JPH02277333A - Demodulation circuit for non zero return type transmission - Google Patents

Demodulation circuit for non zero return type transmission

Info

Publication number
JPH02277333A
JPH02277333A JP1098401A JP9840189A JPH02277333A JP H02277333 A JPH02277333 A JP H02277333A JP 1098401 A JP1098401 A JP 1098401A JP 9840189 A JP9840189 A JP 9840189A JP H02277333 A JPH02277333 A JP H02277333A
Authority
JP
Japan
Prior art keywords
received data
flip
flop
clock
demodulation circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1098401A
Other languages
Japanese (ja)
Other versions
JP2718168B2 (en
Inventor
Shigeo Nishioka
西岡 繁雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP1098401A priority Critical patent/JP2718168B2/en
Publication of JPH02277333A publication Critical patent/JPH02277333A/en
Application granted granted Critical
Publication of JP2718168B2 publication Critical patent/JP2718168B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)
  • Dc Digital Transmission (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

PURPOSE:To improve the reliability of transmission by making the interval of synchronization of a received data narrow. CONSTITUTION:After a received data is inputted to a flip-flop 1, its output is fed to an input of a flip-flop 2 and the flip-flop processing from one output to other input is repeated for 8 times corresponding to a bit number of a data afterward. Through the processing above, the leading and trailing of the received data are detected through the processing. Then an OR output from the flip-flops 1, 2 connects to a preset input via NAMD gates 6, 7 and an ANB gate 8, sampling is applied by a 32MHz clock at the receiver side to generate a synchronization clock in 4MHz with respect to the received data. The clock is inputted to a CMI modulator 4 to read the received data outputted from the flip-flop 2.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、光伝送など非ゼロ復帰(N o n −Re
turnto  Zero;以下、NRZと略称する)
方式の伝送における受信側の復調回路に関し、特に、そ
の同期クロック生成に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention is applicable to non-return to zero (Non-Return) applications such as optical transmission.
turn to Zero; hereinafter abbreviated as NRZ)
The present invention relates to demodulation circuits on the receiving side in transmission systems, and in particular to generation of synchronized clocks.

89発明の概要 本発明は、光伝送等のNR,Z方式伝送の受信側の復調
回路において、 受信データをそのビット数に対応する回数だけ入出力さ
せることでその立上がり時と立下がり時の両方を検知す
る複数のD型フリップフロップと、その検知出力をプリ
セット入力され、同期クロックを生成するカウンタと、
該同期クロックにより受信データを読取る変調器とを備
えることにより、大幅な部品追加なしで同期間隔を縮小
し、どのような場合でも伝送の信頼性を向上させる技術
を提供するものである。
89 Summary of the Invention The present invention provides a demodulation circuit on the receiving side of NR and Z system transmission such as optical transmission, by inputting and outputting received data a number of times corresponding to the number of bits of the received data, so that both the rising edge and the falling edge of the received data can be input and outputted. a plurality of D-type flip-flops that detect the detection output, and a counter that receives a preset input of the detection output and generates a synchronized clock;
By providing a modulator that reads received data using the synchronization clock, the present invention provides a technology that reduces synchronization intervals without adding significant parts and improves transmission reliability in any case.

C1従来の技術 光伝送等の如<NRZ方式で信号の送受を行う場合、送
信側のクロックと受信側のクロックとが若干界なってい
ることやジッタと呼ばれる波形歪み等の障害があること
のため、従来、受信側では送信データに如何に同期して
読取りを行い、受信誤りをなくすかを工夫していた。
C1 Conventional technology When transmitting and receiving signals using the NRZ method, such as optical transmission, there are problems such as a slight difference between the transmitter's clock and the receiver's clock, and waveform distortion called jitter. Therefore, conventionally, the receiving side has devised ways to perform reading in synchronization with the transmitted data to eliminate reception errors.

第3図はその一例を示す復調回路の構成図で、送られて
くるデータに対する同期化を受信側で行うものである。
FIG. 3 is a block diagram of a demodulation circuit showing one example of this, in which synchronization of incoming data is performed on the receiving side.

図中、31及び32はフリップフロップ、33はカウン
タ、34はCMI変調器、35はNOTゲート、36は
NANDゲートである。この回路では、3 M b p
 sで送られてきた受信データ(2MRXD)をフリッ
プフロップ3132へ通し、受信データの立上がり時に
同期して受信側の32Mクロックでザンブリングを行い
、カウンタ33で新たに生成した4M同期クロック(4
MCK)により、CMI変調器34で受信データ(2M
RIND)を読取るようになっている。
In the figure, 31 and 32 are flip-flops, 33 is a counter, 34 is a CMI modulator, 35 is a NOT gate, and 36 is a NAND gate. In this circuit, 3 Mbp
The received data (2MRXD) sent at s is passed through the flip-flop 3132, and 32M clock on the receiving side is used to perform zumbling in synchronization with the rising edge of the received data, and the newly generated 4M synchronized clock (4M
MCK), the CMI modulator 34 receives the received data (2M
RIND).

