JPH02276351A - Fsk demodulating circuit - Google Patents

Fsk demodulating circuit

Info

Publication number
JPH02276351A
JPH02276351A JP2076353A JP7635390A JPH02276351A JP H02276351 A JPH02276351 A JP H02276351A JP 2076353 A JP2076353 A JP 2076353A JP 7635390 A JP7635390 A JP 7635390A JP H02276351 A JPH02276351 A JP H02276351A
Authority
JP
Japan
Prior art keywords
scf
frequency
clock
filter
demodulation circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2076353A
Other languages
Japanese (ja)
Other versions
JPH0512891B2 (en
Inventor
Fumiaki Mukoyama
文昭 向山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2076353A priority Critical patent/JPH02276351A/en
Publication of JPH02276351A publication Critical patent/JPH02276351A/en
Publication of JPH0512891B2 publication Critical patent/JPH0512891B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filters That Use Time-Delay Elements (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To make a filter of an FSX demodulating circuit into an IC with a high precision by reducing the number of filters of an SCF(switched capacitor filter) by clock switching. CONSTITUTION:Since a clock frequency is stepwise superposed on the output of the SCF, the offset due to an influence of an operational amplifier of the SCF is eliminated by a buffer 22, a capacitor 23, and a resistance 24 after the output passes a low pass filter consisting of a resistance 20 and a capacitor 21. The clock of the SCF is obtained by an oscillation frequency dividing circuit 30 having two frequency division ratios and a quartz oscillator 29, and frequency division ratios give a divided frequency suitable for a high group or a low group by H/L input. For example, when a ratio of the center frequency of band pass to the clock frequency of the SCF is 58, 62.64kHz which is 58 times as high as 1080Hz and 101.5kHz which is 58 times as high as 1750Hz are given in CCITT standards, and the quartz oscillation frequency is set to 1MHz and the frequency division ratio is set to 16.10, thereby obtaining an about objective clock frequency. Thus, one SCF is enough, and the SCF is used for the high group as well as the low group with a simple logic circuit.

Description

【発明の詳細な説明】 本発明は、前記帯域フィルタとして、スイッチト・キャ
パシタ・フィルタ(以下SCFとする)を用いたFSK
復調回路に関する。FSK復調回路は安価な低速用モデ
ムとして用いられ特にカップラ・モデムは簡便に利用で
きる事から広く用いられている。FSX復調回路は低速
であるが簡単に周波数分割して全二重通信を2線で可能
としているが、それだけにフィルタの重要度は高い。特
にカップラモデムに於ては、電話器のハンドセットを通
して送信信号が受信側へ戻ってくるため、これから受信
信号を分離するので高精度のフィルタが要求される。従
来に於ては高価なLCフィルダな使用したり高次のアク
ティブフィルタの実現に高度な部品選別、調整を余儀な
くされ、高価、且つ大形なものとなっていた。しかし近
年オペアンプ、容量とスイッチング素子で抵抗を置き換
えたIC化フィルタが開発され、スイッチト・キャパシ
タ・フィルタと呼ばれている。精度はコンデンサの比と
クロック周波数によって定まり、容量はICのパターン
面積、クロック周波数は水晶発振器により高精度化され
無調整で高精度高次のフィルタを構成する事ができる。
Detailed Description of the Invention The present invention provides an FSK filter using a switched capacitor filter (hereinafter referred to as SCF) as the bandpass filter.
Related to demodulation circuits. FSK demodulation circuits are used as inexpensive low-speed modems, and coupler modems in particular are widely used because they are easy to use. Although the FSX demodulation circuit is slow, it easily divides the frequency and enables full-duplex communication over two wires, which is why the filter is so important. Particularly in coupler modems, since the transmitted signal returns to the receiving side through the handset of the telephone, a highly accurate filter is required to separate the received signal from it. In the past, expensive LC filters were used, and high-order active filters had to be selected and adjusted in a sophisticated manner, resulting in expensive and large products. However, in recent years, IC filters have been developed in which resistors are replaced with operational amplifiers, capacitors, and switching elements, and are called switched capacitor filters. Accuracy is determined by the capacitor ratio and clock frequency, the capacitance is determined by the IC pattern area, and the clock frequency is made highly accurate by a crystal oscillator, making it possible to construct a high-precision, high-order filter without adjustment.

