JPH02279582A - Apparatus and method for producing semiconductor single crystal - Google Patents

Apparatus and method for producing semiconductor single crystal

Info

Publication number
JPH02279582A
JPH02279582A JP10008489A JP10008489A JPH02279582A JP H02279582 A JPH02279582 A JP H02279582A JP 10008489 A JP10008489 A JP 10008489A JP 10008489 A JP10008489 A JP 10008489A JP H02279582 A JPH02279582 A JP H02279582A
Authority
JP
Japan
Prior art keywords
single crystal
raw material
melt
crucible
protective cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10008489A
Other languages
Japanese (ja)
Other versions
JPH0665640B2 (en
Inventor
Masato Imai
正人 今井
Hiroyuki Noda
博行 野田
Yutaka Shiraishi
裕 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Electronic Metals Co Ltd filed Critical Komatsu Electronic Metals Co Ltd
Priority to JP1100084A priority Critical patent/JPH0665640B2/en
Publication of JPH02279582A publication Critical patent/JPH02279582A/en
Publication of JPH0665640B2 publication Critical patent/JPH0665640B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To continuously produce a single crystal which is approximately uniform in impurity concn. in the longitudinal direction with the subject apparatus of a continuous charge system by specifically providing a raw material-supplying mechanism consisting of a protective cylinder and a resistance heater, etc. CONSTITUTION:A raw material-supplying mechanism 200 consists of a resistance heater 11, an insulating pipe 18, a heat insulating cylinder 10, the protective cylinder 9, a holding pipe 150, and a raw material rod feeder. The heater 11 is held in the heat insulating cylinder 10 held in the protective cylinder 9 via the insulating pipe 18 in order to suppress the thermal influence of a grown single crystal 6. Further, the protective cylinder 9 is hermetically fixed to the holding pipe 150 provided in the apparatus 180 for producing the single crystal at the top end thereof and the front end part thereof is located in the raw material melt packing region in a quartz crucible 4. The front end of the protective cylinder 9 is positioned in a melt 100 and a vapor phase part 101 in a pulling-up device is isolated from a vapor phase part 102 in the protective cylinder 9 at the time of the growth of the single crystal 6. Even if a liquid drop is dropped by the melting of the raw material rod 13 fed into the heater 11 which is higher in the temp. toward the lower part, the nonuniformity of the temp. generated in the melt 100, the oscillation of the liquid surface and further, the arrival of the falling foreign matter at the single crystal 6 are suppressed.

Description

【発明の詳細な説明】 C産業上の利用分野] 本発明は、原料をるつぼ内に連続的に供給し。[Detailed description of the invention] C industrial application field] The present invention continuously supplies raw materials into a crucible.

均質な半導体単結晶を連続的に製造する技術に関するも
のである。
This invention relates to technology for continuously manufacturing homogeneous semiconductor single crystals.

[従来の技術] 半導体単結晶の育成には、るつぼ内の原料融液から円柱
状の結晶を育成するCZ法が用いられている。この技術
は、育成される単結晶の抵抗率を制御するために、るつ
ぼ内の原料融液にドーパントと呼ばれる不純物元素を添
加する。しかしながらドーパントは一般に偏析係数が1
でないため、通常のCZ法では、結晶の長さが長くなる
につれ結晶中の濃度が変化する。これは、ドーパント濃
度で抵抗率の制御を行なう半導体単結晶の製造において
問題となっている。
[Prior Art] A CZ method is used to grow a semiconductor single crystal, in which a cylindrical crystal is grown from a raw material melt in a crucible. In this technique, an impurity element called a dopant is added to the raw material melt in a crucible in order to control the resistivity of the single crystal being grown. However, dopants generally have a segregation coefficient of 1.
Therefore, in the normal CZ method, the concentration in the crystal changes as the length of the crystal increases. This poses a problem in the production of semiconductor single crystals whose resistivity is controlled by dopant concentration.

この問題を解決するために1M料をるつぼ内に連続的に
供給し、原料融液中のドーパント濃度を一定に保つ連続
チャージ法や二重るつぼを用いた技術(特開昭63−7
9790)が提案されている。連続チャージ法における
原料供給手段としては、原料溶解場所と単結晶育成場所
を分離し、輸送するもの(特開昭52−58080 、
特開昭56−16409’7)、棒状の原料を用いるも
の(特開昭56−84397 、特開昭62〜1059
92)等の提案がある。
To solve this problem, a technology using a continuous charging method and a double crucible in which 1M material is continuously supplied into the crucible and the dopant concentration in the raw material melt is kept constant (Japanese Patent Laid-Open No. 63-7
9790) has been proposed. As a raw material supply means in the continuous charging method, the raw material melting place and the single crystal growing place are separated and transported (Japanese Patent Application Laid-Open No. 52-58080,
JP-A-56-16409'7), those using rod-shaped raw materials (JP-A-56-84397, JP-A-62-1059)
92) and other proposals.