D3発明が解決しようとする課題 上記の回路を利用する分野として、既に述べた如く光伝
送があるが、光受信器は、その信頼性」二、デユーティ
(光の点灯している割合)を通常40〜60%に制御す
る必要があり、点灯時間と消灯時間についても制限があ
る。これらの条件を満たすために、制御可能な復調回路
として、前記CM1(Computor  Manag
ed  In5truction)変調器が使用される
わけであるが、CMI変調器においては、第4図に示す
ように、送信データが−0−の場合は前半分だけの1−
を送り、送信データが−1−の場合は前のデータを反転
する形で−1−又は−0−が交互に続くようになってい
る。例えば「7E」の送(5データは“0111111
0”であるが、CMI変調後は第4図に示す■又はθの
いずれかの形になり、これが第3図の受信データ(2M
RXD)となる。
D3 Problems to be Solved by the Invention As mentioned above, optical transmission is a field that utilizes the above circuit, but the reliability of optical receivers is generally It is necessary to control the amount of light to 40 to 60%, and there are also restrictions on lighting time and light-off time. In order to satisfy these conditions, the above-mentioned CM1 (Computer Manager) is used as a controllable demodulation circuit.
In the CMI modulator, as shown in Fig. 4, when the transmission data is -0-, only the first half is 1-.
If the transmitted data is -1-, the previous data is inverted and -1- or -0- continues alternately. For example, sending “7E” (5 data is “0111111
0'', but after CMI modulation, it becomes either ■ or θ shown in Figure 4, and this is the received data (2M
RXD).

従って、同じデータを送っても電源室−にがりのタイミ
ング等により、■又はθの2つのパターンが生じ、信号
間隔の広いθの方の信頼性が低いことが実験的に確認さ
れている。
Therefore, it has been experimentally confirmed that even if the same data is sent, two patterns, 1 or θ, occur depending on the timing between the power supply room and the bittern, and the reliability of θ, which has a wider signal interval, is lower.

本発明は、このような課題に鑑みて創案されたもので、
同期間隔を縮小し、どのような場合でも伝送の信頼性を
向上させた復調回路を提供することを目的としている。
The present invention was created in view of these problems, and
The object of the present invention is to provide a demodulation circuit that reduces the synchronization interval and improves transmission reliability in any case.

E 課題を解決するための手段 本発明における−に記課題を解決するための手段は、N
RZ方式伝送の復調回路において、受信データをそのビ
ット数に対応する回数だけ人出力させることでその立上
がり時と立下がり時の両方を検知する複数のD型フリッ
プフロップと、その検知出力をプリセット入力され、同
期クロックを生成するカウンタと、該同期クロックによ
り受信データを読取る変調器とを備えた復調回路とする
E Means for solving the problems The means for solving the problems described in - in the present invention are N
In the demodulation circuit for RZ transmission, there are multiple D-type flip-flops that detect both the rise and fall of received data by outputting it a number of times corresponding to the number of bits, and the detection output is preset input. The demodulation circuit includes a counter that generates a synchronized clock, and a modulator that reads received data using the synchronized clock.

F4作用 本発明は、受信データの立−Lがり時と立下がり時の両
方で同期をとって同期クロックを作成することにより、
受信データの同期間隔を狭め、伝送の信頼性を向上する
ものである。
F4 action The present invention creates a synchronous clock by synchronizing both the rising and falling edges of received data.
This narrows the synchronization interval of received data and improves the reliability of transmission.

本発明の復調回路は、複数のD型フリップフロップとカ
ウンタとCMI変調器とを備えていて、受信データは、
そのビット数に対応する回数だけ複数のフリップフロッ
プを入出力させられてその立上がり時と立下がり時の両
方を検知され、カウンタはその検知出力をプリセット人
力され2′・ごとにより受信データを読取るための同期
クロックを生成し、この同期クロックによりCMI変調
器が受信データを読取る。同期クロックは、受信データ
の立」二がり時と立下がり時の両方で作成されているの
で、同期間隔は狭く、伝送の信頼性は向上する。
The demodulation circuit of the present invention includes a plurality of D-type flip-flops, a counter, and a CMI modulator, and the received data is
Multiple flip-flops are input/output a number of times corresponding to the number of bits, and both the rise and fall times are detected, and the counter presets the detection output to read the received data every 2'. A synchronous clock is generated, and the CMI modulator reads received data using this synchronous clock. Since the synchronization clock is created at both the rising edge and the falling edge of the received data, the synchronization interval is narrow and the reliability of transmission is improved.

