JPH07300389A - Production of semiconductor single crystal - Google Patents

Production of semiconductor single crystal

Info

Publication number
JPH07300389A
JPH07300389A JP11584394A JP11584394A JPH07300389A JP H07300389 A JPH07300389 A JP H07300389A JP 11584394 A JP11584394 A JP 11584394A JP 11584394 A JP11584394 A JP 11584394A JP H07300389 A JPH07300389 A JP H07300389A
Authority
JP
Japan
Prior art keywords
raw material
crucible
single crystal
melt
material supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11584394A
Other languages
Japanese (ja)
Inventor
Shoei Kurosaka
昇栄 黒坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Electronic Metals Co Ltd filed Critical Komatsu Electronic Metals Co Ltd
Priority to JP11584394A priority Critical patent/JPH07300389A/en
Publication of JPH07300389A publication Critical patent/JPH07300389A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To suppress the oscillation of liquid surface and prevent the polycrystallization of a semiconductor single crystal in the production of a semiconductor single crystal by a continuous charging method by varying the level of a molten liquid relative to a raw material supplying pipe prior to the start of raw material supplying operation. CONSTITUTION:A raw material supplying part is separated from a single crystal, growing part with a vapor phase by immersing a lower part of a raw material supplying pipe 3 attached to the lower end of a raw material supplying part into a molten liquid 2 stored in a crucible 1. The growing of neck and shoulder parts 5 and the growing of the upper end of a straight cylinder part 6 are carried out exclusively with the molten liquid 2 stored in the crucible 1 by lifting the crucible without feeding a polycrystalline raw material from a raw material supplying pipe 3 to effect the pull-up growing of a semiconductor single crystal. Thereafter the lifting rate of the crucible 1 is lowered to perform the growing of the upper end part of the straight cylinder 6 and vary the level of the molten liquid relative to the raw material supplying pipe 3. After the above procedures, the supply of the polycrystalline raw material from the raw material supplying pipe to the molten liquid 2 is started, the lifting motion of the crucible l is stopped and pulling up of the semiconductor single crystal is carried out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、連続チャージ法を用い
て均質な半導体単結晶を連続的に製造する半導体単結晶
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a semiconductor single crystal which continuously produces a homogeneous semiconductor single crystal by using a continuous charge method.

【0002】[0002]

【従来の技術】半導体素子の基板には主として高純度の
単結晶シリコンが用いられているが、この単結晶シリコ
ンの製造方法の一つにチョクラルスキー法(以下CZ法
という)がある。CZ法においては、半導体単結晶製造
装置のチャンバ内に設置したるつぼ軸の上端にるつぼ受
けを介して黒鉛るつぼを載置し、前記黒鉛るつぼ内に収
容した石英るつぼに多結晶シリコンを充填した上、前記
黒鉛るつぼの周囲に設けたヒータによって多結晶シリコ
ンを加熱溶解して融液とする。そして、シードチャック
に取り付けた種子結晶を前記融液に浸漬し、シードチャ
ックおよび黒鉛るつぼを同方向または逆方向に回転しつ
つシードチャックを引き上げて単結晶シリコンを成長さ
せる。
2. Description of the Related Art A high-purity single crystal silicon is mainly used for a substrate of a semiconductor element, and one of the methods for producing this single crystal silicon is the Czochralski method (hereinafter referred to as the CZ method). In the CZ method, a graphite crucible is placed on the upper end of a crucible shaft installed in a chamber of a semiconductor single crystal manufacturing apparatus via a crucible receiver, and a quartz crucible housed in the graphite crucible is filled with polycrystalline silicon. The polycrystalline silicon is heated and melted by a heater provided around the graphite crucible to form a melt. Then, the seed crystal attached to the seed chuck is immersed in the melt, and the seed chuck is pulled up while the seed chuck and the graphite crucible are rotated in the same direction or in the opposite direction to grow single crystal silicon.

