JPH02276992A - 核融合方法 - Google Patents

核融合方法

Info

Publication number
JPH02276992A
JPH02276992A JP1092857A JP9285789A JPH02276992A JP H02276992 A JPH02276992 A JP H02276992A JP 1092857 A JP1092857 A JP 1092857A JP 9285789 A JP9285789 A JP 9285789A JP H02276992 A JPH02276992 A JP H02276992A
Authority
JP
Japan
Prior art keywords
deuterium
nuclear fusion
fusion method
thin film
absorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1092857A
Other languages
English (en)
Inventor
Yuichi Ishikawa
雄一 石川
Hisanao Ogata
久直 尾形
Norihide Saho
典英 佐保
Yoshimitsu Mihara
三原 芳光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1092857A priority Critical patent/JPH02276992A/ja
Publication of JPH02276992A publication Critical patent/JPH02276992A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は核融合若しくは核融合類似現象の発明に係り、
特に従来必要とされてきた高温環境を要しない所謂室温
核融合に関する。
〔従来の技術〕
従来の核融合反応はプラズマを加熱して高温度にするこ
とによって起こることが知られていた。
しかしこの高温域の形成と保持は大変難かしい。
ところが英国サザンプトン大学のマルチン・フライシュ
マン教授、米国ユタ大学のスタン・ポンズ教授、米国ブ
リガム・ヤング大学のスチーブン・ジョーンズ教授らは
このような高温域の形成、維持を要しない所謂室温核融
合の技術を開発した(朝日新聞、平成元年3月24日付
第13版朝刊第3面、同しく3月30日付第13版朝刊
第3面、読売新聞、平成元年4月3日付第12版第25
面。
電気分析化学と界面電気化学誌4月10日号(The 
journal of Electroanalyti
cal Chemistryand Interfac
ial Electrochemistry)参照)。
これらの新井開発の核融合はパラジウムを陰電極とし、
プラチナを陽電極とし、容器中に重水を満たして両極間
に電流を流すことにより生じせしめるという簡便かつ画
期的なものである。
また、従来の熱核融合を用いた核融合炉の概念について
は、伏見康治編プラズマ・核融合(弁室出版、昭和54
年発行)に述べられている。
〔発明が解決しようとする課題〕
上記従来技術では、未だに加えたエネルギーよりも発生
したエネルギーが少なく、臨界条件を実現していない。
臨界達成には、磁気閉じ込めやプラズマ加熱等にさらに
巨大な施設と費用が要求されている。
本発明の目的は、上記室温核融合によって生じた熱を簡
便な装置で得ることにある。尚以下の説明では、所謂従
来から提唱されてきた核融合と同一原理とは言い切れな
い点も考慮して、核融合類似現象とも言い得るところ、
説明便宜上核融合の語に含めることとする。いずれにせ
よ、重水素を原料として熱エネルギーを得るという点で
は軌を−にするものである。
〔課題を解決するための手段〕
上記目的は重水素ガスの利用により達成される。
本発明の特徴点を以下に列挙する。
(1)気相から重水素を負の電圧を印加した材料に吸収
させ、重水素原子間で核融合反応を行わせる。
(2)重水素ガス気流中でのプラズマ放電により重水素
をイオン化し、材料に吸収させる。
(3)重水素イオンビームにより重水素を材料に吸収さ
せる。
(4)レーザにより重水素ガスをイオン化し材料に吸収
させる。
(5)電子ビームにより重水素ガスをイオン化して材料