G、実施例 以下、図面を参照して、本発明の実施例を詳細に説明す
る。
G. Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は、本発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

同図中、1は第1のフリップフロップ、2は第2のフリ
ップフロップ、3はカウンタ、4はCMI変調器、5は
NOTゲート、6及び7はNANDゲート、8はAND
ゲートである。尚、上記フリップフロップl及び2は、
D型フリップフロップである。
In the figure, 1 is a first flip-flop, 2 is a second flip-flop, 3 is a counter, 4 is a CMI modulator, 5 is a NOT gate, 6 and 7 are NAND gates, and 8 is an AND gate.
It is a gate. Incidentally, the above flip-flops 1 and 2 are as follows:
It is a D type flip-flop.

同図において、受信データ(2MRXD)は、第1のフ
リップフロップlに入力されたのち、その出ツノを第2
のフリップフロップ2の入力へ接続され、以後は一方の
出力を他方の入力へとフリップフロップ処理をデータの
ビット数に対応させて8回繰返す。この処理は、最少2
個のD型フリップフロップを使用すれば実施可能である
。この処理により、受信データ(2MRXD)の立上が
り及び立下がりが検知される。
In the figure, received data (2MRXD) is input to the first flip-flop l, and then its output is input to the second flip-flop l.
After that, one output is connected to the input of the other flip-flop 2, and the flip-flop process is repeated eight times in correspondence with the number of data bits. This process requires at least 2
This can be implemented by using D-type flip-flops. Through this process, the rising and falling edges of the received data (2MRXD) are detected.

次に、NANDゲート6.7及びANDゲート8を介し
て、前記フリップフロップ1及び2からのオア出力をカ
ウンタ3のプリセット入力(LD)に接続し、受信側の
32MHzクロックでザンブリングを行って、受信デー
タに対する4 M I−I Zの同期クロック(4MC
K)を生成する。
Next, the OR outputs from the flip-flops 1 and 2 are connected to the preset input (LD) of the counter 3 via the NAND gate 6.7 and the AND gate 8, and zumbling is performed using the 32 MHz clock on the receiving side. 4M I-I Z synchronization clock for received data (4MC
K) is generated.

この同期クロック(4MCK)をCMI変調器4へ入力
して、第2のフリップフロップ2から最終的に出力され
てきた受信データ(2Mr(IND)を読取る。
This synchronous clock (4MCK) is input to the CMI modulator 4, and the received data (2Mr (IND)) finally output from the second flip-flop 2 is read.

第2図は、本発明によるクロック信号の波形を従来例と
比較して示した説明図である。図中、0はクロックのプ
リセットを示し、↑は受信データ(2MRIND)のリ
ードタイミングを示している。同図で明らかなように、
従来は受信データ(2MRXD)の立」二がり時にのみ
4M同期クロツク(4MCK)が生成されているのに対
して、本実施例では受信データ(2MRXD)の立上が
り時及び立下がり時の両方とも4M同期クロック(4M
 CK )が生成されていて、従来は逃がしていたリー
ドタイミングOを多く捕らえている。
FIG. 2 is an explanatory diagram showing the waveform of a clock signal according to the present invention in comparison with that of a conventional example. In the figure, 0 indicates the clock preset, and ↑ indicates the read timing of the received data (2MRIND). As is clear from the figure,
Conventionally, the 4M synchronous clock (4MCK) is generated only when the received data (2MRXD) rises and falls, but in this embodiment, the 4M synchronized clock (4MCK) is generated only when the received data (2MRXD) rises and falls. Synchronous clock (4M
CK) is generated, and many of the read timings O, which were missed in the past, are captured.

本実施例では、下記の効果が明らかである。In this example, the following effects are obvious.

(1)受信データの立上がり、又は立下がりに同期させ
ることにより、同期間隔は従来の3/4に縮小され、言
わば信頼性は133%に向上したことになる。カウンタ
のLD大入力4回に倍増すると同期間隔は2/4で信頼
性は200%ということになる。
(1) By synchronizing with the rising or falling edge of received data, the synchronization interval is reduced to 3/4 of the conventional one, and the reliability is improved to 133%. If the counter's LD large input is doubled to four times, the synchronization interval will be 2/4 and the reliability will be 200%.