【0003】近年は半導体ウェーハの直径が大型化し、
8インチを超える大口径ウェーハが要求されるようにな
り、単結晶シリコンの直径も8インチ以上のものが主流
になりつつある。このため単結晶製造装置も大型化し、
1サイクル当たりの処理量が増大する傾向にある。しか
し、単結晶製造装置の大型化に伴って単結晶成長工程に
おける所要時間が長くなるとともに、その前後工程、た
とえば原料多結晶の溶解所要時間や、成長した単結晶シ
リコンを炉外に取り出した後、るつぼ、ヒータ等が清掃
可能な温度に下がるまでの冷却所要時間等も従来に比べ
て長くなっている。これらは単結晶シリコンの生産性を
低下させる要因になる。また石英るつぼは、多結晶シリ
コンの溶解時に加えられる熱負荷によって変形、割れ等
が発生するため、1本の単結晶シリコン引き上げごとに
新品と交換している。
In recent years, the diameter of semiconductor wafers has increased,
With the demand for large-diameter wafers exceeding 8 inches, single crystal silicon having a diameter of 8 inches or more is becoming the mainstream. For this reason, the single crystal manufacturing equipment also becomes larger,
The throughput per cycle tends to increase. However, as the size of the single crystal manufacturing apparatus becomes larger, the time required for the single crystal growth step becomes longer, and before and after that, for example, the time required for melting the raw material polycrystal, and after taking out the grown single crystal silicon out of the furnace. The cooling time required for the crucible, the heater, etc. to reach a temperature at which they can be cleaned is longer than before. These are factors that reduce the productivity of single crystal silicon. Further, since the quartz crucible is deformed or cracked due to the heat load applied when the polycrystalline silicon is melted, it is replaced with a new one every time the single crystal silicon is pulled up.

【0004】大口径の単結晶シリコンをCZ法によって
効率よく生産する手段の一つとして、引き上げた単結晶
シリコンの量に応じて原料をるつぼ内に供給し、連続的
に単結晶シリコンを引き上げる連続チャージ法が用いら
れている。図2は連続チャージ法を用いる半導体単結晶
製造装置の一例を模式的に示す部分断面図で、石英製の
るつぼ1の周縁部上方に2組の原料供給部10が設置さ
れている。この原料供給部10は、チャンバ9の上部か
ら釣支された棒状の多結晶シリコン(以下原料結晶棒と
いう)11を溶解して融液2に滴下させるもので、原料
溶解ヒータ12と、前記原料溶解ヒータ12を包囲する
保護筒13と、前記保護筒13の下端に取り付けられた
石英製の原料供給管3とによって構成されている。
As one of means for efficiently producing large-diameter single crystal silicon by the CZ method, a raw material is supplied into a crucible according to the amount of the pulled single crystal silicon, and the single crystal silicon is continuously pulled up. The charge method is used. FIG. 2 is a partial cross-sectional view schematically showing an example of a semiconductor single crystal manufacturing apparatus using the continuous charging method, and two sets of raw material supply parts 10 are installed above the peripheral edge of the quartz crucible 1. The raw material supply unit 10 melts rod-shaped polycrystalline silicon (hereinafter referred to as a raw material crystal rod) 11 supported from the upper portion of the chamber 9 and drops it into the melt 2. The raw material melting heater 12 and the raw material It comprises a protective cylinder 13 surrounding the melting heater 12, and a quartz raw material supply pipe 3 attached to the lower end of the protective cylinder 13.

【0005】原料供給管3の下端は融液2に浸漬され、
落下する液滴によって単結晶育成部20の融液2に振動
が伝播することを防止している。また、原料供給部10
は単結晶育成部20から隔離された独立の空間を形成
し、原料供給部10と単結晶育成部20との気相が分離
されている。原料結晶棒11は1本ずつ交互に前記原料
溶解ヒータ12内に吊り降ろされ、片側の原料結晶棒の
溶解が終了すると他側の原料結晶棒を溶解し、連続的に
原料の供給が行われる。なお、4はシードチャック、7
はるつぼ軸、14はメインヒータ、15は保温筒、16
は前記原料供給部10を流下した不活性ガスの排出通路
となるメルトカバー、17は育成中の単結晶シリコンで
ある。
The lower end of the raw material supply pipe 3 is immersed in the melt 2,
Vibrations are prevented from propagating to the melt 2 of the single crystal growth portion 20 due to the falling droplets. In addition, the raw material supply unit 10
Forms an independent space isolated from the single crystal growing section 20, and the vapor phase of the raw material supply section 10 and the single crystal growing section 20 are separated. The raw material crystal rods 11 are alternately hung down one by one inside the raw material melting heater 12, and when the melting of the raw material crystal rods on one side is completed, the raw material crystal rods on the other side are melted and the raw material is continuously supplied. . In addition, 4 is a seed chuck, 7
Crucible shaft, 14 main heater, 15 heat insulation tube, 16
Is a melt cover that serves as a discharge passage for the inert gas flowing down the raw material supply section 10, and 17 is single crystal silicon being grown.