[発明が解決しようとする課厘コ 先にあげた連続チャージ技術のうち、前二者のものは、
原料溶解用るつぼと結晶育成用るつぼを要し、構造的に
複雑となり、また、供給量の制御が難しいという間ガが
ある。後二者のものは、棒状原料をるつぼ内の融液によ
り溶解するために、るつぼ内の結晶育成場所と原料溶解
場所の温度勾配を大きくする必要があり、結晶育成中に
原料溶ある。さらに、後二者のうちのさらに後者は、原
料の予備加熱に高屑波を眉いているが、たとえば、単結
晶シリコンの育成に用いられている減圧炉では放電する
危険性が高く実用的でない、また、二重るつぼによるも
のは、内壁から多結晶が発生しやすく成長速度の低下を
余儀無くされる。しかも。
[Of the continuous charging technologies mentioned above, the first two are:
It requires a crucible for melting raw materials and a crucible for crystal growth, making it structurally complex, and it is difficult to control the supply amount. In the latter two, in order to melt the rod-shaped raw material with the melt in the crucible, it is necessary to increase the temperature gradient between the crystal growth location and the raw material melting location in the crucible, and the raw material melts during crystal growth. Furthermore, the latter of the latter requires a high amount of waste when preheating the raw material, but for example, in a reduced pressure furnace used for growing single crystal silicon, there is a high risk of electrical discharge, making it impractical. Further, in the case of a double crucible, polycrystals are likely to be generated from the inner wall, and the growth rate is inevitably reduced. Moreover.

るつぼ材からの不純物混入量が増大するという間層もあ
る。
There is also an intermediate layer where the amount of impurities mixed in from the crucible material increases.

[課題を解決するための手段] 本発明は、従来の連続チャージ技術の問題点を解決し、
長さ方向にわたって不純物濃度がほぼ均一な単結晶を連
続的に製造することを可能にするもので、引上装置内の
るつぼ内融液充填域に先端部を開放した保護筒内に、保
護筒先端部より上方に抵抗加熱ヒータを設け、抵抗加熱
ヒータを下部程高温で原料溶融可能に温度設定できる構
成とし、単結晶引上時には、融液中に前記保護筒の先端
部が位置することにより、保護筒内の気相部と引上装置
内の気相部とが融液により隔てられて、互い結晶棒が抵
抗加熱ヒータにより保護筒内下部で溶融されつつるつぼ
内融液面に供給されるされるよう構成したこと及び、単
結晶引上時にその気相部が装置内気相部に対して独立す
る構成の原料供給機構から新たな原料を溶融供給しつつ
、単結晶の引上を連続的に行なうことを特徴としている
[Means for Solving the Problems] The present invention solves the problems of conventional continuous charging technology,
This makes it possible to continuously produce a single crystal with almost uniform impurity concentration along its length. A resistance heater is provided above the tip, and the temperature of the resistance heater can be set so that the lower part can melt the raw material at a higher temperature.When pulling a single crystal, the tip of the protective cylinder is positioned in the melt. The gas phase part in the protective cylinder and the gas phase part in the pulling device are separated by the melt, and the crystal rods are melted at the lower part of the protective cylinder by a resistance heater and supplied to the surface of the melt in the crucible. In addition, when pulling a single crystal, the single crystal is continuously pulled while a new raw material is melted and supplied from a raw material supply mechanism configured such that the gas phase part is independent from the gas phase part in the apparatus. It is characterized by being carried out in a specific manner.

本発明においては、単結晶の育成に伴うるつぼ内の融液
減少量に応じて、原料棒の送りを制御する原料棒送りを
原料供給機構に備えると、安定な単結晶の連続育成が可
能となる。
In the present invention, if the raw material supply mechanism is equipped with a raw material rod feeding mechanism that controls the feed of the raw material rod according to the amount of decrease in the melt in the crucible due to the growth of the single crystal, stable continuous growth of single crystals is possible. Become.

また、抵抗加熱ヒータを筒型らせん状にすると。Also, if the resistance heater is made into a cylindrical spiral shape.

原料の溶融部を融液面に近づけることができる。The melted part of the raw material can be brought closer to the melt surface.

さらにまた、保護筒及び抵抗加熱ヒータを下に向かって
縮径させると原料供給量の制御が容易になる。
Furthermore, if the diameter of the protective tube and the resistance heater is reduced downward, the amount of raw material supplied can be easily controlled.

また、原料供給機構内に50cc/11711.・cm
3以上の不活性ガスを流すことで一酸化シリコンの滞留
を防いで、ヒータの寿命を延ばすことができる。
In addition, 50cc/11711.・cm
By flowing an inert gas of 3 or more, it is possible to prevent the retention of silicon monoxide and extend the life of the heater.

