JPH02275766A - Production of sintered aluminum nitride - Google Patents

Production of sintered aluminum nitride

Info

Publication number
JPH02275766A
JPH02275766A JP1095379A JP9537989A JPH02275766A JP H02275766 A JPH02275766 A JP H02275766A JP 1095379 A JP1095379 A JP 1095379A JP 9537989 A JP9537989 A JP 9537989A JP H02275766 A JPH02275766 A JP H02275766A
Authority
JP
Japan
Prior art keywords
powder
yttrium
aluminum nitride
ain
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1095379A
Other languages
Japanese (ja)
Inventor
Tadashi Nakano
正 中野
Makoto Yokoi
誠 横井
Masato Kumagai
正人 熊谷
Toshihiko Funabashi
敏彦 船橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1095379A priority Critical patent/JPH02275766A/en
Publication of JPH02275766A publication Critical patent/JPH02275766A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a sintered AIN having high density and high thermal conductivity and useful as a substrate of a large-scale integrated high-power semiconductor by adding Y powder as a sintering assistant to AIN powder, forming the mixture and calcining in a non-oxidizing atmosphere. CONSTITUTION:The objective sintered AIN can be produced by mixing 100 pts.wt. of powder composed mainly of AIN with 0.05 to 5 pts.wt. of a sintering assistant consisting of Y powder preferably covered with a Y2O3 layer having a thickness of <=10nm, forming the mixture and calcining at 1400 to 2000 deg.C in a non-oxidizing atmosphere. The covering of the Y powder with Y2O3 is effective in preventing the deterioration of Y with oxygen, moisture, etc., in air and improving the handleability of the powder.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は窒化アルミニウム焼結体の製造方法に関し、特
に産業上の要求の高い、高密度かつ高熱伝導率の窒化ア
ルミニウム焼結体の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an aluminum nitride sintered body, and in particular, a method for manufacturing an aluminum nitride sintered body with high density and high thermal conductivity, which is in high industrial demand. Regarding.

[従来の技術l 窒化アルミニウム焼結体は、高い熱伝導性と高い絶縁性
を有し、高集積・高出力用の半導体向けの基板材料とし
て注目されている素材である。
[Prior Art I] Aluminum nitride sintered bodies have high thermal conductivity and high insulation properties, and are attracting attention as substrate materials for highly integrated, high-output semiconductors.

基板材料として、望ましい焼結体の特性としては、 ■ 絶縁抵抗が高い。Desirable properties of the sintered body as a substrate material include: ■High insulation resistance.

■ 熱伝導率が大きい。■High thermal conductivity.

■ 強度が高い。■High strength.

ことが条件である。That is the condition.

しかしながら、窒化アルミニウムの粉末を焼結助剤を添
加することなく成形・焼成したのでは、焼結が不十分に
しか行われず、かつ、酸素°などの不純物の除去が完全
でないため、上記望ましい特性を得ることは不可能であ
った。
However, if aluminum nitride powder is molded and fired without adding a sintering aid, sintering will be insufficient and impurities such as oxygen will not be completely removed. It was impossible to obtain.

このため、焼結助剤として一般に酸化イツトリウムが用
いられ(例えば特開昭49−111909号)、一応の
効果を奏してはいるが、上記特性の向上が望まれていた
For this reason, yttrium oxide is generally used as a sintering aid (for example, JP-A-49-111909), and although it has been somewhat effective, it has been desired to improve the above characteristics.

〔発明が解決しようとする課題] 本発明は上記従来技術に鑑み、窒化アルミニウム焼結体
の特性を向上し得る製造方法を提供しようとするもので
ある。
[Problems to be Solved by the Invention] In view of the above-mentioned prior art, the present invention seeks to provide a manufacturing method capable of improving the characteristics of an aluminum nitride sintered body.

〔課題を解決するための手段1 本発明者らは、特性の優れた窒化アルミニウム焼結体の
製造方法を開発して上記課題を解決するために、種々研
究の結果本発明に至ったもので、本発明は、主成分の窒
化アルミニウム粉末100重1部に、焼結助剤としてイ
ツトリウム粉末0.05〜5重量部を混合し、該混合物
を成形した後、該成形体を非酸化性雰囲気中で1400
〜2000℃にて焼成することを特徴とする窒化アルミ
ニウム焼結体の製造方法で、イツトリウム粉末として、
表面が厚さ10nm以上の厚さの酸化イツトリウム層で
覆われたイツトリウム粉末を用いることができる。
[Means for Solving the Problems 1] The present inventors have arrived at the present invention as a result of various studies in order to solve the above problems by developing a method for manufacturing aluminum nitride sintered bodies with excellent properties. In the present invention, 1 part by weight of aluminum nitride powder as the main component is mixed with 0.05 to 5 parts by weight of yttrium powder as a sintering aid, and after the mixture is molded, the molded body is placed in a non-oxidizing atmosphere. 1400 inside
A method for producing an aluminum nitride sintered body characterized by firing at ~2000°C, in which yttrium powder is used as yttrium powder.
Yttrium powder whose surface is covered with a yttrium oxide layer having a thickness of 10 nm or more can be used.

[作用J 主成分の窒化アルミニウムの粉末としては、製法、純度
などは特に限定はされないが、高い焼結体密度を得るた
めには、できるだけ微細で粒度の揃ったものが好ましく
、また、高い熱伝導性を得るためには、酸素量と金属不
純物量の低いものの使用が好適である。
[Effect J There are no particular restrictions on the manufacturing method or purity of the aluminum nitride powder, which is the main component, but in order to obtain a high sintered body density, it is preferable that the powder be as fine as possible and have a uniform particle size. In order to obtain conductivity, it is preferable to use a material with a low amount of oxygen and metal impurities.

焼結助剤として混合するイツトリウム粉末も、製法、純
度等は特に限定されないが、主成分の窒化アルミニウム
粉末と均一に混合するように、できるだけ微細で粒度の
揃ったものが好ましく、金属不純物量の低いものの使用
が好適である。
The manufacturing method and purity of the yttrium powder to be mixed as a sintering aid are not particularly limited, but it is preferable that it be as fine and uniform in particle size as possible so that it can be evenly mixed with the main component, aluminum nitride powder. It is preferable to use a lower one.

イツトリウムの焼結助剤としての作用機構は詳かではな
いが、イツトリウムが窒化アルミニウム中に不純物とし
て含まれる酸素と化合し、Y2O3−Aff203系の
液相を形成し、液相焼結のメカニズムにより、焼結を促
進するものと推察され、かくしてイツトリウムは、酸素
を帯同しでいないので酸化イツトリウムに比べ焼結体中
の酸素量が著しく低減され、これにより焼結体の熱伝導
率を向上し得るものと考えられる6イツトリウム粉末の
混合用は、窒化アルミニウム粉末1001看部に対し0
.05〜5重量部とする。0.05重量部未満では効果
が不十分で、5重量部を越えて混合しても効果の増進は
見られなl/X0 窒化アルミニウムおよびイツトリウムの粉末は、エタノ
ール、トルエン、ジオキサン等の分散媒を用いて十分に
混合・混線する。このとき、必要に応じて適当な分散剤
を添加してもよい。このようにして得られるスラリに、
適切な量のバインダを添加し、所望の形状に成形する。
The mechanism of action of yttrium as a sintering aid is not clear, but yttrium combines with oxygen contained as an impurity in aluminum nitride to form a Y2O3-Aff203-based liquid phase, resulting in the mechanism of liquid phase sintering. It is assumed that yttrium promotes sintering, and thus, since yttrium does not carry oxygen, the amount of oxygen in the sintered body is significantly reduced compared to yttrium oxide, which improves the thermal conductivity of the sintered body. The mixture of yttrium 6 powder that is considered to be obtained is
.. 05 to 5 parts by weight. If it is less than 0.05 parts by weight, the effect is insufficient, and even if it exceeds 5 parts by weight, the effect will not be improved. Mix and cross-wire thoroughly using At this time, a suitable dispersant may be added if necessary. The slurry obtained in this way has
Add appropriate amount of binder and mold into desired shape.

成形方法としては、基板を製造する場合にはドクターブ
レード法によることが多いが、他のプレス法、ロールコ
ート法等を用いることも可能である。
As a molding method, a doctor blade method is often used when manufacturing a substrate, but other pressing methods, roll coating methods, etc. can also be used.

成形体は乾燥した後、加熱によりバインダを分解・揮散
させる(脱脂工程)。
After the molded body is dried, the binder is decomposed and volatilized by heating (degreasing process).

焼成は一般に窒素、アンモニア、アルゴン等の分子状の
酸素を含まない非酸化性雰囲気下で、1400℃から2
000℃の範囲で行う。酸化性雰囲気で焼成するとAε
Nが分解されて酸化物となり、焼成温度が1400℃未
満では焼結が不十分で、2000℃を越すとAεNの蒸
発が激しくなり、焼結体密度の著しい低下をきたす。
Firing is generally performed at 1400°C to 2°C in a non-oxidizing atmosphere that does not contain molecular oxygen, such as nitrogen, ammonia, or argon.
It is carried out in the range of 000°C. When fired in an oxidizing atmosphere, Aε
N decomposes into oxides, and if the firing temperature is less than 1,400°C, sintering is insufficient, and if it exceeds 2,000°C, the evaporation of AεN becomes intense, resulting in a significant decrease in the density of the sintered body.

本発明は、イツトリウム粉末として、表面が厚さ10n
m以上の厚さの酸化イツトリウム層で覆われたイツトリ
ウム粉末を用いることができる。
The present invention uses yttrium powder with a surface thickness of 10 nm.
Yttrium powder covered with a layer of yttrium oxide with a thickness of m or more can be used.

イツトリウムは活性が高く、酸素・水蒸気と容易に反応
して水酸化物等に変化してしまうので、これを大気中で
安定な酸化イツトリウム層で覆うことにより、そのハン
ドリング性を高めることができる。
Since yttrium is highly active and easily reacts with oxygen and water vapor to change into hydroxide, etc., its handling properties can be improved by covering it with a layer of yttrium oxide, which is stable in the atmosphere.

イツトリウム層の厚さがlonm未満では上記効果が不
十分で、その上限は特に限定されるものではないが、イ
ツトリウム粉末の酸素帯同丑を抑制するためになるべく
薄いほうがよい。
If the thickness of the yttrium layer is less than lonm, the above effect will be insufficient, and the upper limit is not particularly limited, but it is better to be as thin as possible in order to suppress the oxygen band concentration of the yttrium powder.

〔実施例1 実施例1 平均粒径1μmのARN粉末100重量部に、焼結助剤
として第1表に示す混合用の、ガス中蒸発法で製した平
均粒径0.3μmのイツトリウム粉末を、トリクロロエ
チレンと共にボールミルに装入して十分に混合・解砕し
た後、バインダとじてポリビニルブチラール樹脂を添加
してスラリを調製した。このスラリを用い、ドクターブ
レード法にてグリーンシートを作成し、65X65mm
角に打抜き加工し、グリーン成形体を得た。ここまでの
雰囲気はN2とした。
[Example 1 Example 1 100 parts by weight of ARN powder with an average particle size of 1 μm was mixed with yttrium powder with an average particle size of 0.3 μm produced by the in-gas evaporation method as a sintering aid for mixing shown in Table 1. The mixture was charged into a ball mill together with trichlorethylene, thoroughly mixed and crushed, and then polyvinyl butyral resin was added as a binder to prepare a slurry. Using this slurry, a green sheet was created using the doctor blade method, and the size was 65 x 65 mm.
The corners were punched to obtain a green molded body. The atmosphere so far was N2.

グリーン成形体をN2中にて700℃×3時間で脱脂し
た後、N2雰囲気中常圧下で1800℃で3時間焼成し
、焼結板を得た。
The green molded body was degreased in N2 at 700°C for 3 hours, and then fired at 1800°C for 3 hours under normal pressure in N2 atmosphere to obtain a sintered plate.

得られた焼結板について、外観、相対密度、熱伝導率、
絶縁抵抗、表面粗度なと絶縁性基板として一般に必要と
される特性を測定した。その結果を第1表に示す。
Regarding the obtained sintered plate, appearance, relative density, thermal conductivity,
Characteristics generally required for insulating substrates, such as insulation resistance and surface roughness, were measured. The results are shown in Table 1.

特性のうち、相対密度は、アルキメデス法にて焼結体密
度を求め、真密度で除し、%表示で示した。熱伝導率は
レーザーフラッシュ法を用い、絶縁抵抗は絶縁計を用い
、表面粗度(Ra)は触針式表面粗度計にて測定した。
Among the characteristics, the relative density was determined by calculating the density of the sintered body using the Archimedes method, divided by the true density, and expressed as a percentage. Thermal conductivity was measured using a laser flash method, insulation resistance was measured using an insulation meter, and surface roughness (Ra) was measured using a stylus type surface roughness meter.

実施例2 実施例1で用いたイツトリウム粉末を、乾燥した酸素−
アルゴン混合ガス中で加熱したところ。
Example 2 The yttrium powder used in Example 1 was treated with dry oxygen.
Heated in argon mixed gas.

その表面が約50nmの厚さで酸化イツトリウム層で覆
われた。焼結助剤としてこのイツトリウム粉末を、平均
粒径1tLmの/IN扮宋粉末第2表に示す所定で混合
し、グリーン成形体を得るまでは、大気中で行い他は、
実施例1と同一の方法にて焼結板を作成し、その外観、
相対密度、熱伝導率、絶縁抵抗、表面粗度を測定し、そ
の結果を第2表に示した。
The surface was covered with a layer of yttrium oxide with a thickness of about 50 nm. This yttrium powder was mixed as a sintering aid in the specified amount shown in Table 2, and the average particle size was 1 tLm, and the process was carried out in the atmosphere until a green molded body was obtained.
A sintered plate was created using the same method as in Example 1, and its appearance,
Relative density, thermal conductivity, insulation resistance, and surface roughness were measured, and the results are shown in Table 2.

比較例 焼結助剤として平均粒径0.8μmの酸化イツトリウム
粉末を用い、他は、実施例1と同一の方法にて焼結板を
作成し、その外観、相対密度、熱伝導率、絶縁抵抗、表
面粗度を測定し、その結果を第3表に示した。
Comparative Example A sintered plate was prepared in the same manner as in Example 1, except that yttrium oxide powder with an average particle size of 0.8 μm was used as a sintering aid, and its appearance, relative density, thermal conductivity, and insulation were evaluated. The resistance and surface roughness were measured and the results are shown in Table 3.

〔発明の効果j 焼結助剤として酸化イツトリウムに賛えてイツトリウム
を用いることにより、焼結体の熱伝導度を、他の特性を
10つことなく大幅に向−トすることができ、また、イ
ツトリウム粉末を酸化イツトリウム層でmつことにより
、焼結体の特性を損うことなく、イツトリウム粉末のハ
ンドリング性を向上させることができた。
[Effects of the invention j] By using yttrium in addition to yttrium oxide as a sintering aid, the thermal conductivity of the sintered body can be significantly improved without impairing other properties, and By covering the yttrium powder with a yttrium oxide layer, the handling properties of the yttrium powder could be improved without impairing the properties of the sintered body.

出頴人  川崎製鉄株式会社Distributor: Kawasaki Steel Co., Ltd.

Claims (1)

【特許請求の範囲】 1 主成分の窒化アルミニウム粉末100 重量部に、焼結助剤としてイットリウム粉末0.05〜
5重量部を混合し、該混合物を成形した後、該成形体を
非酸化性雰囲気中で 1400〜2000℃にて焼成することを特徴とする窒
化アルミニウム焼結体の製造方 法。 2 イットリウム粉末として、表面が厚さ10nm以上
の厚さの酸化イットリウム層で覆われたイットリウム粉
末を用いる請求項1記載の窒化アルミニウム焼結体の製
造方法。
[Claims] 1. 100 parts by weight of aluminum nitride powder as the main component, and 0.05 to 0.05 parts by weight of yttrium powder as a sintering aid.
A method for producing an aluminum nitride sintered body, which comprises mixing 5 parts by weight of the mixture, molding the mixture, and then firing the molded body at 1400 to 2000°C in a non-oxidizing atmosphere. 2. The method for producing an aluminum nitride sintered body according to claim 1, wherein the yttrium powder is a yttrium powder whose surface is covered with a yttrium oxide layer having a thickness of 10 nm or more.
JP1095379A 1989-04-17 1989-04-17 Production of sintered aluminum nitride Pending JPH02275766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1095379A JPH02275766A (en) 1989-04-17 1989-04-17 Production of sintered aluminum nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1095379A JPH02275766A (en) 1989-04-17 1989-04-17 Production of sintered aluminum nitride

Publications (1)

Publication Number Publication Date
JPH02275766A true JPH02275766A (en) 1990-11-09

Family

ID=14136014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1095379A Pending JPH02275766A (en) 1989-04-17 1989-04-17 Production of sintered aluminum nitride

Country Status (1)

Country Link
JP (1) JPH02275766A (en)

Similar Documents

Publication Publication Date Title
JP5444387B2 (en) Semiconductor device heat sink
KR0168303B1 (en) Aluminum nitride sinter and process for the production thereof
JP2000034172A (en) Highly thermoconductive silicon nitride sintered compact and its production
KR960016070B1 (en) Sintered aluminium nitride and its production
JPH07172921A (en) Aluminum nitride sintered material and its production
JPH0492864A (en) Aluminum nitride powder, sintered material and production thereof
JPH02275766A (en) Production of sintered aluminum nitride
JP2578113B2 (en) Method for producing high thermal conductive aluminum nitride sintered body
JPS6128629B2 (en)
JPH02275768A (en) Production of sintered aluminum nitride
JPH0442861A (en) Preparation of highly strong aluminum nitride sintered product
JP4753195B2 (en) Method for producing aluminum nitride sintered body
JPH0453831B2 (en)
EP1036779A1 (en) Aluminium nitride sintered product and process for its production
JPS60186479A (en) Manufacture of high heat conductivity aluminum nitride sintered body
JPH06219850A (en) Production of aluminum nitride sintered compact
JP2730941B2 (en) Manufacturing method of aluminum nitride sintered body
JP2587854B2 (en) Method for producing aluminum nitride sintered body with improved thermal conductivity
JPH02307871A (en) Production of ceramic sintered compact
JPH03146471A (en) Production of aluminum nitride sintered body
JPS61286267A (en) Manufacture of aluminum nitride base sintered body
JPH08157264A (en) Aluminum nitride sintered compact and its production
JPH08157262A (en) Aluminum nitride sintered compact and its production
JP2876521B2 (en) Manufacturing method of aluminum nitride sintered body
JPH046161A (en) Production of aln sintered body