【0006】[0006]

【発明が解決しようとする課題】原料供給管3には一般
に石英が用いられているが、図3に示すように原料供給
管3の融液2内に浸漬される部分は融液2と反応して次
第に浸食され、浸食された部分とその上方の部分との境
界に段差ができる。このような原料供給管を用いた場
合、融液面が前記段差に接触して液面振動が発生する。
育成中の半導体単結晶が前記液面振動を受けると、多結
晶化を引き起こす原因となる。
Quartz is generally used for the raw material supply pipe 3, but the portion of the raw material supply pipe 3 immersed in the melt 2 reacts with the melt 2 as shown in FIG. Then, it is gradually eroded, and a step is formed at the boundary between the eroded portion and the portion above it. When such a raw material supply pipe is used, the melt surface comes into contact with the step and vibration of the liquid surface occurs.
When the semiconductor single crystal under growth receives the liquid surface vibration, it causes polycrystallization.

【0007】本発明は上記従来の問題点に着目してなさ
れたもので、浸食された原料供給管の段差部に融液面が
接触することによって発生する液面振動を抑制し、半導
体単結晶の多結晶化を防止することができるような半導
体単結晶製造方法を提供することを目的としている。
The present invention has been made by paying attention to the above-mentioned conventional problems, and suppresses the liquid level vibration caused by the contact of the melt surface with the stepped portion of the eroded raw material supply pipe, and the semiconductor single crystal It is an object of the present invention to provide a method for producing a semiconductor single crystal capable of preventing polycrystallization of the above.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係る半導体単結晶製造方法は、原料供給部
の下端に取り付けた原料供給管の下部をるつぼに貯留し
た融液に浸漬することによって、前記原料供給部と単結
晶育成部とを気相分離し、前記原料供給部から前記融液
に原料多結晶を連続的に供給しつつ半導体単結晶を引き
上げる半導体単結晶の製造において、前記原料供給部か
ら前記融液に対する原料多結晶の供給開始前または原料
多結晶の供給開始前と供給終了後に前記原料供給管に対
する融液面の位置を変位させることにより、前記原料供
給管と融液面との接触によって発生する液面振動を抑制
することを特徴とし、具体的には、ネックおよびショル
ダの育成ならびに直胴上端部の育成に当たり、原料供給
部からの原料多結晶の供給を行わず、るつぼを上昇させ
つつるつぼ内に貯留した融液のみで前記の育成を行い、
次にるつぼの上昇率を下げて直胴上端部の育成を行うこ
とによって原料供給管に対する融液面の位置を変え、そ
の後、前記原料供給部から前記融液に対する原料多結晶
の供給を開始するとともにるつぼの上昇を停止するもの
とした。更に、前記に加えて、原料供給部から融液に対
する原料多結晶の供給を終了し、るつぼを上昇させつつ
るつぼ内に貯留した融液のみによる半導体単結晶の育成
に移行するに当たり、るつぼの上昇を所定の期間だけ停
止したまま、もしくはるつぼの上昇率を下げて前記半導
体単結晶の育成を行うことによって原料供給管に対する
融液面の位置を変え、その後、通常の上昇率でるつぼを
上昇させつつテールの育成を行うようにしてもよい。
In order to achieve the above object, in the method for producing a semiconductor single crystal according to the present invention, the lower part of the raw material supply pipe attached to the lower end of the raw material supply part is immersed in the melt stored in the crucible. Thereby, in the gas phase separation of the raw material supply unit and the single crystal growth unit, in the production of a semiconductor single crystal pulling the semiconductor single crystal while continuously supplying the raw material polycrystal to the melt from the raw material supply unit, By displacing the position of the melt surface with respect to the raw material supply pipe before the start of the supply of the raw material polycrystal to the melt from the raw material supply unit or before the start of the supply of the raw material polycrystal and after the end of the supply of the raw material polycrystal, It is characterized by suppressing the liquid surface vibration generated by contact with the liquid surface, and specifically, in growing the neck and shoulder and growing the upper part of the straight body, the raw material polycrystal from the raw material supply part Without supply, only the melt was retained in the crucible while increasing the crucible perform development of the,
Next, the position of the melt surface with respect to the raw material supply pipe is changed by lowering the rising rate of the crucible and growing the upper end of the straight body, and thereafter, the supply of the raw material polycrystal to the melt is started from the raw material supply section. At the same time, it was decided to stop the ascending of the crucible. Furthermore, in addition to the above, when the supply of the raw material polycrystal to the melt from the raw material supply unit is completed and the crucible is raised, the crucible is raised when the semiconductor single crystal is grown by only the melt stored in the crucible. While stopping for a predetermined period, or by changing the position of the melt surface with respect to the raw material supply pipe by growing the semiconductor single crystal by lowering the rate of rise of the crucible, then raise the crucible at a normal rate of rise. You may make it grow the tail.