本発明では、放電を防ぐため、抵抗加熱ヒータにより融
液面直上で、棒状の原料を溶解する構成を採用した。原
料棒は、ドーパント濃度が成長単結晶と等しいものを用
いる。その送り速度または送り重量は、たとえば、単結
晶の引上げ速度または単結晶重量に基づいて調整し、さ
らに必要により抵抗加熱ヒータへの電力量の調節によっ
ても制御する。こうして引上量に見合う分だけを新たに
るつぼ内の融液中に供給していく、さらに、供給原料融
液の落下による振動や落下異物の成長単結晶への付着を
防ぐため、先端にたとえば円筒状石英を備えた保護筒で
抵抗加熱ヒータ全面を覆い、その先端部を原料融液中に
浸漬し、原料供給機構内気相部と引上装置内気相部を互
いに隔離した。
In the present invention, in order to prevent electrical discharge, a configuration is adopted in which a rod-shaped raw material is melted directly above the melt surface using a resistance heater. The raw material rod used has a dopant concentration equal to that of the grown single crystal. The feeding speed or feeding weight is adjusted based on, for example, the pulling speed of the single crystal or the weight of the single crystal, and is further controlled, if necessary, by adjusting the amount of electric power to the resistance heater. In this way, only the amount corresponding to the pulled up amount is newly supplied to the melt in the crucible.Furthermore, in order to prevent vibrations caused by falling of the feed material melt and adhesion of fallen foreign matter to the growing single crystal, a A protective tube made of cylindrical quartz covered the entire surface of the resistance heater, and its tip was immersed in the raw material melt to isolate the gas phase within the raw material supply mechanism and the gas phase within the pulling device from each other.

また、抵抗加熱ヒータを筒型らせん状に構成すれば、コ
ンパクトになる。
Further, if the resistance heater is configured in a cylindrical spiral shape, it becomes compact.

さらに、保護筒にガス供給管及び系外への排気管を設け
れば、保護筒内への不活性ガスの供給も可能になる。
Furthermore, if the protective cylinder is provided with a gas supply pipe and an exhaust pipe to the outside of the system, it becomes possible to supply an inert gas into the protective cylinder.

″を作用] 本発明においては、引上開始と同時に、るつぼ内融液の
減少が始まっても、この減少量に見合うよう、原料棒の
送り速度を調整し、さらに抵抗加熱ヒータへの電力を制
御して原料棒を溶融して。
In the present invention, even if the melt in the crucible starts to decrease at the same time as the pulling starts, the feeding speed of the raw material rod is adjusted to match this decrease, and the electric power to the resistance heater is Controlled melting of raw material rods.

連続的に原料を供給していく、抵抗加熱ヒータは、下部
はど高温になるよう構成されているから、原料棒の溶融
は下部のみで起こる。また、保護筒の先端部はるつぼ内
融液中に維持されているため、溶融原料は保護筒内の融
液面に落ちる。落下異物があってもこの保護筒内に留ま
る。
The resistance heater, which continuously supplies raw materials, is constructed so that the lower part is at a high temperature, so that the raw material rod melts only at the lower part. Furthermore, since the tip of the protective cylinder is maintained in the melt in the crucible, the molten raw material falls onto the surface of the melt in the protective cylinder. Even if a foreign object falls, it will remain inside this protective cylinder.

本発明を、以下にその一実施例である図を用いてさらに
詳説する。
The present invention will be explained in more detail below using the drawings which are one embodiment thereof.

第1図は、本発明の一実施例の単結晶製造装置uを、第
3図は、本発明の別の一実施例の単結晶製造装置を示し
、第4図は1本発明の一実施例の抵抗加熱ヒータ部分を
示している。
1 shows a single crystal manufacturing apparatus u according to one embodiment of the present invention, FIG. 3 shows a single crystal manufacturing apparatus according to another embodiment of the present invention, and FIG. 4 shows an embodiment of the single crystal manufacturing apparatus u according to the present invention. An example resistance heating heater section is shown.

本発明の実施例においては原料供給機構200は。In the embodiment of the present invention, the raw material supply mechanism 200 is.

抵抗加熱ヒータ11、絶縁管18、保温筒10、保護筒
9、保持管150及び原料棒送り20(第3図参照)よ
り成っている。
It consists of a resistance heater 11, an insulating tube 18, a heat retaining tube 10, a protection tube 9, a holding tube 150, and a raw material rod feeder 20 (see FIG. 3).