に吸収させる。
以上(1)〜(5)において材料は負電圧を印加するも
のを示す。
(6)重水素雰囲気下で基板上に金属及び/またはその
合金の薄膜を形成させるとともに重水素を形成した薄膜
中に吸収させ、該′a膜内で核融合反応を行わせるよう
にする。
(7)上記(6)において薄膜形成は重水素ガス気流中
で化学蒸着法により行う。
(8)上記(6)において薄膜形成は重水素ガスを含む
雰囲気中でスパッタにより行う。
(9)上記(6)において重水素ガスで希釈した原料ガ
スを用いたプラズマCVD法により薄膜を形成する。
(10)重水素ガスのプラズマで金属および/またはそ
の合金の蒸発粒子をイオン化し、基板上に蒸発粒子と重
水素から成る薄膜を形成させて、該薄膜内で核融合反応
を行わせるようにした。
(11)重水素イオンビームと単一または複数の金属の
イオンビームを同時に基板に注入する。
(12)重水素を吸収させた材料に高速に加速したイオ
ンを照射し、そのときに発生する圧力で重水素原子間で
核融合反応を行わせる。
(13)前記金属或いはその合金が、パラジウム、周期
律表IVaおよびVaに屈する元素から選ばれるもので
ある。
(14)前記金属或いはその合金が、金属水素化物を形
成する水素吸蔵合金からなる。
(15)重水素を吸収した材料にイオンを照射する。
(16)重水素を吸収した材料をスパッタする。
(17)圧電、電歪、磁歪の中から選ばれる材料に重水
素を吸収後変位を与え、重水素原子を圧縮し核融合反応
を起こすようにする。
(18)上記(13)または(14)における金属及び
/または合金によるワイヤまたは箔若しくは薄膜に重水
素を吸収させ、核融合反応を起こし、その発生熱を利用
して蒸着基板を加熱する。
(19)上記各方法で発生した中性子をシリコンの中性
子照射ドーピングに利用する。
(20)上記各方法で発生した中性子を形成した薄膜の
キヤラクタリゼーシヨンに利用するとともに装置のフィ
ードバック制御を行う。
〔作用〕
パラジウムに吸収された重水素原子は通常第2図に示す
パラジウム結晶(面心立方格子)の八面体位置を占有す
る。そして原子間の反発力のため重水素原子間の距離は
0.21nm 以下に接近しないが、表面の第1,2パ
ラジウム原子層間に吸収された重水素原子は表面最上層
パラジウム原子の再配列時に受ける圧力や再結合して分
子状となつた重水素ガスの圧力や印加された電圧により
重水素(Dと書く)同士が原子間反発力に抗して接近す
ると下記の反応で融合する。
D+D−+n+3He+3.27MeV   Pl″(
1)D+D−+p+T+4.03MeV     P−
(2)ここでnは中性子、pは陽子、3He は質量数
3のヘリウムの同位元素、Tはトリチウム、MeVは1
0B電子ボルトを示す。この反応により重水素を吸収し
た材料は加熱され、この熱を取り出して利用するのが核
融合装置である。
重水素分子(以下、D2と示す)はまずパラジウム(以
下、Pdと書く)表面で解離吸着する。
重水素(D)が吸着すると最上層のPd原子が移動し、
第2層のPd原子が現れ、さらにDが吸着する。さらに
吸着量が増加すると、Dは表面下(サブサーフェス)状
態である第1,2Pd原子間の八面体格子間位置に入る
。その後内部に拡散していき、さらに吸着、吸収が起こ
る。こうした解離吸着では表面の第1,2原子層でたか
だか3.5 モルレヤーのD原子しか吸収されない。
しかしD2を解離、イオン化しD+として、負の電圧を
印加したパラジウム板に照射すれば表面原子層内のD原
子の吸収量を大幅に向上させることができる。D+イオ
ンの形成法としてはD+イオンビームを用いる方法、D
2気流中でのプラズマ放電、レーザー照射、電子ビーム
・照射が有効である。
次にパラジウムの薄膜を蒸着中にDを薄膜内に吸収させ
ることも実用上の観点から有用である。
D2で希釈した原料ガスを用いるCVD、プラグこ ¥¥ D 、 D 2を含む雰囲気でのスパッタ D2
ガスのプラズマによる蒸発粒子のイオン化蒸着が有効で
ある。
またD+イオンビームまたはD−イオンビームはPdイ
オンビームと同時に基板上にイオンミキシングしてD原
子吸収量を増加させることもできる。またこのようにD
を吸収したPdに高速イオンを照射し発生した圧力で核
融合反応を行わせることもできる。
〔実施例〕
本発明の核融合方法を実施するための装置の一例を第1
図に示す。
この第1図に示す装置は重水素ガス1とバリアプルリー
クバルブ2と真空容器3と核融合反応を起こす基材5と
、液体ヘリウムで冷却されたクライオパネル6とクライ
オパネル6のシールド7と基板5に電圧を印加する電g
8と基材に対して陽極となる電極9とゲートバルブ10
と真空排気用ポンプ11と基材5と熱的に結合した冷却
剤配管4から成る。
重水素ガス1はバリアプルリークバルブ2を通して真空
容器3中に導入され、基材5表面上で解離吸着を起こす
。解離吸着した重水素は表面再構成により表面上状態に
入り込み次第に内部に拡散していく。十分に重水素を吸
収させた後、基材5に電源8により接地した電極9より
負になるよう電圧を印加する。基材5内では前述のよう
な核融合反応が起こり発熱する。この熱を水やヘリウム
などを用いた冷却剤配管4により外部に取り出し。
エネルギー源とする。核融合で生成したヘリウム3やト
リチウムあるいは未反応の重水素ガス等は排気ポンプ1
1で外部に取り出し処理する。クライオパネル6は排気
能力が大きく、また温度レベルの異なるパネルを組み合
わせると重水素とヘリウムを分能して吸着できる。シー
ルド7は液体窒素で冷却し1重水素吸着の際、基材5の
冷却に用いることもできる。
第3図は本発明の他の実施例を示す。グローモートプラ
ズマ源により形成した重水素プラズマ33を基材Sに照
射し、重水素を基材5に吸着、吸収させる。真空容器3
を接地し、電源8により基材5の負の電位に保持し、核
融合反応を起こさせ発熱させる。この熱を冷却剤配管4
により外部に取り出し、エネルギー源とする。グローモ
ードプラズマ源はタングステンフィラメントから成る熱
陰極31とステンレス鋼製メツシュから成る陽極32か
ら構成され、熱陰極31と陽極32の間の空間で種プラ
ズマを作り、安定な放電が起こるように工夫したプラズ
マ源である。この他にプラズマ源としては通常のグロー
放電、電子サイクロトロン共鳴を利用したECRプラズ
マ源、マイクロ波を用いたマイクロ波プラズマ源を用い
ることもできる。
第4図は、本発明の他の実施例を示す。101はフィラ
メントで、ガス入口102より重水素ガスが供給できる
。103はパラジウム等のターゲット、104は重水素
イオン加速用のグリッドである。105はターゲット1
03に熱的に結合した冷却剤配管であるが、これはヒー
トパイプであってもよい。106は液体ヘリウムで冷却
されたクライオパネル、107はクライオパネル106
のシールドで、液体窒素で冷却する。108は中性子じ
ゃへい体、109は排気ポンプである。
ガス入口より供給された重水素はフィシメン1〜101
部分でイオン化され、グリッド104及びターゲット1
03間に形成された高電圧勾配により加速されてターゲ
ット103内に入りこむ。ターゲット103内では前述
のように核融合反応が起こり、発熱する。この熱を水や
ヘリウムなどの冷却剤で外部に取り出し、エネルギー源
とする。
核融合で生成したヘリウム3やトリチウムあるいはイオ
ン化していない重水素ガス等は排気ポンプ109で外部
に取り出し処理する。クライオポンプ106は排気能力
が大きく、また、温度レベルの異なるパネルを組み合わ
せると、重水素とヘリウムを分離して吸着できる。この
場合、ヘリウムのパネルには活性炭などの吸着剤を付け
ておく。
しやへい体109は核融合によって生ずる中性子をしや
へいするもので、この全体を水で取り囲んでもよい。
重水素イオンを絞ってビームとし、これをターゲット上
に走査すれば比較的広面積のターゲットを利用でき、発
生エネルギーの増大がはかれる。
第5、図は本発明の他の実施例を示す。バリアプルリー
クバルブ2を通して真空容器3内に導入した重水素ガス
1を照射用窓53を通してレーザ光51で照射し、重水
素イオン52を作り、基材5に吸着、吸収させるもので
ある。レーザとしてはパルス状のXeC1,KrFなど
を用いた高出力。
短波長のエキシマレーザがイオン化の点から望ましい。
重水素ガスをイオン化して吸着、吸収させる点から考え
ると第4図において、フィラメント101とグリッド1
04間で電子を発生させ重水素ガスに照射しイオン化す
ることも有効である。
第6図にも本発明の他の実施例を示す。重水素ガス1と
四塩化チタンガス61はマスフローコントローラ62に
より任意の組成比になるように調整され、バリアプルリ
ークバルブ2を通して真空容器3中に導入される。そし
てヒータ64により800〜1000℃に加熱された基
板63上で熱分解を起こし、基板63上にチタンと重水
素の化合物の薄膜65が蒸着される。基板63は電源8
により接地した真空容器3に対し負の電圧が印加される
。薄膜65内では前述のような核融合反応が起こり発熱
する。この熱を前述のように外部に取り出し、エネルギ
ー源とする。原料ガスとしては塩化物の重水溶液中に重
水素ガスを吹き込み。
真空容器3中に導入することも可能である。また金属の
アルコキシドを用いることもできる。
更に他の実施例を第7図に示す。真空容器3内に設置さ
れたパラジウムのターゲット71に石英レンズ72でス
ボツ1へ系を絞ったNd−YAGパルスレーザ光73を
照射用窓53を通して照射し、パラジウム71をスパッ
タし、基板63に蒸着させる。ターゲット71はレーザ
ーパルスに対して常に新しい面が当たるように回転シャ
フト74に取り付けて回転させる。また蒸着中に重水素
ガス1をバリアプルリークバルブ2を通してノズル75
から基板に吹き付け、形成される薄膜65に重水素を吸
収させる。基板63は電源8により接地した真空容器3
に対し負の電圧が印加される。
薄膜65内では前述のような核融合反応が起こり発熱す
る。この熱を外部に取り出しエネルギー源とする。スパ
ッタの方法としては、実施例に示したレーザを用いる以
外にも、マグネトロン、イオンビーム、高周波スパッド
等を用いることもできる。
更に他の実施例を第8図に示す。重水素ガス1と四塩化
チタン61はマスフローコントローラ62により任意の
組成比になるよう調整され、バリアプルリークバルブ2
を通して真空容器3中に導入される。直流プラズマ発生
のためのカソード81はモリブデン板で形成され、同じ
モリブデン板で形成された放電防止用シールド板82で
カバーされている。アノード83は銅製であり、接地さ
れるとともに冷却水により水冷されている。
基板63は通電加熱ヒータ64により600〜1100
°Cに加熱される。直流放電はDC電源84により放電
電圧500V〜IKVで行う。このようにして形成され
た薄膜65内で前述したように核融合反応が起こる。
以上述べた以外にも真空蒸着法やガス中蒸発法素から成
る薄膜を形成し、核融合反応を起こすことができる。
また重水素イオンビームとチタンのイオンビームを同時
に基板に注入し、核融合反応を起こしたり、前もって重
水素を吸収したパラジウムにタンデム加速器で加速した
イオンビームを照射し、核融合反応を促進させることも
できる。
以上の実施例ではパラジウムとチタンを例に挙げて述べ
たが、それらの合金や周期律表IV a −Vaのバナ
ジウム二ニオブータンタルなどの金属や合金でも同様な
効果が得られる。またCaNi5゜LaN15L Fe
Ti;MgzNi  などの水素吸蔵合金も有効である
〔発明の効果〕
本発明によれば室温核融合が簡単な装置で達成でき、産
業上多大な効果がある。
【図面の簡単な説明】
第1図は本発明の一実施例に係る核融合装置の構成図、
第2図はパラジウム中に吸収される重水素の位置を示す
模式図、第3図乃至第8図は夫々本発明の他の実施例に
係る核融合装置の構成図である。 1・・重水素ガス、2・・・バリアプルリークバルブ、
3・・・真空容器、4・・・冷却剤配管、5・・・基材
、6・・・クライオパネル、7・・・シールド、8・・
・DC電源、9・・・電極、10・・・ゲートバルブ、
11・・・排気ポンプ、31・・・熱陰極、32・・・
陽極、33・・・重水素プラズマ、101・・・フィラ
メント、102・・・ガス入口、103・・・ターゲッ
ト、104・・・グリッド、105・・・冷却剤配管、
106・・・クライオパネル、108・・・しやへい体
、51・・・レーザー、52・・・重水素イオン、53
・・・照射用窓、61・・・TiCΩい62・・・マス
フローコントローラ、63・・・基板、64・・・ヒー
タ、65・・・薄膜、71・・・ターゲット、72・・
・石英レンズ、73・・・Nd−YAGパルスレーザ光
、74・・・回転シャフト、75・・・ノズル、81・
・・カソード、82・・・シールド板、83・・・アノ
ード、84・・・DC電源。