【0009】[0009]

【作用】上記構成によれば、連続チャージ法による半導
体単結晶の引き上げにおいて、融液に対する原料多結晶
の供給開始前または原料多結晶の供給開始前と供給終了
後に、原料供給管に対する融液面位置を変位させること
とした。具体的には、直胴上端部の育成までは原料供給
部から融液に原料多結晶を供給せず、かつ、るつぼの上
昇率を下げることによって原料供給管に対する融液面の
位置を変え、融液に浸食されることによって生じた前記
原料供給管の段差部に融液面を接触させないようにした
ので、前記段差部に起因する液面振動の発生を抑制する
ことができる。更に、原料供給部から融液に対する原料
多結晶の供給終了後、所定の期間はるつぼの上昇を停止
したまま、あるいはるつぼの上昇率を下げて半導体単結
晶の育成を行うことにしたので、前記期間に原料供給管
と融液面との相対位置が変化し、液面振動の発生を抑制
する。このような操作を行うことにより、融液に浸漬さ
れる原料供給管に段差がある場合でも液面振動の発生が
抑制され、単結晶の多結晶化を防止することができる。
According to the above structure, in the pulling of the semiconductor single crystal by the continuous charge method, the melt surface to the raw material supply pipe is supplied before starting the supply of the raw material polycrystal to the melt or before and after the start of the supply of the raw material polycrystal. It was decided to change the position. Specifically, the raw material polycrystal is not supplied from the raw material supply unit to the melt until the growth of the upper end of the straight body, and the position of the melt surface with respect to the raw material supply pipe is changed by lowering the rising rate of the crucible, Since the melt surface is not brought into contact with the stepped portion of the raw material supply pipe caused by being eroded by the melt, it is possible to suppress the occurrence of liquid level vibration caused by the stepped portion. Furthermore, after the supply of the raw material polycrystal to the melt from the raw material supply unit, the rising of the crucible is stopped for a predetermined period, or it is decided to grow the semiconductor single crystal by lowering the rising rate of the crucible. The relative position between the raw material supply pipe and the melt surface changes during the period, and the occurrence of liquid level vibration is suppressed. By performing such an operation, even if there is a step in the raw material supply pipe that is immersed in the melt, the occurrence of liquid level vibration is suppressed, and it is possible to prevent polycrystallization of a single crystal.

【0010】[0010]

【実施例】以下に本発明に係る半導体単結晶製造方法の
一実施例について、図面を参照して説明する。図1は、
半導体単結晶引き上げ工程を時系列的に示した模式図で
ある。図1(a)において、るつぼ1内には原料多結晶
を溶解してなる融液2が貯留され、原料供給部の下端に
取り付けた原料供給管3の下部は前記融液2に浸漬され
ている。シードチャック4に取り付けられた種子結晶の
下端を前記融液2に浸漬してなじませ、シードチャック
4を引き上げてネックを育成し、次いでショルダ5を育
成する。ショルダ5を育成後、図1(b)に示すように
直胴育成工程に入り、直胴6を軸方向長さ約50mmま
で育成する。前記ネック育成から直胴長さ約50mm育
成までの間は原料供給部から融液2に対する原料供給を
行わず、メインヒータ(図示せず)に対する融液面位置
を所定の位置に保つためにるつぼ軸7を駆動してるつぼ
1を上昇させる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the method for producing a semiconductor single crystal according to the present invention will be described below with reference to the drawings. Figure 1
It is a schematic diagram which showed the semiconductor single crystal pulling process in time series. In FIG. 1A, a melt 2 formed by melting a raw material polycrystal is stored in a crucible 1, and a lower portion of a raw material supply pipe 3 attached to a lower end of a raw material supply section is immersed in the melt 2. There is. The lower end of the seed crystal attached to the seed chuck 4 is dipped in the melt 2 to be blended, the seed chuck 4 is pulled up to grow a neck, and then the shoulder 5 is grown. After the shoulder 5 has been grown, as shown in FIG. 1 (b), a straight body growing step is started to grow the straight body 6 to an axial length of about 50 mm. During the period from the neck growth to the straight body length growth of about 50 mm, the raw material supply unit does not supply the raw material to the melt 2, and the crucible is used to keep the melt surface position with respect to the main heater (not shown) at a predetermined position. The shaft 7 is driven to raise the crucible 1.