第4図に示したように、抵抗加熱ヒータ11は、育成単
結晶への熱的影響をできるだけ抑えるため絶縁管18を
介して保温筒10に保持され、さらにこの保温筒1oは
、保護筒9内に納められている。したがって、抵抗加熱
ヒータ11.絶縁管18及び保温筒10は、保護筒9内
に保持されている。さらに保護筒9は、第1図に示すよ
うに、その上一端部で単結晶製造装置180内に設けら
れた保持管+50に気密に固定され、先端部はるつぼの
原料融液充填域に位置している。このため、単結晶育成
時には、前記保護筒9の先端部は融液100中に常時あ
り、原料供給機構内気相部102と、単結晶製造装置内
気相部101とは、互いに独立するようになる。また、
このように保護筒の先端部を融液100中に位置させる
ことで、原料棒13の溶融により液滴が落ドしても、る
つぼ融液100中に生ずる易度の不均一や、液面振動を
抑え、またこの液面振動、さらには落下異物が育成単結
晶6に達することも防止している。
As shown in FIG. 4, the resistance heater 11 is held in a heat insulating tube 10 via an insulating tube 18 in order to suppress the thermal influence on the grown single crystal as much as possible. It is stored inside. Therefore, the resistance heater 11. The insulating tube 18 and the heat retaining tube 10 are held within the protective tube 9. Furthermore, as shown in FIG. 1, the protective tube 9 is airtightly fixed at one upper end to a holding tube +50 provided in the single crystal manufacturing apparatus 180, and the tip is located in the raw material melt filling area of the crucible. are doing. Therefore, during single crystal growth, the tip of the protection tube 9 is always in the melt 100, and the gas phase section 102 in the raw material supply mechanism and the gas phase section 101 in the single crystal manufacturing apparatus become independent of each other. . Also,
By locating the tip of the protective cylinder in the melt 100 in this way, even if droplets fall due to the melting of the raw material rod 13, unevenness in the degree of droplets occurring in the crucible melt 100 and the liquid level can be prevented. This suppresses vibration and also prevents this liquid level vibration and furthermore, falling foreign matter from reaching the grown single crystal 6.

抵抗加熱ヒータ11は、第4図に示すように左右に分離
した筒状を呈し、加熱部170が二重らせん構造であり
、上端がそれぞれの電極160になっている。原料棒1
3は、原料融液100の量を一定に保つよう育成単結晶
6の重量と連動して抵抗加熱ヒータ11中に送り込まれ
、加熱部+70の下部で溶融状態になり、原料融液10
0中に供給される。
As shown in FIG. 4, the resistance heater 11 has a cylindrical shape separated into left and right parts, a heating part 170 having a double helical structure, and an electrode 160 at each upper end. Raw material rod 1
3 is fed into the resistance heater 11 in conjunction with the weight of the grown single crystal 6 to keep the amount of the raw material melt 100 constant, becomes molten at the lower part of the heating section +70, and the raw material melt 10
Supplied during 0.

また、原料供給機構を単結晶引上域を外して第1図のよ
うに二箇所がそれ思上に設ければ、一方の原料棒が消耗
した場合、あらかじめ装填してあった他方の原料棒を供
給し、その間、ゲートバルブ17を閉じて、消耗した原
料棒を新しい原料棒と交換することができる。この作業
を繰り返せば半導体単結晶を連続的に育成することがで
きる。
In addition, if the raw material supply mechanism is removed from the single crystal pulling area and installed in two locations as shown in Figure 1, when one raw material rod is exhausted, the other raw material rod loaded in advance can be used. During this time, the gate valve 17 can be closed and the exhausted raw material rod can be replaced with a new raw material rod. By repeating this process, semiconductor single crystals can be grown continuously.

なお、第5図に第1図、第2図及び第3図中のA  A
線に沿う横断面図を示した。
In addition, A A in FIG. 1, FIG. 2, and FIG. 3 is shown in FIG.
A cross-sectional view along the line is shown.

[実施例1] 本発明の一実施例を示す第1図の単結晶製造装置を用い
てシリコン!11結晶の育成を行なった。単結晶育成時
の条件は、石英るつぼ4の直径16インチ、石英るつぼ
内の融液量15kg、原料棒13の直径が50mm、育
成単結晶6の直径4インチ、抵抗率(リンドープ)10
Ω’cm 、引上げ速度1mm/ff1in。
[Example 1] Silicon was produced using the single crystal manufacturing apparatus shown in FIG. 1, which shows an example of the present invention. 11 crystals were grown. The conditions for single crystal growth are as follows: quartz crucible 4 has a diameter of 16 inches, the amount of melt in the quartz crucible is 15 kg, the diameter of the raw material rod 13 is 50 mm, the diameter of the grown single crystal 6 is 4 inches, and the resistivity (phosphorus dope) is 10.
Ω'cm, pulling speed 1mm/ff1in.

である。原料棒の送り速度と抵抗加熱ヒータの電力には
第6図に示すような関係がある0本実施例においては、
原料棒13の送り速度4mll1ノakin、、抵抗加
熱ヒータ11の電カフに−で行なった。
It is. There is a relationship between the feeding speed of the raw material rod and the electric power of the resistance heater as shown in FIG. 6. In this example,
The feed rate of the raw material rod 13 was 4 ml/akin, and the electric cuff of the resistance heater 11 was set to -.

育成した単結晶の軸方向の抵抗率変化を第7図に示す。FIG. 7 shows the resistivity change in the axial direction of the grown single crystal.

参考のために、るつぼ内の融液量が同一の場合の通常の
CZ法の結果を同時に示す8通常のCZ法では、成長と
ともに抵抗率が大きく変化するのに対して、本発明を用
いて育成した単結晶ではほぼ一定である。また、軸方向
の酸素濃度変化を第8図に示す、育成条件は同一である
0本発明を用いて育成した単結晶は、軸方向で均一で、
しかも1通常のCZ法よりも低酸素濃度である。
For reference, we also show the results of the conventional CZ method when the amount of melt in the crucible is the same.8 In the conventional CZ method, the resistivity changes greatly with growth, but using the present invention It is almost constant in the grown single crystal. Figure 8 shows the change in oxygen concentration in the axial direction.The growth conditions are the same.The single crystal grown using the present invention is uniform in the axial direction,
Moreover, the oxygen concentration is lower than that of the ordinary CZ method.

二重るつぼ法と比べると172以下である。これにより
、酸素濃度の制御範囲を広げることが可能となる。
Compared to the double crucible method, it is 172 or less. This makes it possible to widen the control range of oxygen concentration.

なお、本発明においては1種々の応用例、例えば、シリ
コン以外の単結晶の育成、磁場の印加や粒状原料の使用
等が考えられることは明らかであろう。
It is clear that the present invention can be applied in various ways, such as the growth of single crystals other than silicon, the application of a magnetic field, and the use of granular raw materials.

[実施例2] 次に第2図に示す本発明の異なる実施例につき説明する
[Embodiment 2] Next, a different embodiment of the present invention shown in FIG. 2 will be described.

なお、二の実施例の説明に当たって前記本発明の実施例
1と同一構成部分には同一符号を付し、重複する説明を
省略する。
In the description of the second embodiment, the same components as those in the first embodiment of the present invention are denoted by the same reference numerals, and redundant explanation will be omitted.

第2図の実施例において、OjI記本開本発明施例1と
異なる主な点は、原料供給機構内への給気装置(図示せ
ず)及び融液100と抵抗加熱ヒータII先端部間の保
護筒9の側壁に装置系外への排気管300とを設けてい
ることである。これにより、原料供給機構内気相部10
2にたとえば不活性ガスを供給する二とができる。
The main points in the embodiment shown in FIG. 2 that differ from Example 1 of the present invention described in OjI are the air supply device (not shown) into the raw material supply mechanism and the connection between the melt 100 and the tip of the resistance heater II. An exhaust pipe 300 to the outside of the device system is provided on the side wall of the protective tube 9. As a result, the gas phase section 10 in the raw material supply mechanism
For example, an inert gas can be supplied to 2.

第2図に示した装置を用いて、原料供給機構200内に
アルゴンガスを50cc/min、・1流しつつ、排気
管300より排気しながら実施例1と同一の条件でシリ
コン単結晶の育成を行なった。
Using the apparatus shown in FIG. 2, a silicon single crystal was grown under the same conditions as in Example 1 while flowing argon gas at 50 cc/min into the raw material supply mechanism 200 and exhausting the air from the exhaust pipe 300. I did it.

育成した単結晶の特性は、実施例1によるものと同様で
あったが、抵抗加熱ヒータ特にその下端部に、実施例1
で生じていた炭化シリコンの生成は認められず、抵抗加
熱ヒータの劣化防止に効果のあることが確認された。こ
れは、アルゴンガスを流す二とにより、融液面から立ち
上るシリコン¥[や−酸化シリコンが、抵抗加熱ヒータ
に接触する前に装置系外へ運び去られるためだと考えら
れる。
The characteristics of the grown single crystal were similar to those in Example 1, but the resistance heater, especially at its lower end, had the same characteristics as those in Example 1.
The formation of silicon carbide, which occurred in the previous example, was not observed, and it was confirmed that this method is effective in preventing the deterioration of resistance heaters. This is thought to be because the silicon oxide and silicon oxide rising from the melt surface are carried away from the apparatus system before they come into contact with the resistance heater due to the flow of argon gas.

[開明の効果] 本発明においては、原料棒の溶融用ヒータに抵抗加熱ヒ
ータを用いていることから、単結晶製造装置内での放電
発生が防止され、しかも、二重らせん構造を採用すれば
、形状をコンパクトにでき、原料融液直1で溶解するこ
とが可能となる。
[Advantageous Effects] In the present invention, since a resistance heater is used as the heater for melting the raw material rod, the occurrence of electric discharge in the single crystal manufacturing equipment is prevented. The shape can be made compact and it can be melted directly into the raw material melt.

また、単結晶製造装置内気相部と原料供給機構内気相部
とを完全に隔離するために、抵抗加熱ヒータ全面を被覆
し、先端部が融液中に位置する保護筒を採用しているか
ら、落下した異物が結晶育成部に到達することを防ぐこ
とができるし、原料供給による融液面の振動も抑える二
とができる。
In addition, in order to completely isolate the gas phase inside the single crystal manufacturing equipment and the gas phase inside the raw material supply mechanism, we have adopted a protective tube that covers the entire surface of the resistance heater and whose tip is located in the melt. It is possible to prevent fallen foreign matter from reaching the crystal growth section, and it is also possible to suppress vibrations on the melt surface due to raw material supply.