尚適用する周波数領域に対しクロック周波数の比は通常
数十倍で、標本化される標本化フィルタである。よって
scFはクロック周波数により通過帯域が移動する性質
があり、バンドパスフィルタの周波数を2倍にすれば通
過帯域も2倍に上昇する。
Note that the ratio of the clock frequency to the applied frequency domain is usually several tens of times, and the sampling filter performs sampling. Therefore, the scF has the property that the passband moves depending on the clock frequency, and if the frequency of the bandpass filter is doubled, the passband will also be doubled.

本発明はFSK復調回路のフィルタとして高精度でIC
化可能であり、モデムの低コスト化・小形化に適するS
CFの応用方法を提供するものである。
The present invention provides a highly accurate IC as a filter for an FSK demodulation circuit.
S is suitable for reducing the cost and size of modems.
This provides an application method for CF.

本発明の目的は、クロック切り換えによりscFのフィ
ルタ数を減少させる事にある。又本発明の他の目的はS
CFのクロック切り換えにより異なる仕様のFSK復調
回路の実現を図る事にある。
An object of the present invention is to reduce the number of scF filters by clock switching. Another object of the present invention is to
The purpose is to realize FSK demodulation circuits with different specifications by switching the CF clock.

以下図面により本発明の詳細な説明を行なう。The present invention will be explained in detail below with reference to the drawings.

第1図はFSXモデムとして代表的なカップラモデムの
FSX信号の流れを表わしたものである。
FIG. 1 shows the FSX signal flow of a typical coupler modem as an FSX modem.

スピーカ1の送信信号が電話器のハンドセット3のスピ
ーカを通し音響信号に変換され、カップラのマイクロホ
ン2によりモデムで受信復調される。
A transmitted signal from a speaker 1 is converted into an acoustic signal through a speaker of a handset 3 of the telephone, and is received and demodulated by a modem using a microphone 2 of a coupler.

問題なのはハンドセットではマイクロホンに入った音響
信号が自己のスピーカに戻ってくる様設計されており、
通話の時は発声者は自分の声も耳に入れる事ができるの
で便利であるが、データ通信に於ては受信信号と自己の
送信信号が混合されてしまい、バンドパスフィルタによ
り分離する事が不可欠となる。受信信号は回線の減衰を
受は低レベルになるのに対し、戻ってくる送信信号は自
己送信レベルと同等で高レベルであってフィルタの重要
度は非常に大きい。又直結モデムの場合ハイブリットト
ランス等を利用して送信信号の帰還をキャンセルする事
ができるが、インピーダンス不整合等の影響で零にはで
きない。その他復調S/N能力向上のためにもフィルタ
の性能は直接動いてくる。第2図はFSK信号の周波数
分割を図示したものである。CCITTによる規格等各
種の周波数割り当てがされており、代表的なものとして
点線にCCITT規格、ベル規格を実線で表わす。黒丸
はCCITT規格、白丸はベル規格のマーク又はスペー
スを表わし、我国で用いらているCCITT規格による
ものは低群のマークが98QHz、スペースが1180
Hz、高群のマークが1650Hz、スペースが185
0Hzである。
The problem is that handsets are designed in such a way that the audio signal that enters the microphone is returned to its own speaker.
During a phone call, it is convenient because the person making the call can also hear their own voice, but in data communication, the received signal and the own transmitted signal are mixed, and it is difficult to separate them using a bandpass filter. becomes essential. The received signal is at a low level due to the attenuation of the line, but the transmitted signal that returns is at a high level, equivalent to the self-transmitted level, so the importance of the filter is very large. In the case of a direct connection modem, it is possible to cancel the feedback of the transmitted signal by using a hybrid transformer or the like, but it cannot be made zero due to the effects of impedance mismatch. In addition, the performance of the filter also directly affects the improvement of the demodulation S/N capability. FIG. 2 illustrates the frequency division of the FSK signal. There are various frequency allocations such as standards by CCITT, and as representative ones, the CCITT standard is shown as a dotted line, and the Bell standard is shown as a solid line. The black circle represents the CCITT standard, and the white circle represents the mark or space of the Bell standard. According to the CCITT standard used in Japan, the low group mark is 98QHz and the space is 1180QHz.
Hz, high group mark is 1650Hz, space is 185
It is 0Hz.