【0011】直胴育成工程において、直胴6の軸方向長
さ約50mmから約100mmまでの間は引き続き原料
供給部から融液2に対する原料供給を行わず、かつ、る
つぼ1の上昇率を通常の1/2に落とす。これにより図
1(c)に示すように、原料供給部の下端に取り付けら
れた原料供給管3に対する融液面位置は次第に下降し、
この間、原料供給管3に対する融液面の接触位置が少し
ずつ変動する。従って、浸食された原料供給管3の同一
位置に継続して融液面が接触することがなく、原料供給
管3の段差に起因する液面振動の発生が抑制される。
In the straight body growing step, the raw material is not continuously supplied from the raw material supply section to the melt 2 during the axial length of the straight body 6 from about 50 mm to about 100 mm, and the ascending rate of the crucible 1 is normally set. Drop to 1/2. As a result, as shown in FIG. 1C, the melt surface position with respect to the raw material supply pipe 3 attached to the lower end of the raw material supply section is gradually lowered,
During this time, the contact position of the melt surface with respect to the raw material supply pipe 3 changes little by little. Therefore, the melt surface does not continuously come into contact with the same position of the eroded raw material supply pipe 3, and the generation of the liquid level vibration due to the step of the raw material supply pipe 3 is suppressed.

【0012】直胴部育成工程において、直胴6の軸方向
長さ約100mm以降は原料供給部による原料供給を開
始する。すなわち、図1(d)に示すように原料溶解ヒ
ータ(図示せず)によって原料結晶棒を溶解し、その液
滴を原料供給管3を通して融液2に供給する。このとき
は、るつぼ1の上昇を停止する。
In the straight body part growing step, after the axial length of the straight body 6 of about 100 mm, the raw material supply section starts the raw material supply. That is, as shown in FIG. 1D, a raw material melting rod (not shown) melts the raw material crystal rod, and the droplets are supplied to the melt 2 through the raw material supply pipe 3. At this time, the ascending of the crucible 1 is stopped.

【0013】任意本数の原料結晶棒を溶解して融液に供
給した後、原料供給部による原料供給を終了する。この
時点からは、るつぼ1を通常の上昇率で上昇させつつ半
導体単結晶の育成を継続することになるが、図1(e)
に示すように、直胴6の下端部約20mmの育成に対し
てはるつぼ1の上昇を停止させておく。この間、融液面
は次第に下降するので、原料供給管3に対する融液面の
接触位置も少しずつ変動し、融液面の振動が抑制され
る。直胴6の下端部約20mmの育成時に、るつぼ1の
上昇率を通常の値より下げる方法を用いてもよい。
After melting an arbitrary number of raw material crystal rods and supplying them to the melt, the raw material supply section completes the supply of the raw material. From this point, the growth of the semiconductor single crystal is continued while raising the crucible 1 at a normal rate of increase.
As shown in FIG. 3, the raising of the crucible 1 is stopped for the growing of the lower end portion of the straight body 6 of about 20 mm. During this time, since the melt surface gradually descends, the contact position of the melt surface with the raw material supply pipe 3 also gradually changes, and vibration of the melt surface is suppressed. A method of lowering the rate of rise of the crucible 1 below a normal value may be used when growing the lower end portion of the straight body 6 of about 20 mm.

【0014】直胴6の下端部約20mmの育成が終了し
た後、図1(f)に示すようにテール8の育成に入る。
テール8の育成においては、るつぼ1を通常の上昇率で
上昇させる。この場合、融液2の減少に伴って融液面が
下降するので、原料供給管3の下端が融液2から離脱す
る。
After the growth of about 20 mm at the lower end of the straight body 6 is completed, the tail 8 is grown as shown in FIG. 1 (f).
In raising the tail 8, the crucible 1 is raised at a normal rate of increase. In this case, since the melt surface descends as the melt 2 decreases, the lower end of the raw material supply pipe 3 separates from the melt 2.

【0015】本実施例では、浸食による段差を有する原
料供給管を用いる場合であっても、上記操作を行うこと
により、直胴の上端約50mmの位置から下端すなわち
テールとの境界に至る単結晶育成時に、融液面の原料供
給管に対する接触位置が前記段差部以外の位置にある。
このため、原料供給管の段差部に融液面が接触すること
によって従来発生していた液面振動が抑制され、育成単
結晶の多結晶化を防止することができる。また、テール
育成時には融液の減少に伴って原料供給管に対する融液
面位置が変位し、最終的には原料供給管の下端が融液か
ら離脱するため、液面振動は発生しない。
In the present embodiment, even when a raw material supply pipe having a step due to erosion is used, by performing the above operation, the single crystal extending from the position of about 50 mm at the upper end of the straight body to the lower end, that is, the boundary with the tail. During the growth, the contact position of the melt surface with the raw material supply pipe is at a position other than the step portion.
For this reason, the liquid level vibration that has conventionally occurred due to the contact of the melt surface with the stepped portion of the raw material supply pipe is suppressed, and the polycrystallization of the grown single crystal can be prevented. Further, during tail growth, the melt surface position with respect to the raw material supply pipe is displaced along with the decrease in the melt, and finally the lower end of the raw material supply pipe is separated from the melt, so that liquid surface vibration does not occur.

【0016】本実施例では、ネック、ショルダの育成お
よび直胴上端約100mmの位置までは原料供給部から
原料多結晶を供給せず、かつ、直胴上端約50mmから
約100mmまでの間はるつぼ上昇率を通常の単結晶育
成時の1/2としたが、これに限るものではなく、使用
する原料供給管の段差の位置に応じて原料多結晶の供給
開始時期、るつぼ上昇率、育成部位の軸方向長さを適宜
選択するものとする。同様に、原料多結晶の供給終了時
期やるつぼ上昇停止期間またはるつぼ上昇率は、るつぼ
の容量、原料供給管の段差の位置に応じて選択すればよ
い。また、原料結晶棒を溶解してその液滴を融液に供給
する方式のみならず、下端を融液に浸漬した原料供給管
を通して粒状の原料多結晶を融液に直接投入する方式の
連続チャージ法においても本発明を適用することができ
る。
In the present embodiment, the raw material polycrystal is not supplied from the raw material supply portion to the neck and shoulder growth and the position of the upper end of the straight body of about 100 mm, and the crucible is located between the upper end of the straight body of about 50 mm and about 100 mm. The rate of increase was set to 1/2 of that during normal single crystal growth, but it is not limited to this, and the supply start time of the raw material polycrystal, the rate of increase in the crucible, and the growth site are determined according to the position of the step of the raw material supply pipe used. The axial length of is to be selected appropriately. Similarly, the supply end time of the raw material polycrystal, the crucible rising stop period or the crucible rising rate may be selected according to the capacity of the crucible and the position of the step of the raw material supply pipe. Further, not only the method of melting the raw material crystal rod and supplying the droplets to the melt but also the method of directly charging the granular raw material polycrystal into the melt through the raw material supply pipe whose lower end is immersed in the melt The present invention can be applied to the method.

【0017】[0017]

【発明の効果】以上説明したように本発明によれば、連
続チャージ法を用いる半導体単結晶の引き上げにおける
融液面の振動の発生原因の一つとして、融液に浸漬した
原料供給管の浸食によって形成された段差部に融液面が
接触する点に着目し、前記段差部に対する融液の接触を
回避する手段として、融液に対する原料多結晶の供給期
間を制限することにした。そして、前記原料多結晶の供
給開始前または原料多結晶の供給開始前と供給終了後
に、るつぼの上昇率を下げ、あるいはるつぼの上昇を停
止することによって原料供給管に対する融液面位置を変
位させ、融液との反応によって生じた前記原料供給管の
段差部に融液面を接触させないようにしたので、半導体
単結晶育成工程の大部分において液面振動の発生が抑制
される。このような操作を行うことにより、融液に浸漬
される原料供給管に段差を生じていても単結晶の多結晶
化防止が可能となり、不良品が激減するので半導体単結
晶の生産性を著しく向上させることができる。
As described above, according to the present invention, as one of the causes of the vibration of the melt surface in the pulling of the semiconductor single crystal using the continuous charge method, the erosion of the raw material supply pipe immersed in the melt is caused. Focusing on the point that the melt surface comes into contact with the step portion formed by, the supply period of the raw material polycrystal to the melt is limited as a means for avoiding the contact of the melt with the step portion. Then, before the start of the supply of the raw material polycrystal or before the start of the supply of the raw material polycrystal and after the end of the supply, the melt surface position with respect to the raw material supply pipe is displaced by lowering the rising rate of the crucible or stopping the rising of the crucible. Since the melt surface is not brought into contact with the stepped portion of the raw material supply pipe caused by the reaction with the melt, the occurrence of liquid surface vibration is suppressed in most of the semiconductor single crystal growing step. By performing such an operation, even if there is a step in the raw material supply pipe that is immersed in the melt, it is possible to prevent polycrystallization of the single crystal, and the number of defective products is drastically reduced. Can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】半導体単結晶引き上げ工程を時系列的に示した
模式図で、(a)はネックおよびショルダ、(b),
(c),(d),(e)は直胴、(f)はテールの育成
工程を示す。
FIG. 1 is a schematic view showing a semiconductor single crystal pulling process in time series, where (a) is a neck and a shoulder, (b),
(C), (d) and (e) show a straight body, and (f) shows a tail growing process.

【図2】連続チャージ法を用いる半導体単結晶製造装置
の一例を模式的に示す部分断面図である。
FIG. 2 is a partial cross-sectional view schematically showing an example of a semiconductor single crystal manufacturing apparatus using a continuous charge method.

【図3】融液に浸漬した部分が浸食された原料供給管と
その周辺部分の断面図である。
FIG. 3 is a cross-sectional view of a raw material supply pipe in which a portion immersed in a melt is eroded and its peripheral portion.

【符号の説明】[Explanation of symbols]

1 るつぼ 2 融液 3 原料供給管 5 ショルダ 6 直胴 8 テール 10 原料供給部 17 単結晶シリコン 20 単結晶育成部 1 Crucible 2 Melt 3 Raw Material Supply Pipe 5 Shoulder 6 Straight Body 8 Tail 10 Raw Material Supply Section 17 Single Crystal Silicon 20 Single Crystal Growth Section

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原料供給部の下端に取り付けた原料供給
管の下部をるつぼに貯留した融液に浸漬することによっ
て、前記原料供給部と単結晶育成部とを気相分離し、前
記原料供給部から前記融液に原料多結晶を連続的に供給
しつつ半導体単結晶を引き上げる半導体単結晶の製造に
おいて、 前記原料供給部から前記融液に対する原料多結晶の供給
開始前または原料多結晶の供給開始前と供給終了後に前
記原料供給管に対する融液面の位置を変位させることに
より、前記原料供給管と融液面との接触によって発生す
る液面振動を抑制することを特徴とする半導体単結晶製
造方法。
1. A raw material supply pipe attached to the lower end of a raw material supply part is immersed in a melt stored in a crucible to separate the raw material supply part and the single crystal growing part into a gas phase, and the raw material supply part is supplied. In the production of a semiconductor single crystal that pulls a semiconductor single crystal while continuously supplying a raw material polycrystal to the melt from a part, before starting the supply of the raw material polycrystal to the melt from the raw material supply part or supplying the raw material polycrystal By displacing the position of the melt surface with respect to the raw material supply pipe before the start and after the end of the supply, a semiconductor single crystal characterized by suppressing the liquid surface vibration caused by the contact between the raw material supply pipe and the melt surface Production method.
【請求項2】 ネックおよびショルダの育成ならびに直
胴上端部の育成に当たり、原料供給部からの原料多結晶
の供給を行わず、るつぼを上昇させつつるつぼ内に貯留
した融液のみで前記の育成を行い、次にるつぼの上昇率
を下げて直胴上端部の育成を行うことによって原料供給
管に対する融液面の位置を変え、その後、前記原料供給
部から前記融液に対する原料多結晶の供給を開始すると
ともにるつぼの上昇を停止することを特徴とする請求項
1の半導体単結晶製造方法。
2. When growing a neck and a shoulder and a straight upper end of a straight body, a raw material polycrystal is not supplied from a raw material supply section, and the above-mentioned growth is performed only by a melt stored in a crucible which is raising a crucible. And then change the position of the melt surface with respect to the raw material supply pipe by lowering the rate of rise of the crucible and growing the straight body upper end, and then supplying the raw material polycrystal to the melt from the raw material supply section. 2. The method for producing a semiconductor single crystal according to claim 1, wherein the ascending of the crucible is stopped at the same time as the starting.
【請求項3】 原料供給部から融液に対する原料多結晶
の供給を終了し、るつぼを上昇させつつるつぼ内に貯留
した融液のみによる半導体単結晶の育成に移行するに当
たり、るつぼの上昇を所定の期間だけ停止したまま、も
しくはるつぼの上昇率を下げて前記半導体単結晶の育成
を行うことによって原料供給管に対する融液面の位置を
変え、その後、通常の上昇率でるつぼを上昇させつつテ
ールの育成を行うことを特徴とする請求項1の半導体単
結晶製造方法。
3. When the supply of the raw material polycrystal to the melt from the raw material supply unit is completed and the crucible is being raised, the rising of the crucible is predetermined when the semiconductor single crystal is grown only by the melt stored in the crucible. The position of the melt surface with respect to the raw material supply pipe is changed by either stopping for a period of time or by lowering the rising rate of the crucible to grow the semiconductor single crystal, and then raising the crucible at the normal rising rate while the tail is raised. 2. The method for producing a semiconductor single crystal according to claim 1, wherein the growth is performed.
JP11584394A 1994-05-02 1994-05-02 Production of semiconductor single crystal Pending JPH07300389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11584394A JPH07300389A (en) 1994-05-02 1994-05-02 Production of semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11584394A JPH07300389A (en) 1994-05-02 1994-05-02 Production of semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPH07300389A true JPH07300389A (en) 1995-11-14

Family

ID=14672509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11584394A Pending JPH07300389A (en) 1994-05-02 1994-05-02 Production of semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPH07300389A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100490276B1 (en) * 1996-01-12 2005-08-18 미쯔비시 마테리알 실리콘 가부시끼가이샤 Single Crystal Growth Method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100490276B1 (en) * 1996-01-12 2005-08-18 미쯔비시 마테리알 실리콘 가부시끼가이샤 Single Crystal Growth Method
DE19700517B4 (en) * 1996-01-12 2010-07-15 Mitsubishi Materials Silicon Corp. single crystal growth

Similar Documents

Publication Publication Date Title
KR101033250B1 (en) Manufacturing method of single crystal
US6093913A (en) Electrical heater for crystal growth apparatus with upper sections producing increased heating power compared to lower sections
KR20150107241A (en) Method for manufacturing ingot and apparatus for the same
JP5163386B2 (en) Silicon melt forming equipment
WO1999046433A1 (en) Auxiliary apparatus for melting single crystal raw material and method of melting single crystal raw material
JP2973917B2 (en) Single crystal pulling method
JP3760769B2 (en) Method for producing silicon single crystal
JP5272247B2 (en) Method for melting polycrystalline silicon raw material in CZ method
JP5051033B2 (en) Method for producing silicon single crystal
JPH09235186A (en) Seed crystal for lifting single crystal and lifting of single crystal with the seed crystal
JP5167942B2 (en) Method for producing silicon single crystal
JPH07300389A (en) Production of semiconductor single crystal
JP2816633B2 (en) Single crystal pulling apparatus and pulling method
JPH0733584A (en) Recharging method in pulling up semiconductor single crystal
JP4341379B2 (en) Single crystal manufacturing method
KR101023318B1 (en) Method for melting solid raw material for single crystal growth
JP4702266B2 (en) Single crystal pulling method
JP3564740B2 (en) Crystal growth equipment
JP4082213B2 (en) Single crystal growth method, single crystal manufacturing apparatus, and silicon single crystal manufactured by this method
JPH10279391A (en) Method for growing silicon single crystal
JP3721977B2 (en) Single crystal pulling method
JP4413055B2 (en) Silicon single crystal manufacturing method
JPH09208367A (en) Initial charging of silicon material into double-layered crucible
WO2002016678A1 (en) Method for producing silicon single crystal
WO2017064889A1 (en) Method for selecting heater related member provided in single crystal pulling device