また振動そのものも保護筒内に留まり、融液面全面に伝
播することはない。しかも二重るつぼによるものに較べ
、るつぼ材からの不純物混入機の低減、高速成長が可能
となる。従来のJM料供給機構を有したこうした装置は
、単結晶製Δ装置本体内気相部と原料供給機構内気相部
とが互いに独へ7していないため、原料供給機構内で生
じたSiO等が、原料供給機構の内圧により融液面に落
下して、単結晶化が阻害される間圧があったが1本発明
によるとこのよう、4こともない。
Furthermore, the vibration itself remains within the protective cylinder and does not propagate to the entire surface of the melt. Furthermore, compared to the method using a double crucible, the number of impurities introduced from the crucible material can be reduced and high-speed growth can be achieved. In such an apparatus having a conventional JM material supply mechanism, the gas phase within the single crystal Δ apparatus body and the gas phase within the raw material supply mechanism are not isolated from each other, so that SiO, etc. generated within the raw material supply mechanism is However, according to the present invention, there is no such pressure that the material falls onto the melt surface due to the internal pressure of the raw material supply mechanism and inhibits single crystallization.

抵抗加熱ヒータ下@部と融液面間の保護筒に排気管を設
け、不活性ガスを原料供給機構内に流すことにより、−
酸化シリコンの滞留を防ぎ、かつ、抵抗加熱ヒータに付
着する炭化シリコンの量を低減できる。これは、抵抗加
熱ヒータの劣化を防止する効果がある。なお、この場合
の不活性ガスの流量は50cc/min、・1以上が好
ましい。
By providing an exhaust pipe in the protective cylinder between the lower part of the resistance heater and the melt surface and flowing inert gas into the raw material supply mechanism, -
It is possible to prevent silicon oxide from remaining and reduce the amount of silicon carbide that adheres to the resistance heater. This has the effect of preventing deterioration of the resistance heater. Note that the flow rate of the inert gas in this case is preferably 50 cc/min, .multidot.1 or more.

また、抵抗加熱ヒータを筒型二重らせん状にすると、き
わめてコンパクトで効率の良いものにすることができる
とともに、ヒータ最先端の温度を最高温度に設定でき、
それにより原料の溶融部を融液面に近づけることができ
る。
In addition, by making the resistance heater into a cylindrical double helix shape, it can be made extremely compact and efficient, and the temperature at the cutting edge of the heater can be set to the highest temperature.
Thereby, the melted part of the raw material can be brought closer to the melt surface.

さらにまた、保護筒及び抵抗加熱ヒータを下に向かって
縮径させると原料供給機の制御が容易になる。
Furthermore, if the diameter of the protective tube and the resistance heater is reduced downward, the control of the raw material feeder becomes easier.

保護筒は、単結晶育成域を外して引上げ装置内に設けら
れているから引上げの障害になることはない。
Since the protective tube is provided inside the pulling device outside the single crystal growth area, it does not interfere with pulling.

以りのような効果により1本発明では、連続チャージ式
半導体単結晶製造装置において最大の問題である原料供
給が、育成中の単結晶に悪影響を与えることなく可能と
なる。その結果、るつぼ内の原料融液中のドーパント濃
度が制御でき、単結晶の軸方向の抵抗率は一定となる。
As a result of the above-mentioned effects, the present invention makes it possible to supply raw materials, which is the biggest problem in continuous charging type semiconductor single crystal manufacturing equipment, without adversely affecting the single crystal being grown. As a result, the dopant concentration in the raw material melt in the crucible can be controlled, and the resistivity in the axial direction of the single crystal becomes constant.

これにより、製造された半導体単結晶の製品歩留は大幅
に向上する。
This greatly improves the product yield of manufactured semiconductor single crystals.

本発明の装置において、保護筒の材質としては石英、カ
ーボンが望ましいが、特にその先端部の融液に触れる部
分については高純度の石英にすると良い。また抵抗加熱
ヒータは、通常のカーボンヒータに用いられている材質
のもので良い。また保温筒については、カーボン、炭化
シリコン等を使用することができる。
In the apparatus of the present invention, quartz or carbon is preferable as the material for the protective tube, and it is particularly preferable to use high-purity quartz for the tip portion that comes into contact with the melt. Further, the resistance heater may be made of a material that is used for ordinary carbon heaters. Moreover, carbon, silicon carbide, etc. can be used for the heat retaining cylinder.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明の一実施例を示す単結晶製造装置の縦
断面図。 第2図は、本発明の他の実施例を示す単結晶製造装置の
縦断面図。 第3図は、本発明のさらに他の実施例を示す単結晶製造
装置の縦断面図。 第4図は、抵抗加熱ヒータの縦断面図9第5図は、第1
図、第2図及び第3図中の八−A線に沿う横断面図。 第6図は、原料送り速度、溶解電力、原料直径の関係を
示す図。 第7図は、本発明の一実施例による育成単結晶の用量と
抵抗率の関係を示す図。 第8図は、本発明の一実施例による育成小結晶の・R(
氏と酸g f4度の関係を示す図。 ヒータ      11・・・抵抗加熱ヒータ3 黒鉛
るっぽ    I3・原料棒構内気相部・I  Ij英
るつぼ    14 ・種結晶6−、 (γ成1社結晶
    17・・ゲートバルブ8 カバー      
18・・絶縁管5〕 保護筒      19・・・ベ
ディスタル10−・保温筒     20・・・原料棒
送す原料融液 単結晶製造装置内気相部 原料供給機 単結晶製造装置 JJu々【管 第3図 特許出願人 小松電子金属株式会社 石英るつぼ 第5図 A −A断面図 第6図 原料棒送り速度。 (mm/min、) 第7図 育成単結晶重量。 (K9) 第8図 育成単結晶重量(kg)
FIG. 1 is a longitudinal sectional view of a single crystal manufacturing apparatus showing an embodiment of the present invention. FIG. 2 is a longitudinal sectional view of a single crystal manufacturing apparatus showing another embodiment of the present invention. FIG. 3 is a longitudinal sectional view of a single crystal manufacturing apparatus showing still another embodiment of the present invention. Fig. 4 is a vertical cross-sectional view of the resistance heater; Fig. 5 is a longitudinal cross-sectional view of the resistance heater;
FIG. 3 is a cross-sectional view taken along line 8-A in FIGS. 2 and 3. FIG. 6 is a diagram showing the relationship between raw material feed rate, melting power, and raw material diameter. FIG. 7 is a diagram showing the relationship between the dose and resistivity of a grown single crystal according to an embodiment of the present invention. FIG. 8 shows the small crystals grown according to an embodiment of the present invention.
A diagram showing the relationship between Mr. and acid g f4 degree. Heater 11... Resistance heating heater 3 Graphite Ruppo I3 - Raw material rod internal gas phase section - I IJ crucible 14 - Seed crystal 6-, (γ Seiichisha crystal 17... Gate valve 8 Cover
18...Insulating tube 5] Protective tube 19...Bedistal 10--Heating tube 20... Raw material melt to feed the raw material gas phase part inside the single crystal manufacturing device Raw material feeder single crystal manufacturing device JJu etc. [Pipe No. 3 Figure Patent applicant: Komatsu Electronic Metals Co., Ltd. Quartz crucible Figure 5 A-A sectional view Figure 6 Raw material rod feeding speed. (mm/min,) Fig. 7 Weight of grown single crystal. (K9) Figure 8 Growth single crystal weight (kg)

Claims (1)

【特許請求の範囲】 1、原料を充填するるつぼと、該るつぼの周囲にあって
るつぼ内の原料を溶融する加熱ヒータと、るつぼ内の溶
融原料に種結晶を浸漬して単結晶を引上げる引上機構と
を有する半導体単結晶製造装置において、るつぼの原料
融液充填域に先端部が開口して、この先端部においての
み引上装置内と連通する保護筒と、保護筒先端部より上
方の該保護筒内に設けられ、下方程高温度で、下部が半
導体原料溶融可能に温度維持制御される抵抗加熱ヒータ
とから成る原料供給機構を、単結晶引上域を外れて装置
内に設置し、単結晶引上時には、前記保護筒の先端部が
原料融液中に浸漬されることにより、引上装置内気相部
と、前記保護筒内気相部とが互いに独立するよう構成さ
れたことを特徴とする半導体単結晶製造装置。 2、原料供給機構は、るつぼ内の原料融液の減少量に応
じて送り量を制御する原料棒送りを備えたことを特徴と
する請求項1記載の半導体単結晶製造装置。 3、抵抗加熱ヒータは、らせん構造の筒状であることを
特徴とする請求項1または2記載の半導体単結晶製造装
置。 4、保護筒及び抵抗加熱ヒータは、下方に行くに従がい
縮径したことを特徴とする請求項1乃至3のいずれか一
項に記載の半導体単結晶製造装置。 5、るつぼ内に充填された原料融液面に種結晶を浸漬し
て徐々に引上げることにより単結晶を育成する半導体単
結晶の製造方法において、単結晶引上時にその気相部が
装置内気相部に対し独立した構成の原料供給機構から新
たな原料を供給しつつ、単結晶の引上げを連続的に行な
うことを特徴とする半導体単結晶の製造方法。 6、原料供給機構内に、50cc/min.・cm^3
以上の不活性ガスを流すことを特徴とする請求項5記載
の半導体単結晶の製造方法。
[Claims] 1. A crucible filled with raw materials, a heater located around the crucible to melt the raw materials in the crucible, and a seed crystal immersed in the molten raw materials in the crucible to pull a single crystal. In a semiconductor single crystal manufacturing apparatus having a pulling mechanism, a protective tube having a tip opening in the raw material melt filling area of the crucible and communicating with the inside of the pulling device only at this tip; A raw material supply mechanism is installed in the device outside the single crystal pulling area, and consists of a resistance heater that is provided in the protective cylinder and whose temperature is maintained at a higher temperature in the lower part, and which is controlled to maintain the temperature so that the lower part can melt the semiconductor raw material. However, when pulling a single crystal, the tip of the protective cylinder is immersed in the raw material melt, so that the gas phase part in the pulling device and the gas phase part in the protective cylinder are made independent of each other. A semiconductor single crystal manufacturing device characterized by: 2. The semiconductor single crystal manufacturing apparatus according to claim 1, wherein the raw material supply mechanism includes a raw material rod feeder whose feed rate is controlled according to the amount of decrease in the raw material melt in the crucible. 3. The semiconductor single crystal manufacturing apparatus according to claim 1 or 2, wherein the resistance heater has a cylindrical shape with a spiral structure. 4. The semiconductor single crystal manufacturing apparatus according to any one of claims 1 to 3, wherein the protective tube and the resistance heater have diameters that are reduced downward. 5. In a semiconductor single crystal manufacturing method in which a single crystal is grown by dipping a seed crystal into the surface of a raw material melt filled in a crucible and gradually pulling it up, the gas phase of the single crystal is exposed to the air inside the equipment when the single crystal is pulled up. A method for manufacturing a semiconductor single crystal, characterized in that the single crystal is continuously pulled while supplying a new raw material to the phase part from a raw material supply mechanism having an independent configuration. 6. In the raw material supply mechanism, 50cc/min.・cm^3
6. The method for manufacturing a semiconductor single crystal according to claim 5, further comprising flowing the above inert gas.
JP1100084A 1989-04-21 1989-04-21 Semiconductor single crystal manufacturing apparatus and manufacturing method Expired - Fee Related JPH0665640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1100084A JPH0665640B2 (en) 1989-04-21 1989-04-21 Semiconductor single crystal manufacturing apparatus and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1100084A JPH0665640B2 (en) 1989-04-21 1989-04-21 Semiconductor single crystal manufacturing apparatus and manufacturing method