高群と低群を分離するためにバンドパスフィルタが必要
になると共にモデムに予め設定するか、モデムのスイッ
チ切り換えで低群送信モードか、高群送信モードに切り
換え相手側のモデムの送信帯域と逆にする必要がある。
In order to separate high group and low group, a bandpass filter is required, and it can be set in the modem in advance, or it can be switched to low group transmission mode or high group transmission mode by switching the modem to match the transmission band of the other modem. It needs to be reversed.

第3図は従来のFSK復調回路のブロック図である。マ
イクロホン4、バイパスフィルタ5、アンプ6、バンド
パスフィルタ8、リミッタ8、復調回路9より構成され
る。5は低域にある衝撃、振動雑音を除去し、復調回路
の方式としてはマーク、スペースに対応したバンドパス
フィルタのレベル等を取る方式、PLLを用いVCO出
力を復調出力として利用する方式、カウンタにより周期
を測定する方式などがある。7のバンドパスフィルタに
関しては前述した様に高群を受信するか、低群を受信す
るかで通過帯域を切り換える必要があり、送信する帯域
と逆になる事は言うまでも無い。その為LCフィルタを
2系列用意し入出力を切り換える為非常に高価になる。
FIG. 3 is a block diagram of a conventional FSK demodulation circuit. It is composed of a microphone 4, a bypass filter 5, an amplifier 6, a bandpass filter 8, a limiter 8, and a demodulation circuit 9. 5 removes shock and vibration noise in the low range, and the demodulation circuit methods include a method that takes the level of a bandpass filter corresponding to marks and spaces, a method that uses PLL and uses the VCO output as demodulation output, and a method that uses a counter. There are methods to measure the period. Regarding the band pass filter No. 7, as mentioned above, it is necessary to switch the passband depending on whether the high group or low group is to be received, and it goes without saying that the band is opposite to the transmitting band. Therefore, two series of LC filters are prepared and input/output is switched, which is very expensive.

又アクティブフィルタの定数を切り換える方式もあり第
4図にそれを示す。第4図は2次のRCアクティブバン
ドパスフィルタであって、6次のフィルタを実現するた
めに3段カスケードに接続される。特性は、抵抗11.
12とトランジスタ13により抵抗を11のみか11と
12の並列値かで切り換える事ができる。14はベース
抵抗、H/Lは切り換え信号で高域受信でHレベルにな
って13をオン、低域受信でLレベルとなる。しかしこ
の切り換え回路は、6次なら3段分必要であり、又RC
アクティブフィルタの性質として高精度を得るには、R
,Cの選別及び調整が困難であり長期信頼性、温度特性
も劣る。言い換えればこうした誤差分を見込んで設計す
る事になり、急峻なカットオフ特性を得にくい。
There is also a method of switching the constants of the active filter, which is shown in FIG. FIG. 4 shows a second-order RC active bandpass filter, which is connected in a three-stage cascade to realize a sixth-order filter. The characteristics are resistance 11.
12 and the transistor 13, the resistance can be switched between only 11 and a parallel value of 11 and 12. 14 is a base resistor, and H/L is a switching signal that becomes H level when receiving high frequencies, turns on 13, and becomes L level when receiving low frequencies. However, this switching circuit requires 3 stages for the 6th order, and RC
In order to obtain high accuracy as a property of an active filter, R
, C is difficult to select and adjust, and the long-term reliability and temperature characteristics are also poor. In other words, the design must take into account such errors, making it difficult to obtain steep cutoff characteristics.

第5図は本発明のSCFを用いた復調回路のブロック図
であり、IC化により無調整での高精度化、信頼性、小
形化、低コスト化が図れる。マイクロホン15、コンデ
ンサ16と抵抗17によるバイパスフィルタ、アンプ1
8を通し受信信号は5CF19に入力される。SCFは
出力にクロック周波数が階段状に重畳されているので抵
抗20、コンデンサ21による、ローパスフィルタを通
した後バッファ22とコンデンサ23、抵抗24でSC
Fのオペアンプの影響によるオフセットを除去する。S
CFの折り返し雑音防止フィルタは入力がマイクロホン
を通した音響信号であり、高域の折り返し領域のエネル
ギーはほとんど存在せず省略できる。25はアンプ、2
6はリミッタ、27はコンパレータ、28は復調回路で
ある。復調回路はコンパレータの出力である方形波をカ
ウンタでマークかスペースか周期測定しデジタル信号を
得る。カウンタ方式はロジックのみで構成できIC化が
非常に容易であるが、ノイズレベルの低い入力を必要と
する。この欠点は高次SCFの採用により解消される。
FIG. 5 is a block diagram of a demodulation circuit using the SCF of the present invention, and by incorporating it into an IC, it is possible to achieve high precision without adjustment, reliability, miniaturization, and cost reduction. Microphone 15, bypass filter with capacitor 16 and resistor 17, amplifier 1
8 and the received signal is input to 5CF19. In SCF, the clock frequency is superimposed on the output in a stepwise manner, so after passing through a low-pass filter with a resistor 20 and a capacitor 21, the SC is output with a buffer 22, a capacitor 23, and a resistor 24.
Remove the offset due to the influence of the F operational amplifier. S
The input of the CF folding noise prevention filter is an acoustic signal passed through a microphone, and the energy in the high frequency folding region is almost non-existent and can be omitted. 25 is the amplifier, 2
6 is a limiter, 27 is a comparator, and 28 is a demodulation circuit. The demodulation circuit measures the period of the square wave output from the comparator using a counter to determine whether it is a mark or space and obtains a digital signal. The counter method can be configured only with logic and is very easy to integrate into an IC, but requires an input with a low noise level. This drawback can be overcome by employing a higher order SCF.