Claims (1)

  1. 【特許請求の範囲】 1、気相から重水素を負の電圧を印加した材料に吸収さ
    せ、重水素原子間で核融合反応を行わせるようにしたこ
    とを特徴とする核融合方法。 2、重水素ガス気流中でのプラズマ放電により重水素を
    イオン化し、材料に吸収させたことを特徴とする請求項
    1記載の核融合方法。 3、重水素イオンビームにより重水素を材料に吸収させ
    たことを特徴とする請求項1記載の核融合方法。 4、レーザにより重水素ガスをイオン化し材料に吸収さ
    せたことを特徴とする請求項1記載の核融合方法。 5、電子ビームにより重水素ガスをイオン化し材料に吸
    収させたことを特徴とする請求項1記載の核融合方法。 6、重水素雰囲気下で基板上に金属及び/またはその合
    金の薄膜を形成させるとともに重水素を形成した薄膜中
    に吸収させ、該薄膜内で核融合反応を行わせるようにし
    たことを特徴とする核融合方法。 7、薄膜形成は重水素ガス気流中で化学蒸着法により行
    うことを特徴とする請求項6記載の核融合方法。 8、薄膜形成は重水素ガスを含む雰囲気中でスパッタに
    より行うことを特徴とする請求項6記載の核融合方法。 9、重水素ガスで希釈した原料ガスを用いたプラズマC
    VD法により薄膜を形成することを特徴とする請求項6
    記載の核融合方法。 10、重水素ガスのプラズマで金属および/またはその
    合金の蒸発粒子をイオン化し、基板上に蒸発粒子と重水
    素から成る薄膜を形成させて、該薄膜内で核融合反応を
    行わせるようにしたことを特徴とする核融合方法。 11、重水素イオンビームと単一または複数の金属のイ
    オンビームを同時に基板に注入したことを特徴とする請
    求項6記載の核融合方法。 12、重水素を吸収させた材料に高速に加速したイオン
    を照射し、そのときに発生する圧力で重水素原子間で核
    融合反応を行わせるようにしたことを特徴とする核融合
    方法。 13、前記金属或いはその合金が、パラジウム、周期律
    表IVaおよびVaに属する元素から選ばれるものである
    ことを特徴とする請求項1乃至12いずれかに記載の核
    融合方法。 14、前記金属或いはその合金が、金属水素化物を形成
    する水素吸蔵合金からなることを特徴とする請求項1乃
    至12いずれかに記載の核融合方法。 15、重水素を吸収した材料にイオンを照射することを
    特徴とする請求項1乃至14いずれかに記載の核融合方
    法。 16、重水素を吸収した材料をスパッタすることを特徴
    とする請求項1乃至14いずれかに記載の核融合方法。 17、圧電、電歪、磁歪の中から選ばれる材料に重水素
    を吸収後変位を与え、重水素原子を圧縮し核融合反応を
    起こすようにしたことを特徴とする核融合方法。 18、請求項13又は14記載の金属及び/または合金
    によるワイヤまたは箔若しくは薄膜に重水素を吸収させ
    、核融合反応を起こし、その発生熱を利用して蒸着基板
    を加熱することを特徴とする核融合方法。 19、請求項1乃至18いずれか記載の方法にて発生し
    た中性子をシリコンの中性子照射ドーピングに利用する
    ことを特徴とする核融合方法。 20、請求項1乃至18いずれか記載の方法にて発生し
    た中性子を形成した薄膜のキヤラクタリゼーシヨンに利
    用するとともに装置のフィードバック制御を行うように
    したことを特徴とする核融合方法。
JP1092857A 1989-04-14 1989-04-14 核融合方法 Pending JPH02276992A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1092857A JPH02276992A (ja) 1989-04-14 1989-04-14 核融合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1092857A JPH02276992A (ja) 1989-04-14 1989-04-14 核融合方法

Publications (1)

Publication Number Publication Date
JPH02276992A true JPH02276992A (ja) 1990-11-13

Family

ID=14066104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1092857A Pending JPH02276992A (ja) 1989-04-14 1989-04-14 核融合方法

Country Status (1)

Country Link
JP (1) JPH02276992A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270372A (ja) * 2002-03-12 2003-09-25 Hidetsugu Ikegami 無反跳非熱核融合反応生成方法及び無反跳非熱核融合エネルギー発生装置
WO2019021959A1 (ja) * 2017-07-23 2019-01-31 大山パワー株式会社 核融合炉、温熱機器、外燃機関、発電装置、及び移動体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270372A (ja) * 2002-03-12 2003-09-25 Hidetsugu Ikegami 無反跳非熱核融合反応生成方法及び無反跳非熱核融合エネルギー発生装置
WO2019021959A1 (ja) * 2017-07-23 2019-01-31 大山パワー株式会社 核融合炉、温熱機器、外燃機関、発電装置、及び移動体
JPWO2019021959A1 (ja) * 2017-07-23 2020-05-28 大山パワー株式会社 核融合炉、温熱機器、外燃機関、発電装置、及び移動体

Similar Documents

Publication Publication Date Title
Winter Wall conditioning in fusion devices and its influence on plasma performance
US5868909A (en) Method and apparatus for improving the energy efficiency for separating the elements in a complex substance such as radioactive waste with a large volume plasma processor
Beilis Plasma and spot phenomena in electrical arcs
Bacal et al. Negative ion source operation with deuterium
Bauer Ejection energy of photoelectrons in strong-field ionization
Alton Targets and ion sources for RIB generation at the Holifield Radioactive Ion Beam Facility
JPH03502981A (ja) 質量を有するボース粒子の干渉性ビームを形成する方法及び装置
JPH02276992A (ja) 核融合方法
Chleck et al. Radioactive kryptonates—I. Preparation
Behrisch Boundary conditions for a fusion plasma
Chou et al. Laser chemical vapor deposition of Ti from TiBr4
Harutyunyan et al. Retention of deuterium in the surface layers of tungsten preliminarily irradiated with helium ions
Bacal Physics and Applications of Hydrogen Negative Ion Sources
WO2006046680A1 (ja) 分子化学核融合反応発生法及び分子化学核融合エネルギー発生装置
Ono Lithium as plasma facing component for magnetic fusion research
US10847277B2 (en) Apparatus for reducing radioactive nuclear waste and toxic waste volume
Park et al. Permeation of hydrogen through palladium
Waelbroeck Thin films of low Z materials in fusion devices
Saidoh et al. Low energy selfsputtering yields of molybdenum and tungsten
JPH03105284A (ja) 核融合装置
WO1995021447A1 (en) Method and apparatus for long-term, continuous energy production
AU674133B2 (en) Method and apparatus for generating nuclear fusion energy bycoherent bosons
Barnes A Pulsed RF Discharge for a Caesium Free H‾ Ion Source
Bobkov et al. Usage Of Hydrogen-Saturated Getter For Sputtering Protection Of Construction Elements In Vacuum-Plasma Installations
CN116189927A (zh) 一种满足千秒等离子体运行的粒子再循环控制系统及方法