Publications (2)

Publication Number Publication Date
JPH02279582A true JPH02279582A (en) 1990-11-15
JPH0665640B2 JPH0665640B2 (en) 1994-08-24

Family

ID=14264574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1100084A Expired - Fee Related JPH0665640B2 (en) 1989-04-21 1989-04-21 Semiconductor single crystal manufacturing apparatus and manufacturing method

Country Status (1)

Country Link
JP (1) JPH0665640B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0484362U (en) * 1990-11-30 1992-07-22
JPH0566072U (en) * 1992-02-18 1993-08-31 コマツ電子金属株式会社 Single crystal manufacturing equipment
JP2016153352A (en) * 2015-02-20 2016-08-25 信越半導体株式会社 Crystal growth method
CN113061978A (en) * 2021-03-22 2021-07-02 上海引万光电科技有限公司 Molten silicon feeder for continuous Czochralski single crystal pulling

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137891A (en) * 1983-12-24 1985-07-22 Sumitomo Electric Ind Ltd Method and apparatus for pulling compound semiconductor single crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137891A (en) * 1983-12-24 1985-07-22 Sumitomo Electric Ind Ltd Method and apparatus for pulling compound semiconductor single crystal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0484362U (en) * 1990-11-30 1992-07-22
JPH0566072U (en) * 1992-02-18 1993-08-31 コマツ電子金属株式会社 Single crystal manufacturing equipment
JP2016153352A (en) * 2015-02-20 2016-08-25 信越半導体株式会社 Crystal growth method
CN113061978A (en) * 2021-03-22 2021-07-02 上海引万光电科技有限公司 Molten silicon feeder for continuous Czochralski single crystal pulling

Also Published As

Publication number Publication date
JPH0665640B2 (en) 1994-08-24

Similar Documents

Publication Publication Date Title
US5427056A (en) Apparatus and method for producing single crystal
US5488923A (en) Method for producing single crystal
TW202217085A (en) Method for producing silicon single crystal
JPH02279582A (en) Apparatus and method for producing semiconductor single crystal
EP0675214B1 (en) Method of growing crystals
JPH089169Y2 (en) Single crystal manufacturing equipment
JPH0524969A (en) Crystal growing device
JP2747626B2 (en) Single crystal manufacturing equipment
JPH0711177Y2 (en) Raw material supply mechanism for semiconductor single crystal manufacturing equipment
JP3860255B2 (en) Semiconductor single crystal manufacturing method and semiconductor single crystal
JP2589212B2 (en) Semiconductor single crystal manufacturing equipment
JPH03215383A (en) Raw material-supplying device
JPH0259494A (en) Production of silicon single crystal and apparatus
JPS6395195A (en) Crystal pulling-up method and apparatus therefor
JPH03228893A (en) Method for growing crystal
JP2595693B2 (en) Semiconductor single crystal growth equipment
JPH0316989A (en) Production device of silicon single crystal
JPH07512B2 (en) Crystal growth equipment
JPH09235181A (en) Pulling of single crystal and single crystal pull apparatus
JPH09208360A (en) Growth of single crystal
JPH07300389A (en) Production of semiconductor single crystal
JPH0745355B2 (en) Crystal growth method and apparatus
JPH06271382A (en) Apparatus for production of silicon single crystal
JPH06227890A (en) Apparatus for growing single crystal and method for growing single crystal using the same
JPH0543380A (en) Apparatus for growing single crystal by molten layer process and method for controlling oxygen concentration in single crystal using the apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080824

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees