipole moment Ea Upward electric field Eb Downward electric field 101 Ferroelectric liquid crystal display device 102 Graphics controller 103 Display panel 104 Scan line drive circuit 105 Information line drive circuit 106 Decoder 107 Scan signal generation circuit 108 Shift register 109 Line memory 110 Information signal generation circuit 11 Drive control circuit 112 GCPU 113 host CPU 114 VRAM

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C07D 417/12 9051−4C C09K 19/34 9279−4H G02F 1/13 500 9225−2K (72)発明者 岩城 孝志 東京都大田区下丸子3丁目30番2号キヤノ ン株式会社内 (72)発明者 門叶 剛司 東京都大田区下丸子3丁目30番2号キヤノ ン株式会社内 (72)発明者 山田 容子 東京都大田区下丸子3丁目30番2号キヤノ ン株式会社内Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI Technical indication location C07D 417/12 9051-4C C09K 19/34 9279-4H G02F 1/13 500 9225-2K (72) Inventor Iwashiro Takashi 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Goji Kadano 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Yoko Yamada Tokyo 3-30-2 Shimomaruko, Ota-ku Canon Inc.

Claims (28)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(I)で示される光学活性化
合物。 【外1】 (R1はH、ハロゲン、CNまたは炭素数が1から18
までの直鎖状または分岐状のアルキル基であり、該アル
キル基中の1つもしくは隣接しない2つ以上のメチレン
基は、−Y−、 【外2】 によって置き換えられてもよい。但し、Yは−O−もし
くは−S−を示し、Wはハロゲン、CF3、CNを示
す。m、nはそれぞれ独立に0または1である。A1
2、A3は、 【外3】 からそれぞれ独立に選ばれる。但し、P1、P2はH、ハ
ロゲン、CH3、CF3、CNを示す。X1、2は単結
合、 【外4】 *は光学活性であることを示す。)
1. An optically active compound represented by the following general formula (I). [Outer 1] (R 1 is H, halogen, CN or a carbon number of 1 to 18
Up to a linear or branched alkyl group, wherein one or two or more non-adjacent methylene groups in the alkyl group are -Y-, May be replaced by However, Y represents a -O- or -S-, W represents a halogen, CF 3, CN. m and n are 0 or 1 each independently. A 1 ,
A 2 and A 3 are [external 3] Each is independently selected. However, P 1 and P 2 represent H, halogen, CH 3 , CF 3 and CN. X 1 and X 2 are single bonds, [External 4] * Indicates that it is optically active. )
【請求項2】 前記(I)式で示される光学活性化合物
が(Ia)〜(Ij)のいずれかである請求項1記載の
光学活性化合物。 【外5】 (R1はH、ハロゲン、CNまたは炭素数が1から18
までの直鎖状または分岐状のアルキル基であり、該アル
キル基中の1つもしくは隣接しない2つ以上のメチレン
基は、−Y−、 【外6】 によって置き換えられてもよい。但し、Yは−O−もし
くは−S−を示し、Wはハロゲン、CF3、CNを示
す。A1、A2、A3は、 【外7】 からそれぞれ独立に選ばれる。但し、P1、P2はH、ハ
ロゲン、CH3、CF3、CNを示す。*は光学活性であ
ることを示す。)
2. The optically active compound according to claim 1, wherein the optically active compound represented by the formula (I) is any one of (Ia) to (Ij). [Outside 5] (R 1 is H, halogen, CN or a carbon number of 1 to 18
Up to a linear or branched alkyl group, wherein one or two or more non-adjacent methylene groups in the alkyl group are -Y-, May be replaced by However, Y represents a -O- or -S-, W represents a halogen, CF 3, CN. A 1 , A 2 , and A 3 are [external 7] Each is independently selected. However, P 1 and P 2 represent H, halogen, CH 3 , CF 3 and CN. * Indicates that it is optically active. )
【請求項3】 前記一般式(I)で表される化合物が
(Iaa)〜(Ija)のいずれかで表される請求項1
記載の光学活性化合物。 【外8】 【外9】 【外10】 (R1はH、ハロゲン、CNまたは炭素数が1から18
までの直鎖状または分岐状のアルキル基であり、該アル
キル基中の1つもしくは隣接しない2つ以上のメチレン
基は、−Y−、 【外11】 によって置き換えられてもよい。但し、Yは−O−もし
くは−S−を示し、Wはハロゲン、CF3、CNを示
す。P1、P2はH、ハロゲン、CH3、CF3、CNを示
す。)
3. The compound represented by the general formula (I) is represented by any one of (Iaa) to (Ija).
The optically active compound described. [Outside 8] [Outside 9] [Outside 10] (R 1 is H, halogen, CN or a carbon number of 1 to 18
Up to a linear or branched alkyl group, wherein one or two or more non-adjacent methylene groups in the alkyl group are -Y-, May be replaced by However, Y represents a -O- or -S-, W represents a halogen, CF 3, CN. P 1 and P 2 represent H, halogen, CH 3 , CF 3 and CN. )
【請求項4】 前記一般式(I)中、R1が下記(1)
〜(4)のいずれかである請求項1記載の光学活性化合
物。 (1) −X3−C12l+1−n (但し、lは3〜12の整数を示す。) (2) 【外12】 (但し、mは0〜6の整数、nは1〜8の整数を示す。
また、光学活性であってもよい。) (3) 【外13】 (但し、rは0〜6の整数、sは0または1、tは1〜
12の整数を示す。また、光学活性であってもよい。) (4) 【外14】 (但し、uは0または1、vは1〜14の整数である。
*は光学活性であることを示す。) 上記式中、共通しているX3は単結合、 【外15】
4. In the general formula (I), R 1 is the following (1).
The optically active compound according to claim 1, which is any one of (4) to (4). (1) -X 3 -C 1 H 2l + 1 -n ( where, l is an integer of 3-12.) (2) [outer 12] (However, m is an integer of 0 to 6, and n is an integer of 1 to 8.
It may also be optically active. ) (3) [Outside 13] (However, r is an integer of 0 to 6, s is 0 or 1, and t is 1 to
Indicates an integer of 12. It may also be optically active. ) (4) [Outside 14] (However, u is 0 or 1, and v is an integer of 1 to 14.
* Indicates that it is optically active. ) In the above formula, the common X 3 is a single bond, and
【請求項5】 請求項1記載の光学活性化合物の少なく
とも1種を含有することを特徴とする液晶組成物。
5. A liquid crystal composition comprising at least one kind of the optically active compound according to claim 1.
【請求項6】 一般式(I)で示される光学活性化合物
を前記液晶組成物に対し、1〜80重量%含有する請求
項5記載の液晶組成物。
6. The liquid crystal composition according to claim 5, wherein the optically active compound represented by formula (I) is contained in an amount of 1 to 80% by weight based on the liquid crystal composition.
【請求項7】 一般式(I)で示される光学活性化合物
を前記液晶組成物に対し、1〜60重量%含有する請求
項5記載の液晶組成物。
7. The liquid crystal composition according to claim 5, which contains the optically active compound represented by the general formula (I) in an amount of 1 to 60% by weight based on the liquid crystal composition.
【請求項8】 一般式(I)で示される光学活性化合物
を前記液晶組成物に対し、1〜40重量%含有する請求
項5記載の液晶組成物。
8. The liquid crystal composition according to claim 5, wherein the optically active compound represented by the general formula (I) is contained in an amount of 1 to 40% by weight based on the liquid crystal composition.
【請求項9】 前記液晶組成物がカイラルスメクチック
相を有する請求項5記載の液晶組成物。
9. The liquid crystal composition according to claim 5, wherein the liquid crystal composition has a chiral smectic phase.
【請求項10】 請求項5記載の液晶組成物を1対の電
極基板間に配置してなることを特徴とする液晶素子。
10. A liquid crystal device comprising the liquid crystal composition according to claim 5 disposed between a pair of electrode substrates.
【請求項11】 前記電極基板上にさらに配向制御層が
設けられている請求項10記載の液晶素子。
11. The liquid crystal device according to claim 10, further comprising an alignment control layer provided on the electrode substrate.
【請求項12】 前記配向制御層がラビング処理された
層である請求項11記載の液晶素子。
12. The liquid crystal device according to claim 11, wherein the alignment control layer is a layer subjected to a rubbing treatment.
【請求項13】 液晶のらせん構造が解除された膜厚で
前記1対の電極基板を配置する請求項10記載の液晶素
子。
13. The liquid crystal device according to claim 10, wherein the pair of electrode substrates are arranged with a film thickness in which the helical structure of the liquid crystal is released.
【請求項14】 請求項10記載の液晶素子を有する表
示装置。
14. A display device comprising the liquid crystal element according to claim 10.
【請求項15】 液晶組成物が示す強誘電性を利用して
液晶分子をスイッチングさせて表示を行う請求項14記
載の表示装置。
15. The display device according to claim 14, wherein liquid crystal molecules are switched by utilizing the ferroelectricity of the liquid crystal composition for display.
【請求項16】 さらに光源を有する請求項14記載の
表示装置。
16. The display device according to claim 14, further comprising a light source.
【請求項17】 下記一般式(I)で示される光学活性
化合物を含有する液晶組成物を表示に使用する表示方
法。 【外16】 (R1はH、ハロゲン、CNまたは炭素数が1から18
までの直鎖状または分岐状のアルキル基であり、該アル
キル基中の1つもしくは隣接しない2つ以上のメチレン
基は、−Y−、 【外17】 によって置き換えられてもよい。但し、Yは−O−もし
くは−S−を示し、Wはハロゲン、CF3、CNを示
す。m、nはそれぞれ独立に0または1である。A1
2、A3は、 【外18】 からそれぞれ独立に選ばれる。但し、P1、P2はH、ハ
ロゲン、CH3、CF3、CNを示す。X1、2は単結
合、 【外19】 *は光学活性であることを示す。)
17. A display method using a liquid crystal composition containing an optically active compound represented by the following general formula (I) for display. [Outside 16] (R 1 is H, halogen, CN or a carbon number of 1 to 18
Up to a linear or branched alkyl group, wherein one or two or more non-adjacent methylene groups in the alkyl group are —Y—, May be replaced by However, Y represents a -O- or -S-, W represents a halogen, CF 3, CN. m and n are 0 or 1 each independently. A 1 ,
A 2 and A 3 are [outer 18] Each is independently selected. However, P 1 and P 2 represent H, halogen, CH 3 , CF 3 and CN. X 1 and X 2 are single bonds, and * Indicates that it is optically active. )
【請求項18】 前記(I)式で示される光学活性化合
物が(Ia)〜(Ij)である請求項17記載の表示方
法。 【外20】 (R1はH、ハロゲン、CNまたは炭素数が1から18
までの直鎖状または分岐状のアルキル基であり、該アル
キル基中の1つもしくは隣接しない2つ以上のメチレン
基は、−Y−、 【外21】 によって置き換えられてもよい。但し、Yは−O−もし
くは−S−を示し、Wはハロゲン、CF3、CNを示
す。A1、A2、A3は、 【外22】 からそれぞれ独立に選ばれる。但し、P1、P2はH、ハ
ロゲン、CH3、CF3、CNを示す。 *は、光学活性であることを示す。)
18. The display method according to claim 17, wherein the optically active compound represented by the formula (I) is (Ia) to (Ij). [Outside 20] (R 1 is H, halogen, CN or a carbon number of 1 to 18
Up to a linear or branched alkyl group, wherein one or two or more non-adjacent methylene groups in the alkyl group are -Y-, May be replaced by However, Y represents a -O- or -S-, W represents a halogen, CF 3, CN. A 1 , A 2 , and A 3 are [external 22] Each is independently selected. However, P 1 and P 2 represent H, halogen, CH 3 , CF 3 and CN. * Indicates that it is optically active. )
【請求項19】 前記一般式(I)で表される化合物が
(Iaa)〜(Ija)のいずれかで表される請求項1
7記載の表示方法。 【外23】 【外24】 【外25】 (R1はH、ハロゲン、CNまたは炭素数が1から18
までの直鎖状または分岐状のアルキル基であり、該アル
キル基中の1つもしくは隣接しない2つ以上のメチレン
基は、−Y−、 【外26】 によって置き換えられてもよい。但し、Yは−O−もし
くは−S−を示し、Wはハロゲン、CF3、CNを示
す。P1、P2はH、ハロゲン、CH3、CF3、CNを示
す。)
19. The compound represented by the general formula (I) is represented by any one of (Iaa) to (Ija).
7. The display method described in 7. [Outside 23] [Outside 24] [Outside 25] (R 1 is H, halogen, CN or a carbon number of 1 to 18
Up to a linear or branched alkyl group, wherein one or two or more non-adjacent methylene groups in the alkyl group are -Y-, May be replaced by However, Y represents a -O- or -S-, W represents a halogen, CF 3, CN. P 1 and P 2 represent H, halogen, CH 3 , CF 3 and CN. )
【請求項20】 前記一般式(I)中、R1が下記
(1)〜(4)のいずれかである請求項17記載の表示
方法。 (1) −X3−C12l+1−n (但し、lは3〜12の整数を示す。) (2) 【外27】 (但し、mは0〜6の整数、nは1〜8の整数を示す。
また、光学活性であってもよい。) (3) 【外28】 (但し、rは0〜6の整数、sは0または1、tは1〜
12の整数を示す。また、光学活性であってもよい。) (4) 【外29】 (但し、uは0または1、vは1〜14の整数である。
*は光学活性であることを示す。)上記式中、共通して
いるX3は単結合、 【外30】
20. The display method according to claim 17, wherein in the general formula (I), R 1 is any of the following (1) to (4). (1) -X 3 -C 1 H 2l + 1 -n ( where, l is an integer of 3-12.) (2) [outer 27] (However, m is an integer of 0 to 6, and n is an integer of 1 to 8.
It may also be optically active. ) (3) [Outside 28] (However, r is an integer of 0 to 6, s is 0 or 1, and t is 1 to
Indicates an integer of 12. It may also be optically active. ) (4) [Outside 29] (However, u is 0 or 1, and v is an integer of 1 to 14.
* Indicates that it is optically active. ) In the above formula, X 3 in common is a single bond,
【請求項21】 一般式(I)で示される光学活性化合
物を前記液晶組成物に対し、1〜80重量%含有する請
求項17記載の表示方法。
21. The display method according to claim 17, wherein the optically active compound represented by the general formula (I) is contained in an amount of 1 to 80% by weight based on the liquid crystal composition.
【請求項22】 一般式(I)で示される光学活性化合
物を前記液晶組成物に対し、1〜60重量%含有する請
求項17記載の表示方法。
22. The display method according to claim 17, wherein the optically active compound represented by the general formula (I) is contained in an amount of 1 to 60% by weight based on the liquid crystal composition.
【請求項23】 一般式(I)で示される光学活性化合
物を前記液晶組成物に対し、1〜40重量%含有する請
求項17記載の表示方法。
23. The display method according to claim 17, wherein the optically active compound represented by the general formula (I) is contained in an amount of 1 to 40% by weight based on the liquid crystal composition.
【請求項24】 前記液晶組成物がカイラルスメクチッ
ク相を有する請求項17記載の表示方法。
24. The display method according to claim 17, wherein the liquid crystal composition has a chiral smectic phase.
【請求項25】 下記一般式(I)で示される光学活性
化合物を含有する液晶組成物を1対の電極基板間に配置
してなる液晶素子を表示に使用する表示方法。 【外31】 (R1はH、ハロゲン、CNまたは炭素数が1から18
までの直鎖状または分岐状のアルキル基であり、該アル
キル基中の1つもしくは隣接しない2つ以上のメチレン
基は、−Y−、 【外32】 によって置き換えられてもよい。但し、Yは−O−もし
くは−S−を示し、Wはハロゲン、CF3、CNを示
す。m、nはそれぞれ独立に0または1である。A1
2、A3は、 【外33】 からそれぞれ独立に選ばれる。P1、P2はH、ハロゲ
ン、CH3、CF3、CNを示す。X1、2は単結合、 【外34】 *は光学活性であることを示す。)
25. A display method in which a liquid crystal device comprising a liquid crystal composition containing an optically active compound represented by the following general formula (I) is disposed between a pair of electrode substrates for display. [Outside 31] (R 1 is H, halogen, CN or a carbon number of 1 to 18
Up to a linear or branched alkyl group, wherein one or two or more non-adjacent methylene groups in the alkyl group are —Y—, May be replaced by However, Y represents a -O- or -S-, W represents a halogen, CF 3, CN. m and n are 0 or 1 each independently. A 1 ,
A 2 and A 3 are [external 33] Each is independently selected. P 1 and P 2 represent H, halogen, CH 3 , CF 3 and CN. X 1 and X 2 are single bonds, and * Indicates that it is optically active. )
【請求項26】 前記電極基板上にさらに配向制御層が
設けられている請求項25記載の表示方法。
26. The display method according to claim 25, further comprising an alignment control layer provided on the electrode substrate.
【請求項27】 前記配向制御層がラビング処理された
層である請求項26記載の表示方法。
27. The display method according to claim 26, wherein the orientation control layer is a layer subjected to a rubbing treatment.
【請求項28】 液晶のらせん構造が解除された膜厚で
前記1対の電極基板を配置する請求項25記載の表示方
法。
28. The display method according to claim 25, wherein the pair of electrode substrates are arranged with a film thickness in which the helical structure of liquid crystal is released.
JP5026808A 1993-02-16 1993-02-16 Optically active compound, liquid crystal composition containing the same, liquid crystal element having the same composition and display method and display device using the same Pending JPH06239849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5026808A JPH06239849A (en) 1993-02-16 1993-02-16 Optically active compound, liquid crystal composition containing the same, liquid crystal element having the same composition and display method and display device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5026808A JPH06239849A (en) 1993-02-16 1993-02-16 Optically active compound, liquid crystal composition containing the same, liquid crystal element having the same composition and display method and display device using the same

Publications (1)

Publication Number Publication Date
JPH06239849A true JPH06239849A (en) 1994-08-30

Family

ID=12203596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5026808A Pending JPH06239849A (en) 1993-02-16 1993-02-16 Optically active compound, liquid crystal composition containing the same, liquid crystal element having the same composition and display method and display device using the same

Country Status (1)

Country Link
JP (1) JPH06239849A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7214696B2 (en) 2002-12-19 2007-05-08 The Scripps Research Institute Compositions and methods for stabilizing transthyretin and inhibiting transthyretin misfolding
US7868033B2 (en) 2004-05-20 2011-01-11 Foldrx Pharmaceuticals, Inc. Compounds, compositions and methods for stabilizing transthyretin and inhibiting transthyretin misfolding
CN106675576A (en) * 2015-11-06 2017-05-17 江苏和成显示科技股份有限公司 Dielectric negative liquid crystal compound and preparation method and application thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7214696B2 (en) 2002-12-19 2007-05-08 The Scripps Research Institute Compositions and methods for stabilizing transthyretin and inhibiting transthyretin misfolding
US7214695B2 (en) 2002-12-19 2007-05-08 The Scripps Research Institute Compositions and methods for stabilizing transthyretin and inhibiting transthyretin misfolding
US7560488B2 (en) 2002-12-19 2009-07-14 The Scripps Research Institute Methods for treating transthyretin amyloid diseases
US8168663B2 (en) 2002-12-19 2012-05-01 The Scripps Research Institute Pharmaceutically acceptable salt of 6-carboxy-2-(3,5 dichlorophenyl)-benzoxazole, and a pharmaceutical composition comprising the salt thereof
US8653119B2 (en) 2002-12-19 2014-02-18 The Scripps Research Institute Methods for treating transthyretin amyloid diseases
US7868033B2 (en) 2004-05-20 2011-01-11 Foldrx Pharmaceuticals, Inc. Compounds, compositions and methods for stabilizing transthyretin and inhibiting transthyretin misfolding
US8338459B2 (en) 2004-05-20 2012-12-25 Foldrx Pharmaceuticals, Inc. Compounds, compositions and methods for stabilizing transthyretin and inhibiting transthyretin misfolding
CN106675576A (en) * 2015-11-06 2017-05-17 江苏和成显示科技股份有限公司 Dielectric negative liquid crystal compound and preparation method and application thereof
CN106675576B (en) * 2015-11-06 2018-09-04 江苏和成显示科技有限公司 A kind of dielectric negative liquid crystal compound and the preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2801279B2 (en) Compound, liquid crystal composition containing the same, and liquid crystal device using the same
JP2801269B2 (en) Compound, liquid crystal composition containing the same, and liquid crystal device using the same
JP2952141B2 (en) Liquid crystal compound, liquid crystal composition containing the same, and liquid crystal device using the same
JP2952053B2 (en) Optically active compound, liquid crystal composition containing the same, method of using the same, liquid crystal element using the same, and display device
JP3176073B2 (en) Liquid crystal element
JPH0776542A (en) Liquid crystal compound, liquid crystal composition containing the compound, liquid crystal element containing the composition and displaying method and display device using the element
JPH07309850A (en) Optically active compound, liquid crystal composition containing the same, liquid crystal element having the same and displaying method and displaying apparatus using the same
JPH05239069A (en) Liquid crystal compound, liquid crystal composition containing the same, liquid crystal element having the same, displaying method and display unit using the same
JP3093507B2 (en) Liquid crystal compound, liquid crystal composition containing the same, liquid crystal element having the same, display method and display device using them
JPH06239849A (en) Optically active compound, liquid crystal composition containing the same, liquid crystal element having the same composition and display method and display device using the same
JPH08157463A (en) Liquid crystal compound, liquid crystal composition containing the same, liquid crystal element having the same and display or liquid crystal unit using the same
JPH04272989A (en) Liquid crystal composition, liquid crystal element containing same, and display method and display device using same
JPH05262744A (en) Liquid crystal compound, liquid crystal composition containing the compound, liquid crystal element and displaying method and apparatus using the element
JPS63182395A (en) Liquid-crystal composition and liquid-crystal element
JPH05125076A (en) Liquid-crystalline compound, liquid crystal composition containing the same, liquid crystal element having the same, display method and display device using the same
JPH04300871A (en) Optically active compound, liquid crystal composition containing the compound, liquid crystal element containing the composition and display and display device using the element or the like
JPH05125055A (en) Liquid crystalline compound, liquid crystal composition containing the same, liquid crystal element using the same, method for display and display device using the same
JPH0782256A (en) Liquid crystal compound, liquid crystal composition containing the same, liquid crystal device containing the same and display and display device using the same
JP2510681B2 (en) Liquid crystal composition and liquid crystal device containing the same
JPH07101894A (en) Optically active compound, liquid crystal composition containing the same, liquid crystal element using the same, indicating method and indicating device therefor
JP2739373B2 (en) Liquid crystal compound, liquid crystal composition containing the same, and liquid crystal device using the same
JPH04264052A (en) Optically active compound, liquid crystal composition containing the same, liquid crystal element having the same and method for display and display device using the same
JPH05221927A (en) Optically active compound, liquid crystal composition containing the same, liquid crystal element and display using the same composition, and displaying method using them
JPH0797379A (en) Liquid crystal compound, liquid crystal composition containing the same, liquid crystal element having the same, display method and display device using the element
JPH06329594A (en) Optically active compound, liquid crystal composition containing the compound, liquid crystal element holding the composition and display method and device using the element