又アンプを18.25とSCFの前後に分散しているの
は比較的SCFはノイズが大きくレベルの大きい位置で
用いたいのと、SCFの入力に、雑音等によりクリップ
、歪んだ波形を入力しない様できるだけ小さなレベルで
用いたといった2つの相反する要求を満足させる事にあ
る。その他22.23.24のバイパスフィルタは波形
の+側−側に偏ってリミッタが動作するのを防止すると
共に、リミッタ・コンパレータ間も交流結合として正確
なゼロ、クロスコンパレータを形成し復調能力が低下し
ないようにする。SCFのクロックは2つの分周比を有
する発振分周回路30と水晶発振器29によって得られ
、分周比はH/L人力により高群又は低群に適した分周
周波数を与える。例として、バンドパスの中心周波数と
SCFのクロック周波数の比を58とすればCCITT
規格では1080Hzの58倍である62.64KHz
と1750Hzの58倍である101.5KHzとなり
水晶周波数をIMHz各々の分周比を16.10とすれ
ばほぼ目的のクロック周波数を得る事ができる。可変分
周回路の動作モードは切り換えであって高速動作を必要
としないで、回路構成は容易である。本発明によりSC
Fは1組で良く、簡単なロジック回路のみで高群、低群
共に使用できる。その結果比較的IC上面積を占有する
オペアンプ部分を減少させると共に、消費電力を低下で
きる。
Also, the reason why the amplifiers are distributed before and after the SCF is to use the SCF in a position where the noise is relatively large and the level is high, and to avoid inputting clipped or distorted waveforms due to noise etc. to the SCF input. The goal is to satisfy two contradictory demands, such as using the technology at the smallest possible level. In addition, the bypass filter in 22.23.24 prevents the limiter from operating on the positive and negative sides of the waveform, and also forms an accurate zero and cross comparator as AC coupling between the limiter and comparator, reducing demodulation ability. Try not to. The clock of the SCF is obtained by an oscillation frequency divider circuit 30 and a crystal oscillator 29 having two frequency division ratios, and the frequency division ratios are manually determined by H/L to give a divided frequency suitable for the high group or the low group. As an example, if the ratio of the bandpass center frequency to the SCF clock frequency is 58, CCITT
The standard is 62.64KHz, which is 58 times 1080Hz.
The result is 101.5 KHz, which is 58 times 1750 Hz.If the crystal frequency is set to IMHz and the division ratio of each is set to 16.10, almost the desired clock frequency can be obtained. The operation mode of the variable frequency divider circuit is switching, does not require high-speed operation, and the circuit configuration is easy. According to the present invention, SC
Only one set of F is required, and both high and low groups can be used with only a simple logic circuit. As a result, the operational amplifier portion that occupies a relatively large area on the IC can be reduced, and power consumption can be reduced.

第6図は本発明の可変分周回路の実施例であって第5図
の30に相当する。水晶振動子31.6MO3等による
インバータ33、帰還抵抗32により発振されたIMH
zが分周段に入力される。
FIG. 6 shows an embodiment of the variable frequency divider circuit of the present invention, and corresponds to 30 in FIG. IMH oscillated by an inverter 33 using a crystal oscillator 31.6MO3, etc., and a feedback resistor 32
z is input to the divider stage.

DタイプFF34〜37の内34〜36はL/8又は1
15で動作する分周段であり、H/LがHレベルであれ
ばアンドゲート38により34〜36をLSBとした2
進出力101で検出し、FFをリセットして000に戻
す。H/LがLレベルであれば全くリセット動作を行わ
ず1/8分周回路として働く。出力は36のQ出力より
取り出し115分周の時デユーティが1;1でなく、出
力が2進100の間と101のリセットが終了するまで
の遅延時間分のみがHレベルとなる。故に最終段FF3
7で対称なりロック出力φとTである。62゜5KHz
又は100KHzを得ている。第7図は本発明の他の実
施例であってSCFとSCFクロック制御回路を表わす
。第6図の方法の場合SCFクロック周波数の増加によ
りバンドパスフィルタのバンド巾も変化し、高群では多
少広くなってしまうのを改善するものである。併せて2
種類の周波数仕様にも対応できる様切り換え端子B/C
を有する。39は高群のバンドパスフィルタ、40は低
群のバンドパスフィルタを各々SCFで構成し、アナロ
グスイッチ4L42で選択しバッファ43で出力する。
34-36 of D type FF34-37 are L/8 or 1
This is a frequency division stage that operates at 15, and when H/L is at H level, 34 to 36 are set as LSB by AND gate 38.
It is detected with an advancing force of 101, and the FF is reset to return to 000. If H/L is at L level, no reset operation is performed and the circuit functions as a 1/8 frequency divider. The output is taken from the Q output of 36, and when the frequency is divided by 115, the duty is not 1:1, and only the delay time between the output of binary 100 and the end of the reset of 101 becomes H level. Therefore, the final stage FF3
7, the lock outputs φ and T are symmetrical. 62°5KHz
Or 100KHz is obtained. FIG. 7 shows another embodiment of the present invention, showing an SCF and an SCF clock control circuit. In the case of the method shown in FIG. 6, the band width of the band-pass filter also changes as the SCF clock frequency increases, and this is to improve the problem that the band width becomes somewhat wider in the case of a high group. 2 in total
Switching terminal B/C to accommodate various frequency specifications
has. A high group band pass filter 39 and a low group band pass filter 40 are each constituted by an SCF, which are selected by an analog switch 4L42 and outputted by a buffer 43.

F!はフィルタ入力、FOはフィルタ出力である。第7
図の方法では高群、低P1別々のフィルタで最適なバン
ド巾を得ることが可能なため、個々のフィルタ毎に異な
る仕様、例えばCCITT規格、ベル規格に切り換えて
いる。例えば低群受信モードの場合H/L入力、インバ
ータ46によりアンドゲート44を非選択、45を選択
し40のみクロックを入力し39はクロック停止でSC
Fよりの雑音の発生とクロストークを防止する。同時に
アナログスイッチも42の方を選択とする。
F! is the filter input, and FO is the filter output. 7th
In the method shown in the figure, it is possible to obtain the optimum band width with separate high group and low P1 filters, so each filter is switched to a different specification, such as the CCITT standard or the Bell standard. For example, in the low group reception mode, H/L input, AND gate 44 is not selected by inverter 46, 45 is selected, only 40 is input with clock, and 39 is SC with clock stop.
Prevent noise generation and crosstalk from F. At the same time, the analog switch 42 is also selected.

可変分周回路47の出力は4種類のクロック周波数の発
生が可能で、H/LSB/Cにより選択される。これに
より同一モデムで種々の用途に対応でき利用範囲が非常
に拡がる。又個別用途毎にモデムを生産する場合も同一
のICを用いる事ができスケールメリットによるコスト
低下を可能にする。第8図は本発明の実施例のSCFの
基本回路である。オペアンプ48とコンデンサC1〜C
4、MOSによるアナログスイッチ49〜51により構
成される。vlは積分入力で 5      L、4 ツク周波数fsとコンデンサC,、C4の比のみで時定
数の大きな積分器を構成できる。v2は正相の積分入力
でスイッチ50.51により逆向きにオペアンプに入力
される事で、 v2は負の加算器として働き、フィルタ構成上必要とな
る帰還グループとの加算などを
The output of the variable frequency divider circuit 47 can generate four types of clock frequencies, which are selected by H/LSB/C. This allows the same modem to be used for a variety of purposes, greatly expanding its range of use. Furthermore, when producing modems for individual applications, the same IC can be used, making it possible to reduce costs due to economies of scale. FIG. 8 shows a basic circuit of an SCF according to an embodiment of the present invention. Operational amplifier 48 and capacitors C1 to C
4. Consists of MOS analog switches 49 to 51. vl is an integral input, and an integrator with a large time constant can be configured only by the ratio of the frequency fs and the capacitors C, C4. v2 is a positive-phase integral input and is input to the operational amplifier in the opposite direction by switches 50 and 51, so v2 functions as a negative adder and performs additions with the feedback group that are necessary for the filter configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的なカップラモデムでのデータの流れを示
す図。第2図は一般に用いられているFSKモデムの周
波数帯域を示す図、第3図は従来のFSK復調回路のブ
ロック図である。第4図は従来のFSK復調回路のRC
アクティブフィルタの基本回路図である。第5図は本発
明の実施例になるFSX復調回路のブロック図である。 第6図は本発明の実施例で第5図30の回路図である。 第7図は本発明の他の実施例のSCFのクロック回路図
である。第8図は本発明の実施例のSCFに用いる基本
回路図である。 1・φ・・・・争・φスピーカ 2.4.5・・・φ・マイクロホン 3・・・・・・・・争ハンドセ・ソト 5・・Φ・φ・・・−バイパスフィルタ6.18.25
・・・アンプ 7.19・・・・・・バンドパスフィルタ8.26・φ
Φ・・・リミッタ 9.28・・・・・・復調回路 27・Φ・・・@φ・コンパレータ 39.40・・会・・5CF 30・・・・・・・・可変分周回路 以上 第1図 出願人 セイコーエプソン株式会社 代理人 弁理士 鈴 木 喜三部(他1名)第2図 手続補正書 (自発) 2゜ 発明の名称 SK復調回路 3゜ 補正する者 5゜ 補正の対象 明細書 (特許請求の範囲) 補正の内容 特許請求の範囲 回 を えることを ′IとするFSK復調回路。
FIG. 1 is a diagram showing the flow of data in a general coupler modem. FIG. 2 is a diagram showing the frequency band of a commonly used FSK modem, and FIG. 3 is a block diagram of a conventional FSK demodulation circuit. Figure 4 shows the RC of a conventional FSK demodulation circuit.
FIG. 2 is a basic circuit diagram of an active filter. FIG. 5 is a block diagram of an FSX demodulation circuit according to an embodiment of the present invention. FIG. 6 is a circuit diagram of FIG. 5 30 in an embodiment of the present invention. FIG. 7 is a clock circuit diagram of an SCF according to another embodiment of the present invention. FIG. 8 is a basic circuit diagram used in the SCF of the embodiment of the present invention. 1・φ・・φ・φ Speaker 2.4.5・φ・Microphone 3・・・・・・・・Contact handset・Soto 5・・φ・φ・・−Bypass filter 6.18 .25
...Amplifier 7.19...Band pass filter 8.26・φ
Φ...Limiter 9.28...Demodulation circuit 27, Φ...@φ, Comparator 39.40...5CF 30......Variable frequency divider circuit and above Figure 1 Applicant Seiko Epson Co., Ltd. Agent Patent Attorney Kizobe Suzuki (and 1 other person) Figure 2 Procedural amendment (voluntary) 2゜Name of the invention SK demodulation circuit 3゜Amending party 5゜Specifications subject to amendment Document (Claims) Contents of amendment Claims An FSK demodulation circuit whose purpose is to increase the number of times.

Claims (3)

【特許請求の範囲】[Claims] (1)マーク、スペースに対応した異なる周波数により
Z値信号を受信復調するFSK復調回路に於て、対にな
るマーク、スペース周波数を通過させる帯域フィルタに
SCF(スイッチト・キャパシタ・フィルタ)を用い、
該フィルタにクロックを供給するクロック回路が2種類
以上の周波数から1つを選択して発生する手段を有した
事を特徴とするFSK復調回路。
(1) In the FSK demodulation circuit that receives and demodulates Z-value signals using different frequencies corresponding to marks and spaces, an SCF (switched capacitor filter) is used as a bandpass filter that passes the paired mark and space frequencies. ,
An FSK demodulation circuit characterized in that a clock circuit for supplying a clock to the filter has means for selecting and generating one of two or more types of frequencies.
(2)前記クロック回路の周波数が全二重通信方式の2
つの周波数帯域の受信周波数帯域側に対応したSCFク
ロック周波数を選択発生し、SCFの通過帯域を切り換
える特許請求の範囲第1項記載のFSK復調回路。
(2) The frequency of the clock circuit is 2 in full duplex communication mode.
2. The FSK demodulation circuit according to claim 1, wherein the FSK demodulation circuit selectively generates an SCF clock frequency corresponding to the reception frequency band side of the two frequency bands and switches the passband of the SCF.
(3)前記SCFが全二重通信方式の2つの周波数帯域
のフィルタとして別個に構成され、前記クロック回路は
周波数規格の異なる全二重通信方式に応じて受信周波数
帯域側のSCFクロック周波数を選択発生する、特許請
求の範囲第1項に記載のFSK復調回路。
(3) The SCF is configured separately as a filter for two frequency bands of a full-duplex communication system, and the clock circuit selects the SCF clock frequency on the receiving frequency band side according to the full-duplex communication system with different frequency standards. An FSK demodulation circuit according to claim 1, which generates an FSK demodulation circuit according to claim 1.
JP2076353A 1990-03-26 1990-03-26 Fsk demodulating circuit Granted JPH02276351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2076353A JPH02276351A (en) 1990-03-26 1990-03-26 Fsk demodulating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2076353A JPH02276351A (en) 1990-03-26 1990-03-26 Fsk demodulating circuit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP55157193A Division JPS5780851A (en) 1980-11-07 1980-11-07 Fsk demodulating circut

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4082290A Division JPH0722292B2 (en) 1992-04-03 1992-04-03 FSK demodulation circuit

Publications (2)

Publication Number Publication Date
JPH02276351A true JPH02276351A (en) 1990-11-13
JPH0512891B2 JPH0512891B2 (en) 1993-02-19

Family

ID=13602998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2076353A Granted JPH02276351A (en) 1990-03-26 1990-03-26 Fsk demodulating circuit

Country Status (1)

Country Link
JP (1) JPH02276351A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05122262A (en) * 1992-04-03 1993-05-18 Seiko Epson Corp Fsk demodulation circuit
US6836650B2 (en) 1998-10-21 2004-12-28 Parkervision, Inc. Methods and systems for down-converting electromagnetic signals, and applications thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553291A (en) * 1978-04-03 1980-01-11 Northern Telecom Ltd Integrator and secondary order filter
JPS5583322A (en) * 1978-12-18 1980-06-23 Centre Electron Horloger Electronic circuit having switching capacity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553291A (en) * 1978-04-03 1980-01-11 Northern Telecom Ltd Integrator and secondary order filter
JPS5583322A (en) * 1978-12-18 1980-06-23 Centre Electron Horloger Electronic circuit having switching capacity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05122262A (en) * 1992-04-03 1993-05-18 Seiko Epson Corp Fsk demodulation circuit
US6836650B2 (en) 1998-10-21 2004-12-28 Parkervision, Inc. Methods and systems for down-converting electromagnetic signals, and applications thereof

Also Published As

Publication number Publication date
JPH0512891B2 (en) 1993-02-19

Similar Documents

Publication Publication Date Title
US4517519A (en) FSK Demodulator employing a switched capacitor filter and period counters
CA1111509A (en) Charge coupled device filters and modems incorporating such filters
US4270206A (en) Transceiver for phase-shift modulated carrier signals
KR19980024842A (en) Integrated image removal mixer
JP3814688B2 (en) Transmission method and apparatus for carrying out the method
TW517480B (en) Wireless transceiver with subtractive filter compensating both transmit and receive artifacts
Walker Ultra narrow band modulation textbook
GB2096846A (en) Noise detector and signal receiver arrangement for a frequency modulated receiver
CA2401180C (en) A modulation scheme for fdd/tdd transceivers
JPH02276351A (en) Fsk demodulating circuit
JPH0969731A (en) Frequency conversion circuit
KR0154793B1 (en) Radio telephone
KR950035151A (en) Frequency Inverted Scrambler with Integrated Highpass Filter
EP0666669A1 (en) Dual-mode baseband controller for cordless telephones
JPH0338787B2 (en)
JPH02140011A (en) Fsk demodulation circuit
JP2993822B2 (en) Line characteristics measurement device
JPH07183923A (en) Modulator
JPH05122262A (en) Fsk demodulation circuit
JPH044633A (en) Clock extraction circuit
Foxall et al. A switched capacitor bandsplit filter using double polysilicon oxide isolated CMOS
KR940003824Y1 (en) Rf receiver
SU1413716A1 (en) Frequency to voltage converter
Hamed et al. A self synchronizing digital FSK demodulator for applications with transmission rate comparable to the carrier frequencies
SU1540030A1 (en) Adaptive receiver of signals with pzase-difference modulation