(2)大幅な部品追加は不要である。(2) No significant addition of parts is required.

H1発明の詳細 な説明したとおり、本発明によれば、大幅な部品追加な
しで、同期間隔を縮小し、伝送の信頼性を向上する復調
回路を提供することができる。
As described in detail of the H1 invention, according to the present invention, it is possible to provide a demodulation circuit that reduces synchronization intervals and improves transmission reliability without adding significant components.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成図、第2図はクロック
信号の説明図、第3図は従来例の構成図、第4図はCM
I変調の説明図である。 1.2.31.32・・・フリップフロップ、3゜33
 ・カウンタ、4,34・・CMI変調器、535・・
NOTゲート、6,7,36・・・NANDゲート、8
・・・ANDゲート。 以上 外2名 手続補正書(。ア。 平成 11年 9月13日
Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is an explanatory diagram of a clock signal, Fig. 3 is a block diagram of a conventional example, and Fig. 4 is a CM
It is an explanatory diagram of I modulation. 1.2.31.32...Flip-flop, 3°33
・Counter, 4, 34...CMI modulator, 535...
NOT gate, 6, 7, 36...NAND gate, 8
...AND gate. Written amendment to the procedure for two other persons (a. September 13, 1999)

Claims (1)

【特許請求の範囲】[Claims] (1)非ゼロ復帰方式伝送の復調回路において、受信デ
ータをそのビット数に対応する回数だけ入出力させるこ
とでその立上がり時と立下がり時の両方を検知する複数
のD型フリップフロップと、その検知出力をプリセット
入力され、同期クロックを生成するカウンタと、該同期
クロックにより受信データを読取る変調器とを備えるこ
とを特徴とする復調回路。
(1) In a demodulation circuit for non-return-to-zero transmission, a plurality of D-type flip-flops that detect both the rise and fall of received data by inputting and outputting the received data a number of times corresponding to the number of bits; 1. A demodulation circuit comprising: a counter that receives a preset detection output and generates a synchronized clock; and a modulator that reads received data using the synchronized clock.
JP1098401A 1989-04-18 1989-04-18 Demodulation circuit for non-return-to-zero transmission Expired - Fee Related JP2718168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1098401A JP2718168B2 (en) 1989-04-18 1989-04-18 Demodulation circuit for non-return-to-zero transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1098401A JP2718168B2 (en) 1989-04-18 1989-04-18 Demodulation circuit for non-return-to-zero transmission

Publications (2)

Publication Number Publication Date
JPH02277333A true JPH02277333A (en) 1990-11-13
JP2718168B2 JP2718168B2 (en) 1998-02-25

Family

ID=14218811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1098401A Expired - Fee Related JP2718168B2 (en) 1989-04-18 1989-04-18 Demodulation circuit for non-return-to-zero transmission

Country Status (1)

Country Link
JP (1) JP2718168B2 (en)

Also Published As

Publication number Publication date
JP2718168B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
EP0040632B1 (en) Data processing system with serial data transmission between subsystems
US4542420A (en) Manchester decoder
EP0094178A2 (en) Interface for serial data communications link
EP0228214A2 (en) Apparatus and associated method for converting serial data pattern signals transmitted or suitable for transmission over a high speed synchronous serial transmission media, to parallel pattern output signals
JPH11514765A (en) Method and system for resynchronizing a phase-shifted received data stream using a master clock
US5127023A (en) Retiming decoder/encoder
US3909782A (en) Method and device for control of the transmission of data exchanged between a control processor and a plurality of peripheral devices
JP2648752B2 (en) Device that guarantees accurate decoding of data information
JPH02277333A (en) Demodulation circuit for non zero return type transmission
US5058140A (en) Self-correcting serial baud/bit alignment
SU567213A1 (en) Device for receiving signals in multichannel signal systems for transmission of data with majoritary condensation
JPH0129339B2 (en)
JPS63153934A (en) Data transmission system
JPS6037857A (en) Fm transmission system
JPH05122203A (en) Manchester code reception circuit
KR0120533B1 (en) Multiplex analog component
JPS613544A (en) Synchronizing clock reproducing device
JPS60191534A (en) Bidirectional digital fsk communication system
JPH03149931A (en) Phase synchronizing circuit between parallel signals
JPH0531973B2 (en)
JPS63158934A (en) Start bit detection circuit
JPH05204850A (en) Device and method for communication information synchronization for bus and bus type connection system
JPH03135644A (en) Data bit check circuit
JPS61225918A (en) Circuit for presetting asynchronous signal data
JPS61129947A (en) Code error detection circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees