JPH02275759A - Sliding part material - Google Patents

Sliding part material

Info

Publication number
JPH02275759A
JPH02275759A JP1305281A JP30528189A JPH02275759A JP H02275759 A JPH02275759 A JP H02275759A JP 1305281 A JP1305281 A JP 1305281A JP 30528189 A JP30528189 A JP 30528189A JP H02275759 A JPH02275759 A JP H02275759A
Authority
JP
Japan
Prior art keywords
fibers
carbonaceous
uncarbonized
sintering
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1305281A
Other languages
Japanese (ja)
Other versions
JPH068213B2 (en
Inventor
Mamoru Okamoto
守 岡本
Hirohisa Miura
三浦 宏久
Shoichi Tsuchiya
詔一 土屋
Yoshio Fuwa
良雄 不破
Hirobumi Michioka
博文 道岡
Masatoshi Kubota
正敏 久保田
Yoshiteru Nakagawa
喜照 中川
Satoru Nakatani
悟 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Toyota Motor Corp
Original Assignee
Osaka Gas Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Toyota Motor Corp filed Critical Osaka Gas Co Ltd
Priority to JP1305281A priority Critical patent/JPH068213B2/en
Priority to EP90300422A priority patent/EP0379328B1/en
Priority to DE1990629209 priority patent/DE69029209T2/en
Publication of JPH02275759A publication Critical patent/JPH02275759A/en
Priority to US07/892,481 priority patent/US5202293A/en
Publication of JPH068213B2 publication Critical patent/JPH068213B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Braking Arrangements (AREA)
  • Ceramic Products (AREA)
  • Lubricants (AREA)

Abstract

PURPOSE:To increase strength, heat resistance, abrasion resistance and oxidation resistance by sintering a self-sintering carbonaceous powder in which uncarbonized carbon fibers are embedded. CONSTITUTION:The starting pitch is fused with heat at 300 to 400 deg.C and extruded through a nozzle under pressure of an inert gas. The resultant pitch fibers are heated ln an oxidative atmosphere at 150 to 500 deg.C for 0.5 to 5 hours to prepare uncarbonized carbonaceous fibers of 5 to 25mum fiber diameter. 100 pts.wt. of the carbonaceous fibers are surface-treated with 100 to 1,000 pts.-wt. of a binding component-containing material such as tar. Then, 100 pts. wt. of self-sintering carbonaceous powder of less than 30mum particle size such as meso carbon microbeads are mixed with the 2 to 70 pts.wt. of the carbonaceous fibers and compressed with heat at a temperature lower than 500 deg.C under pressure of 1 to 10ton/cm<2> to give a composite material. The composite material is sintered in a non-oxidative atmosphere at 700 to 1,300 deg.C.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、強度が高く、耐熱性、耐摩耗性及び耐酸化性
に優れ、航空機及びレース車両等のブレーキシュー及び
ブレーキライニング、高温用軸受等に利用して好適な摺
動部材に関する。 [従来の技術] 航空機及びレース車両等のブレーキ材等に利用される摺
動部材は、耐熱性及び耐摩耗性が特に要求される。これ
に応える1雪動部材として、近年、炭素繊維強化炭素か
らなるものが提供されている。 この炭素繊維強化炭素は、例えば、炭化又は黒鉛化され
かつ酸化処理等の表面処理の施された強化材としての炭
素繊維に、タール、ピッチ又は熱硬化性樹脂等の結合材
としての液状炭素質材料を含浸し、不活性雰囲気下で焼
成、必要に応じて黒鉛化することにより製造される(特
開昭63−206351号公報)。 [発明が解決しようとする課題] ところが、上記のように製造された炭素繊維強化炭素で
は、結合材として液状の炭素質材料を使用しているため
、焼成過程中、この液状結合材の分解により発生する揮
発成分が気孔を形成する。 このため、強化材と結合材との間の界面密着性が低下し
、かつ製品は低密度となり、強度及び耐摩耗性が劣ると
いう欠点がある。 上記問題を解決するために、従来より、上記気孔中に結
合材である液状含浸材を充填し、再度焼成することを繰
返して気孔率を減少させることが行なわれている。しか
し、このような繁雑な工程を必要とするにもかかわらず
、1qられる製品は依然としてポーラスなものであり、
また製造工程の繁雑化によりコスト高を招いていた。 本発明は、これらの問題点に鑑みてなされたものであり
、高強度で摩擦摩耗特性に優れ、かつ低コストで製造す
ることのできる摺動部材を提供することを目的とする。 [課題を解決するための手段] 本発明の1言動部材は、所定の形状をもち、未炭化炭素
質繊維と、該未膨化炭素質!li維を埋設した自己焼結
性を有する炭素質粉末とからなる複合体を焼結すること
によって1qられる焼結体からなることを特徴とする。 上記摺動部材の形状は特に限定されず、ブレーキシュー
、ブレーキライニング、軸受等所定の形状とすることが
できる。 上記未炭化炭素質繊維は、本発明の!晋動部材の強化材
を構成する。この未炭化炭素質繊維の原料としては、P
AN(ポリ7クリロニトリル)系、レーヨン系、ピッチ
系等のものとすることができ、特に限定されない。 ここで、未炭化の炭素質繊維とは、通常の炭化処理の施
されていない状態の炭素質繊維をいう。 具体的には、原料ピッチを使用したものは紡糸したまま
の繊維又は紡糸した繊維を550℃を越えない温度で不
融化した繊維をいう、PAN等高分子系の繊維では分解
工程を終え、黒鉛化速理萌の繊維をいう。この種の炭素
質繊維としては、例えば、石炭系又は石油系の原料ビツ
ヂを紡糸して(qだピッチw4維、又はこれを不融化し
て得た不融化繊M等とすることができる。この原料ピッ
チの紡糸及び不融化は常法に従って行なえばよく、条件
等は特に限定されない。通常、ピッチ11iwLは、原
料ビッヂを紡糸器に供給し、300〜400’C程度に
加熱した状態で不活性ガスによる加圧下にノズルから押
出して得ることができる。また、このようなピッチ繊維
をさらに酸化性雰囲気中150〜500℃程度で0.5
〜5時間程度保持して不融化繊維とすることができる。 上記原料ピッチは、光学的等方性のものでも、光学的異
方性のものでもよい。光学的等方性の原料ピッチから得
られた等方性の未炭化炭素質繊維はアモルファス組織で
おるため削られにくく、この光学的等方性の未炭化炭素
質繊維を使用した場合、摺動部材の耐摩耗性がとくに優
れる。また、光学的異方性の原料ピッチから得られた異
方性の未炭化炭素質繊維は層状組織であるため剥離しや
すく、この光学的異方性の未炭化炭素質繊維を使用した
場合、摺動部材の耐焼付き性がとくに優れる。 繊維長さとしては、短繊維、長繊維に限らない。 しかし短繊維の場合には0.01〜5Qmmのものを使
用することができる。特に0.03〜10mmのものが
混合のしやすさ、アスペクト比の関係から好ましい。長
すぎては繊維同士が絡みあい分散性が低下し、ひいては
製品特性の等方性に劣り、また0、01mmより短くて
は製品の強度が急激に低下して好ましくない。また、繊
維径としては、5〜25μm程度のものが好ましい。ざ
らに、これらの繊維からなる不織布又はコーティング布
として使用することもできる。 上記未炭化炭素質繊維は、さらにタール、ピッチ、有機
高分子などの粘結成分を含有する材料により表面処理し
て、結合材との馴染み性を向上させることが好ましい。 この表面処理は、炭素質繊1100重ifi部ニ100
〜1000 IJl1M部程1’f17)粘結成分含有
材料を7JOえてIi2拌し、有)幾溶媒により洗浄後
、乾燥して行なうことができる。この表面処理に使用す
るタール、ピッチは、石炭系及び石油系のいずれでおっ
てもよい。ピッチを使用する場合には、撹拌時に140
〜170’C程度の加熱が必要となるので、処理材とし
ては、タールの方がより好ましく、また後続の炭化及び
黒鉛化工程での炭化歩溜りの点からは、石炭系のものが
より好ましい。 上記有機高分子としては、フェノール樹脂、ポリ塩化ビ
ニル、ポリビニルアルコール等が挙げられる。 上記洗浄に使用する有機溶媒としては、トルエン、キシ
レン等の芳香族系溶媒等とすることができ、繊維と粘結
成分含有材料との混合物100重回部に対して100〜
1000単ω部程度を加え、撹拌洗浄する。この洗浄に
より、揮発成分が多く含まれる軽質油分が除去される。 洗浄を終えた未炭化炭素質繊維は、例えば、N2、アル
ゴン等の非酸化性雰囲気中で、加熱及び/又は減圧等の
条件下に乾燥処理される。乾燥処理は、洗浄に使用した
有機溶媒が除去される限り、これらの方法に限定される
ものではない。 さらに、乾燥を終えた表面処理米炭化炭素質繊維は、必
要に応じて分散処理される。ずなわら、乾燥させた繊維
が、塊状化乃至凝集していることがおるので、このよう
な場合には、通常の粉体ミル、アトマイザ−、バルバラ
イザー等の任意の手段により分散を行なう。 前記炭素質粉末は、本発明の摺動部材の結合材を構成す
る。この炭素質粉末は自己焼結性を有し、未炭化のもの
である。この自己焼結性炭素質粉末としては、石油系及
び石炭系のいずれであってももよく、具体的には、メソ
カーボンマイクロビズ、バルクメソフェーズ粉砕品、低
温か焼コークス扮砕晶等が例示される。 これらの中では、粒径及び組成の均一性、安定性等の観
点から、石油系及び石炭系のメソカーボンマイクロビー
ズが好ましく、炭化歩溜りの観点から石炭系のものがよ
り好ましい。自己焼結性炭素質粉末としては、粒径30
μm以下、β−レジン吊3〜50%程度のものが好まし
い。 前記未炭化炭素質繊維と上記自己焼結性炭素質粉末とは
、混合、成形されて複合体を構成する。 このときの混合手段は特に限定されないが、強度及び耐
摩耗性を等方向にするためには均一に混合されることが
好ましい。 また、炭素質粉末と炭素質繊維との配合割合は、前者1
00重は部に対して、後者2〜70重量部程度であり、
より好ましくは前者10011部に対して後者10〜5
0千■部程度である。 上記成形も常法によって行なうことができ、通常1〜i
 Q t On/Cm2程度の加圧下に所定の形状に成
形すればよい。又は、CIP法等によって成形を行なっ
てもよい。成形は、常温で又は不活性雰囲気下500重
程度までの加熱下に行なうことができる。 上記複合体は、焼結されて本発明の摺動部材となる。な
おここで焼結とは、700〜1300℃程度に焼成して
未炭化炭素質繊維及び自己焼結性炭素質粉末を炭化固結
させること、さらには、この炭化された複合材を黒鉛化
炉で3000℃程度で黒鉛化させることも含む。 上記炭化は、特に限定されないが、通常非酸化性雰囲気
中0.1〜300’C/時間程度の速度で常温から13
00’C程度の温度まで昇温し、0゜5〜10時間程時
間待して行なえばよい。 また黒鉛化の条件も、特に限定されず、非酸化性雰囲気
中で焼結時の温度から0.1〜b/時間程度の速度で1
500〜3000’C程度の温度まで昇温し、0.5〜
10時間程時間待すればよい。黒鉛化させた場合には、
黒鉛結晶が十分に成長するとともに秩序正しく配向し、
これにより製品の密度、強度及び耐摩耗性等がさらに向
上する。 [作用] 本発明の1言動部材では、焼結前の複合体を未炭化炭素
質繊維と、咳未炭化炭素質i維を埋設した自己焼結性を
有し未炭化な炭素質粉末とで構成している。 したがって、この複合体を焼結覆る場合、結合材として
の炭素質粉末が自己焼結性を有するため、結合材として
他に液状の炭素質材料を必要としない。そして、強化材
としての炭素質繊維が未炭化なものであるため、この未
炭化炭素質繊維と上記自己焼結性を有する未炭化な炭素
質粉末とは、炭化される際に同程度の物理的性質(強度
、収縮率等)をもつ。このため、これら炭素質繊維と炭
素質粉末との界面密着性が向上し、したがって、高強度
及び優れた耐摩耗性を得ることができる。 さらに、上記未炭化炭素質繊維をタール、ピッチ、有機
高分子などの粘結成分を含有する材料により表面処理し
た場合には、該炭素質繊維の界面の濡れ性が高まり、こ
れにより結合材としての炭素質粉末との馴染み性が高ま
るので、これら炭素質繊維と炭素質粉末との界面密着性
がざらに向上する。 [実施例コ 以下、本発明の詳細な説明する。 (実施例1) 石炭系の光学的等方性ピッチから常法により得られた、
糸径15μm、糸長さがそれぞれ0.2〜0.5mm、
3mm、5mmである3種の不融化繊維からなる未炭化
炭素質繊維を準備した。これら3種の強化材としての未
膨化炭素質i!維それぞれ100重伍部に、中心粒径7
μmのコールタール系メソカーボンマイクロビーズから
なる結合材としての自己焼結性炭素質粉末900重信部
を加えた後、均一に混合し、得られた混合物を21On
/Cm2の成形圧力で成形して所定の摺動部材形状を有
する複合体とした。 次に、この複合体を非酸化性雰囲気中、150℃/時間
の速度で1000℃まで昇温し、同温度で1時間保持し
て焼成して、未炭化炭素質繊維及び自己焼結性炭素質粉
末を炭化固結させた。そして、ざらに非酸化性雰囲気中
、500℃/時間の速度で2800℃まで加熱し、20
分保持して黒鉛化した。 これにより本実施例1の3種の1言動部材を得た。 (実施例2) 石炭系の光学的異方性ピッチから常法により得られた、
糸径10μm1糸長ざがそれぞれ0.2〜0.5mm、
3mm、5mmである3種の不融化繊維からなる未炭化
炭素質繊維を準備した。これら3種の未炭化炭素質!a
lti#を強化材として使用すること以外は上記実施例
1と同様の方法により本実施例2の3種の摺動部材を冑
た。 (比較例1〜3) 上記実施例1で強化材として使用した3種の不融化繊維
をそれぞれ550℃、1000℃で炭化し、また280
0’Cで黒鉛化して炭化炭素質at維及び黒鉛化炭素質
繊維を準備した。 上記550℃で炭化して得られた炭化炭素質繊維を強化
材として使用すること以外は上記実施例1と同様の方法
により比較例1の3種の摺動部材を得た。 また、上記1000℃で炭化して得られた炭化炭素質繊
維を強化材として使用すること以外は上記実施例1と同
様の方法により比較例2の3種の摺動部材を得た。 また、上記2800’Cで黒鉛化して得られた黒鉛化炭
素質w4帷を強化材として使用すること以外は上記実施
例1と同様の方法により比較例3の3種の摺動部材を得
た。 (比較例4〜6) 上記実施例2で強化材として使用した3種の不融化繊維
をそれぞれ550℃及び1000℃で炭化し、また28
00℃で黒鉛化して炭化炭素質繊維及び黒鉛化炭素質繊
維を準備した。 上記550℃で炭化して得られた炭化炭素質繊維を強化
材として使用すること以外は上記実施例2と同様の方法
により比較例4の3種の摺動部材を得た。 また、上記1000℃で炭化して得られた炭化炭素質繊
維を強化材として使用すること以外は上記実施例2と同
様の方法により比較例5の3種の摺動部材をi9だ。 また、上記2800℃で黒鉛化して得られた黒鉛化炭素
質繊維を強化材として使用すること以外は上記実施例2
と同様の方法により比較例6の3種の1昼勤部材を得た
。 (評価1) 上記実施例1〜2、及び比較例1〜6の摺動部材につい
て、それぞれ曲げ強度を測定した。その結果を第1表に
示す。 表からも明らかなように、未炭化炭素質繊維を強化材と
して使用した本実施例1及び2の1言動部材は、炭化又
は黒鉛化された炭素質繊維を強化材として使用した比較
例1〜6の摺動部材に比較して茗しく曲げ強度が向上し
ているのがわかる。これは、本実施例1及び2の1と動
部材では、強化材としての炭素質繊維と結合材としての
炭素質粉末とが共に未炭化なものを使用したため、これ
らは焼成工程で炭化される際、同程度の収縮率を示し、
炭素質繊維と炭素質粉末との界面密着性が高まったため
に強度が向上したと考えられる。 一方、比較例1〜6の1!II動部材では、強化材とし
て炭化又は黒鉛化された炭素質繊維を使用しているため
、結合材としての未炭化の自己焼結性炭素質粉末とは焼
成時の収縮率が異なる。このため、炭素質繊維と炭素質
粉末との間の界面密着性が低−モし、強度が低下してい
ると考えられる。 (実施例3) 石炭系の光学的等方性ピッチから常法により得られた不
融化繊維(糸径15μm、糸長0,5mm)からなる強
化材としての未炭化炭素質繊維と、中心粒径7μmのコ
ールタール系メソカーボンマイクロビーズからなる結合
材としての自己焼結性炭素質粉末とを準備した。そして
、この未炭化炭素質繊維30重量部と、自己焼結性炭素
質粉末70重量部とを均一に混合し、得られた混合物を
2tb 部材形状を有する複合体とした。 次に、この複合体を非酸化性雰囲気中、150°C/時
間の速度で1000℃まで昇温し、同温度で1時間保持
して焼成して、未炭化炭素質繊維及び自己焼結性炭素質
粉末を炭化固結させた。そして、さらに非酸化性雰囲気
中、500’C/時間の速度で2000℃まで加熱し、
20分保持して黒鉛化した。 これにより、密度1.82g/crl  (真密度2.
10/crl )、曲げ強度775Kg/cm2の本実
施例3の摺動部材が得られた。 (実施例4) 石炭系の光学的等方性ピッチから常法により得られた不
融化繊維(糸径15μm、糸長0.5mm)からなる強
化材としての未炭化炭素質繊維100重口部にタール5
00型組部を加え、常温で15分間撹拌した後、濾過し
、ざらに500単吊部のトルエンを加えて、30分間撹
拌後、症過し、N2気流中150℃で3時間乾燥した。 次いで、得られたタール処理不融化繊維30重量部に、
中心粒径7μmのコールタール系メソカーボンマイクロ
ビーズからなる結合材としての自己焼結性炭素質粉末7
0重量部を加えた後、均一に混合Lノだ。ぞ()で、上
記実施例1と同様に、所定の摺動部材形状を有する複合
体とし、炭化及び黒釘)化した。 これにより、密度1.84Q/cm3  (真密度2.
1 q/cm3 ) 、曲げ強度930KO/cm2の
本実施例4の摺動部材が得られた。 (評価2) 上記実施例3及び4で得られた摺動部材の耐摩耗性を調
べるために、油潤滑下、荷重15kg、回転数16Or
pmで60分間の摩耗試験をLFW摩隙摩粍試験機によ
り実施した。その結果を炭化炭素質繊維に液状炭素質材
料を含浸させる従来の方法により得られた市販の炭素−
炭素複合材から製造した摺動部材、及びS45鋼材から
製造した摺動部材についての結果と共に第1図に示す。 なお、相手材としては、5UJ2を使用した。 第1図に示す結果から明らかなように、本実施例3の摺
動部材の摩耗間は約200μmでおり、またタールによ
る表面処理を施した未炭化炭素質繊維を使用した実施例
4の摺動部材の摩耗間は約65μmで、これは345鋼
材からなる摺動部材の摩耗量と同程度に少なかった。一
方、従来の炭素−炭素複合材からなる摺動部材の摩耗量
は1100μm以上であった。 したがって、本実施例にかかる摺動部材は耐摩耗性に優
れていることがわかる。これは、本実施例3の摺動部材
では、強化材としての炭素質繊維と結合材としての炭素
質粉末とが共に未炭化なものを使用したため、これらは
炭化される際、同程度の物理的性質(強度、収縮率等)
を示し、炭素質繊維と炭素質粉末との界面密着性が高ま
ったためと考えられる。また、実施例4の摺動部材では
、タールによって表面処理を施した未炭化炭素質繊維を
使用したため、この炭素質繊維の濡れ性が高まり、これ
により炭素質繊維と炭素質粉末との界面密着性がさらに
向上したためと考えられる。 一方、従来の炭素−炭素複合材よりなる摺動部材では、
結合材として使用された液状炭素質材料が焼成時に発生
する揮発成分を起因とする気孔により強化材と結合材と
の間の界面密着性が低下する。また、強化材として炭化
又は黒鉛化された炭素質繊維を使用し、結合材として未
炭化の液状炭素質材料を使用しており、これらは焼成時
の物理的性71(強度、収縮率等)が異なるため、強化
材と結合材との間の界面密着性が低下したためと考えら
れる。 (評価3) また、−上記実施例3及び4で(qられた摺動部材につ
いで、油潤滑モ、回転数iooorpmで荷車を2分毎
に25kgずつ上昇させた場合の焼付nU巾を機械試験
所式摩擦摩耗試験機により測定した。その結果を市販の
従来炭素−炭素複合材から製造した摺動部材についての
結果と共に第2図に示す。なお、相手材としては、5U
J2を使用した。 第2図に示す結果から明らかなように、本実施例3及び
4の摺動部材は、従来の炭素−・炭素複合材からなる摺
動部材と比較して、焼付荷重が大きく、摩欺摩耗特性に
優れていることがわかる。 なお、第3図に本実施例4の1ご動部材の断面における
200倍の粒子構造を表す参考写真を示す。 図中、白く見える部分は炭素質繊維で、黒く見える部分
は炭素質粉末の結合部分である。なお、黒く見える部分
の一部には空隙が含まれるが、その量は少ない。 また、第4図に重膜の従来炭素−炭素繊維複合材よりな
る摺動部材の断面における200(illiの粒子構造
を表す参考写真を示す。図中、右側の白く丸状に見える
部分は炭素繊維の横断面を示し、左側の白く棒状に見え
る部分は、炭素繊維の縦断面を示す。また、図中、黒く
見える部分は空隙を示す。 (実施例5) 上記実施例4で得られたタール処理不融化繊維10.2
0.30.40.50重量部に中心粒径7μmのコール
タール系メソカーボンマイクロビーズからなる自己焼結
性炭素質粉末90.80.70.60.50重置部をそ
れぞれ加え、上記実施例4と同様の方法により本実施例
5の5種のi誤動部材を得た。 (実施例6〉 上記実施例4の光学的等方性ピッチの代りに光学的異方
性ピッチを使用し、上記実施例4と同様の方法によりタ
ール処理不融化1維をIJ、このタール処理不融化繊維
10,20.30重量部に中心粒径7μmのコールター
ル系メソカーボンマイクロビーズからなる自己焼結性炭
素質粉末90.80.7Offlffi部をそれぞれ加
え、上記実施例4と同様の方法により本実施例6の3種
の摺動部材をjりた。 (評価4) 上記実施例5及び6で得られた各摺動部材について、そ
れぞれ密度及び曲げ強度を測定した。その結果を第2表
に示す。 光学的等方性ピッチから得られた光学的等方性の不融化
繊維を使用した実施例5の各摺動部材、及び光学的異方
性ピッチから得られた光学的異方性の不融化繊維を使用
した実施例6の各1囲動部材は、ともに繊維添加量が少
なくなるほど密度及び曲げ強度が向上している。 (評価5) 上記実施例5及び6で得られた各摺動部材の耐摩耗性を
調べるために、油潤滑下、荷重15kg、回転数16O
rpmで15分間の摩耗試験をLFW I?IQ摩耗試
験機により実施した。その結果を第5図に示す。なあ、
相手材としては、5UJ2を使用した。 この結果、光学的等方性の不融化繊維を使用した実施例
5の各摺動部材は、光学的異方性の不融化繊維を使用し
た実施例6の各摺動部材より耐摩耗性に優れていること
がわかる。 (iT価6) 上記実施例5の光学的等方性の不融化繊維の添加Fdが
30重組部である1囲動部材と、上記実施例6の光学的
異方性の不融化m維の添加量が10重量部で必る摺動部
材について、上記評価5の摩耗試験の条件を種々変更し
て耐摩耗性を調べた。 試験時間を変化させ、他の条件は上記評価5と同じ条件
で調べた結果を第6図に示す。 また荷重を変化させ、他の条件は上記評価5と同じ条件
で調べた結果を第7図に示覆。 さらにすべり速度を変化させ、他の条件は上記評価5と
同じ条件で調べた結果を第8図に示す。 これらの結果から、光学的等方性の不融化繊維を使用し
た実施例5の摺動部材は、光学的異方性の不融化繊維を
使用した実施例6の摺動部材と比較して耐摩耗性に優れ
ていることがわかる。また、光学的等方性の不融化繊維
を使用した実施例5の摺動部材の摩耗特性は、すべり速
度及び試験時間による影響が小さく、荷重によって摩耗
聞が決まる荷重依存型でおることがわかる。 (評価7) 上記実施例5及び6で)qられた各摺動部材について、
油潤滑下、回転数”+ooorpmで荷重を2分毎に2
5kClずつ上昇させた場合の焼付荷重を機械試験所式
摩家摩耗試験機により測定した。 その結果を焼結が発生した時の摩擦係数の値とともに第
9図に示す。なお、相手材としては、5UJ2を使用し
た。 この結果、光学的異方性の不融化IIIを使用した実施
例6の各摺動部材は、光学的等方性の不融化繊維を使用
した実施例5の各摺動部材と比較して耐焼付性に優れて
いることがわかる。 (評価8) 上記実施例5の光学的等方性の不融化繊維の添加量が3
0重量部である)J動部材と、上記実施例6の光学的異
方性の不融化繊維の添加量が10重足部である摺動部材
について、油無潤滑下、荷重を2分毎に10kClずつ
上昇させ、すべり速度を種々変更した場合の焼付荷車を
上記評価7と同様の試験機により測定した。その結果を
第10図に承り−0 この結果、すべり速度40Cm/秒以下で、光学的異方
性の不融化繊維を使用した実施例6の摺動部材は、光学
的等方性の不融化繊維を使用した実施例5の摺動部材よ
り耐焼付性に優れていることがわかる。 [発明の効果] 以上詳述したように、本発明の摺動部材は、焼結前の複
合体を未炭化炭素質繊維と、該未炭化炭素質繊維を埋設
した自己焼結性を有し未炭化な炭素質粉末とで構成して
いるので、この複合体を焼結する場合、未炭化同士の炭
素質繊維と炭素質粉末とが同程度に収縮して結合する。 したがって、これらの界面密着性が高まり、摺動部材の
強度及び耐摩耗性が向上する。 また、本発明の摺動部材における、結合材としての自己
焼結性炭素質粉末は、液状炭素質材料からなる結合材の
使用を不要とする。したがって、液状結合材の使用によ
り発生する気孔を充填するために、含浸、焼成を繰返す
必要がなく、本発明の摺動部材は安価に製造することが
できる。 ざらに、強化材としての未炭化炭素質繊維をタル、ピッ
チ、有機高分子などの粘結成分を含有する材料により表
面処理した場合には、該炭素質繊維の界面の濡れ性が高
まり、これにより結合材としての炭素質粉末との馴染み
性が高まるので、これら炭素質繊維と炭素質粉末との界
面密着性がさらに高まり、強度及び耐摩耗性がざらに向
上する。
[Industrial Application Field] The present invention has high strength, excellent heat resistance, wear resistance, and oxidation resistance, and is suitable for use in brake shoes and brake linings for aircraft and race vehicles, high-temperature bearings, etc. Related to sliding members. [Prior Art] Sliding members used as brake materials for aircraft, race vehicles, etc. are particularly required to have heat resistance and wear resistance. In recent years, snow moving members made of carbon fiber-reinforced carbon have been provided as snow moving members to meet this demand. This carbon fiber-reinforced carbon is, for example, carbon fibers that are carbonized or graphitized and subjected to surface treatment such as oxidation treatment, and liquid carbonaceous material as a binder such as tar, pitch, or thermosetting resin. It is manufactured by impregnating the material, firing it in an inert atmosphere, and graphitizing it if necessary (Japanese Unexamined Patent Publication No. 63-206351). [Problems to be Solved by the Invention] However, in the carbon fiber-reinforced carbon produced as described above, a liquid carbonaceous material is used as a binder, and therefore, during the firing process, decomposition of this liquid binder causes The volatile components generated form pores. Therefore, the interfacial adhesion between the reinforcing material and the binder is reduced, and the product has a low density, resulting in poor strength and wear resistance. In order to solve the above problem, conventionally, the porosity has been reduced by repeatedly filling the pores with a liquid impregnating material as a binder and firing the material again. However, despite requiring such a complicated process, the product produced by 1q is still porous.
Moreover, the complexity of the manufacturing process has led to higher costs. The present invention has been made in view of these problems, and it is an object of the present invention to provide a sliding member that has high strength, excellent friction and wear characteristics, and can be manufactured at low cost. [Means for Solving the Problems] One behavior member of the present invention has a predetermined shape, includes uncarbonized carbon fibers, and the unexpanded carbon fibers! It is characterized by consisting of a sintered body obtained by sintering a composite body consisting of a carbonaceous powder having self-sintering properties in which Li fibers are embedded. The shape of the sliding member is not particularly limited, and may be a predetermined shape such as a brake shoe, a brake lining, or a bearing. The above-mentioned uncarbonized carbonaceous fiber is the! of the present invention! It constitutes a reinforcing material for the dynamic member. The raw material for this uncarbonized carbon fiber is P
It can be AN (poly7crylonitrile) type, rayon type, pitch type, etc., and is not particularly limited. Here, the uncarbonized carbonaceous fiber refers to a carbonaceous fiber that has not been subjected to normal carbonization treatment. Specifically, fibers using raw material pitch are fibers as spun or fibers made by infusible spun fibers at a temperature not exceeding 550°C.For polymeric fibers such as PAN, after the decomposition process is completed, graphite It refers to the fibers of Kasuri Moe. This type of carbonaceous fiber can be made, for example, by spinning coal-based or petroleum-based raw material bits (q-pitch W4 fiber), or infusible synthetic fiber M obtained by making it infusible. Spinning and infusibility of this raw material pitch may be carried out according to a conventional method, and the conditions are not particularly limited.Usually, pitch 11iwL is produced by feeding raw material pitch to a spinning machine and heating it to about 300 to 400'C. It can be obtained by extruding it from a nozzle under pressure with an active gas.In addition, such pitch fibers are further heated to 0.5°C at about 150 to 500°C in an oxidizing atmosphere.
The fibers can be made into infusible fibers by holding for about 5 hours. The raw material pitch may be optically isotropic or optically anisotropic. Isotropic uncarbonized carbon fibers obtained from optically isotropic raw material pitch have an amorphous structure that makes them difficult to scrape. The wear resistance of the parts is particularly excellent. In addition, anisotropic uncarbonized carbonaceous fibers obtained from optically anisotropic raw material pitch have a layered structure and are easily peeled off. The sliding member has particularly excellent seizure resistance. The fiber length is not limited to short fibers or long fibers. However, in the case of short fibers, those having a diameter of 0.01 to 5 Qmm can be used. Particularly preferred is one having a diameter of 0.03 to 10 mm in terms of ease of mixing and aspect ratio. If the length is too long, the fibers will become entangled with each other, resulting in poor dispersibility, resulting in poor isotropy of the product properties, and if it is shorter than 0.01 mm, the strength of the product will drop rapidly, which is undesirable. Further, the fiber diameter is preferably about 5 to 25 μm. In addition, these fibers can also be used as nonwoven fabrics or coated fabrics. Preferably, the uncarbonized carbon fibers are further surface-treated with a material containing a caking component such as tar, pitch, or organic polymer to improve compatibility with the binder. This surface treatment consists of 1100 carbon fibers and 100
~1000 IJl1M parts 1'f17) The material containing the caking component is mixed with 7JO, stirred with Ii2, washed with several solvents, and then dried. The tar and pitch used for this surface treatment may be either coal-based or petroleum-based. When using pitch, 140
Tar is more preferable as the treatment material since heating to about ~170'C is required, and coal-based materials are more preferable from the viewpoint of carbonization yield in the subsequent carbonization and graphitization steps. . Examples of the organic polymer include phenol resin, polyvinyl chloride, polyvinyl alcohol, and the like. The organic solvent used for the above-mentioned cleaning may be an aromatic solvent such as toluene or xylene, and the organic solvent may be 100 to 100 parts per 100 parts of the mixture of fibers and adhesive component-containing material.
Add about 1000 parts of single ω and stir and wash. This washing removes light oils containing many volatile components. The uncarbonized carbonaceous fibers that have been washed are dried under conditions such as heating and/or reduced pressure in a non-oxidizing atmosphere such as N2 or argon. The drying process is not limited to these methods as long as the organic solvent used for washing is removed. Furthermore, the surface-treated carbonized carbonaceous fibers that have been dried are subjected to a dispersion treatment, if necessary. However, since the dried fibers may be lumped or aggregated, in such a case, dispersion is carried out by any means such as a conventional powder mill, an atomizer, a bulbarizer, or the like. The carbonaceous powder constitutes the binding material of the sliding member of the present invention. This carbonaceous powder has self-sintering properties and is uncarbonized. The self-sintering carbonaceous powder may be either petroleum-based or coal-based, and specific examples include mesocarbon microbiz, bulk mesophase pulverized products, low-temperature calcined coke crushed crystals, etc. be done. Among these, petroleum-based and coal-based mesocarbon microbeads are preferred from the viewpoint of particle size, uniformity of composition, stability, etc., and coal-based mesocarbon microbeads are more preferred from the viewpoint of carbonization yield. The self-sintering carbonaceous powder has a particle size of 30
Preferably, the thickness is less than μm and the β-resin thickness is about 3 to 50%. The uncarbonized carbonaceous fiber and the self-sintering carbonaceous powder are mixed and molded to form a composite. The mixing means at this time is not particularly limited, but it is preferable to mix uniformly in order to achieve uniform strength and wear resistance. In addition, the blending ratio of carbonaceous powder and carbonaceous fiber is 1
00 weight is about 2 to 70 parts by weight of the latter,
More preferably, the former is 10011 parts to the latter 10 to 5 parts.
Approximately 0,000 copies. The above-mentioned molding can also be carried out by a conventional method, usually 1 to 1
It may be formed into a predetermined shape under pressure of approximately Q t On/Cm2. Alternatively, molding may be performed by CIP method or the like. The molding can be carried out at room temperature or under heating up to about 500 weight in an inert atmosphere. The above composite body is sintered to become the sliding member of the present invention. Note that sintering here refers to carbonizing and solidifying uncarbonized carbon fibers and self-sintering carbonaceous powder by firing at a temperature of about 700 to 1,300°C, and furthermore, sintering this carbonized composite material in a graphitization furnace. It also includes graphitization at about 3000°C. The above-mentioned carbonization is usually carried out at a rate of about 0.1 to 300'C/hour in a non-oxidizing atmosphere from room temperature to 13
It is sufficient to raise the temperature to about 00'C and wait for about 5 to 10 hours at 0°C. The conditions for graphitization are also not particularly limited.
Raise the temperature to about 500-3000'C, and
All you have to do is wait about 10 hours. When graphitized,
Graphite crystals grow sufficiently and are oriented in an orderly manner.
This further improves the density, strength, wear resistance, etc. of the product. [Function] In one behavior member of the present invention, the composite before sintering is made of uncarbonized carbonaceous fibers and uncarbonized carbonaceous powder with self-sintering properties in which uncarbonized carbonaceous fibers are embedded. It consists of Therefore, when this composite is sintered and covered, since the carbonaceous powder as a binder has self-sintering properties, no other liquid carbonaceous material is required as a binder. Since the carbonaceous fibers used as reinforcing materials are uncarbonized, the uncarbonized carbonaceous fibers and the uncarbonized carbonaceous powder having self-sintering properties have the same physical properties when carbonized. properties (strength, shrinkage rate, etc.). Therefore, the interfacial adhesion between these carbonaceous fibers and the carbonaceous powder is improved, and therefore high strength and excellent wear resistance can be obtained. Furthermore, when the surface of the uncarbonized carbonaceous fibers is treated with a material containing a caking component such as tar, pitch, or organic polymer, the wettability of the interface of the carbonaceous fibers increases, and as a result, it can be used as a binder. Since the compatibility with the carbonaceous powder increases, the interfacial adhesion between these carbonaceous fibers and the carbonaceous powder is greatly improved. [Example] The present invention will be described in detail below. (Example 1) Obtained from coal-based optically isotropic pitch by a conventional method,
Thread diameter: 15 μm, thread length: 0.2 to 0.5 mm,
Uncarbonized carbonaceous fibers consisting of three types of infusible fibers of 3 mm and 5 mm were prepared. These three types of unexpanded carbonaceous materials as reinforcing materials i! Each fiber weighs 100 parts, with a center particle size of 7.
After adding 900 μm of self-sintering carbonaceous powder as a binder consisting of coal tar-based mesocarbon microbeads, the resulting mixture was mixed uniformly and
A composite body having a predetermined sliding member shape was obtained by molding at a molding pressure of /Cm2. Next, this composite was heated to 1,000°C at a rate of 150°C/hour in a non-oxidizing atmosphere, held at the same temperature for 1 hour, and fired to form uncarbonized carbon fibers and self-sintering carbon. The solid powder was carbonized and solidified. Then, it was heated to 2800°C at a rate of 500°C/hour in a roughly non-oxidizing atmosphere.
It was graphitized by holding for a minute. As a result, three types of single behavior members of Example 1 were obtained. (Example 2) Obtained from coal-based optically anisotropic pitch by a conventional method,
Thread diameter: 10 μm, thread length: 0.2 to 0.5 mm,
Uncarbonized carbonaceous fibers consisting of three types of infusible fibers of 3 mm and 5 mm were prepared. These three types of uncarbonized carbon substances! a
The three types of sliding members of Example 2 were removed in the same manner as in Example 1 above, except that lti# was used as the reinforcing material. (Comparative Examples 1 to 3) The three types of infusible fibers used as reinforcing materials in Example 1 were carbonized at 550°C and 1000°C, respectively, and
Graphitization was performed at 0'C to prepare carbonized carbon fibers and graphitized carbon fibers. Three sliding members of Comparative Example 1 were obtained in the same manner as in Example 1, except that the carbonized carbonaceous fibers obtained by carbonization at 550° C. were used as reinforcing materials. In addition, three types of sliding members of Comparative Example 2 were obtained in the same manner as in Example 1, except that the carbonized carbon fibers obtained by carbonization at 1000° C. were used as reinforcing materials. In addition, three types of sliding members of Comparative Example 3 were obtained in the same manner as in Example 1 above, except that the graphitized carbonaceous W4 sheet obtained by graphitizing at 2800'C was used as a reinforcing material. . (Comparative Examples 4 to 6) The three types of infusible fibers used as reinforcing materials in Example 2 were carbonized at 550°C and 1000°C, respectively, and
Carbonized carbonaceous fibers and graphitized carbonaceous fibers were prepared by graphitizing at 00°C. Three types of sliding members of Comparative Example 4 were obtained in the same manner as in Example 2, except that the carbonized carbonaceous fiber obtained by carbonization at 550° C. was used as a reinforcing material. In addition, the three types of sliding members of Comparative Example 5 were prepared using the same method as in Example 2, except that the carbonized carbon fiber obtained by carbonization at 1000° C. was used as a reinforcing material. In addition, the above Example 2 except that the graphitized carbonaceous fiber obtained by graphitizing at 2800°C was used as a reinforcing material.
Three types of one-day shift members of Comparative Example 6 were obtained in the same manner as above. (Evaluation 1) The bending strength of each of the sliding members of Examples 1 to 2 and Comparative Examples 1 to 6 was measured. The results are shown in Table 1. As is clear from the table, the behavior members of Examples 1 and 2 using uncarbonized carbon fibers as reinforcing materials are different from those of Comparative Examples 1 to 2 using carbonized or graphitized carbon fibers as reinforcing materials. It can be seen that the bending strength is significantly improved compared to the sliding member No. 6. This is because in 1 and the moving member of Examples 1 and 2, both the carbonaceous fiber as a reinforcing material and the carbonaceous powder as a binding material were uncarbonized, so they were carbonized in the firing process. shows the same degree of shrinkage,
It is thought that the strength was improved due to the increased interfacial adhesion between the carbonaceous fiber and the carbonaceous powder. On the other hand, 1 of Comparative Examples 1 to 6! Since the II dynamic member uses carbonized or graphitized carbonaceous fibers as a reinforcing material, the shrinkage rate during firing is different from that of uncarbonized self-sintering carbonaceous powder as a binding material. For this reason, the interfacial adhesion between the carbonaceous fiber and the carbonaceous powder is considered to be low, resulting in a decrease in strength. (Example 3) Uncarbonized carbonaceous fibers as a reinforcing material consisting of infusible fibers (thread diameter 15 μm, thread length 0.5 mm) obtained by a conventional method from coal-based optically isotropic pitch, and a central grain A self-sintering carbonaceous powder as a binder consisting of coal tar-based mesocarbon microbeads with a diameter of 7 μm was prepared. Then, 30 parts by weight of this uncarbonized carbonaceous fiber and 70 parts by weight of self-sintering carbonaceous powder were uniformly mixed, and the resulting mixture was made into a composite having a 2 tb member shape. Next, this composite was heated to 1000°C at a rate of 150°C/hour in a non-oxidizing atmosphere, and was fired by holding at the same temperature for 1 hour to form uncarbonized carbon fibers and self-sintering properties. The carbonaceous powder was carbonized and consolidated. Then, further heated to 2000°C at a rate of 500'C/hour in a non-oxidizing atmosphere,
It was held for 20 minutes and graphitized. As a result, the density is 1.82 g/crl (true density 2.
10/crl) and a bending strength of 775 Kg/cm2, the sliding member of Example 3 was obtained. (Example 4) 100 weight portions of uncarbonized carbonaceous fibers as a reinforcing material made of infusible fibers (thread diameter 15 μm, thread length 0.5 mm) obtained from coal-based optically isotropic pitch by a conventional method tar 5
Type 00 was added, stirred at room temperature for 15 minutes, filtered, added 500 parts of toluene to a colander, stirred for 30 minutes, filtered out, and dried at 150°C in a N2 stream for 3 hours. Next, to 30 parts by weight of the obtained tar-treated infusible fibers,
Self-sintering carbonaceous powder 7 as a binder consisting of coal tar-based mesocarbon microbeads with a center particle diameter of 7 μm
After adding 0 parts by weight, mix evenly. Then, in the same manner as in Example 1 above, a composite body having a predetermined sliding member shape was prepared, and then carbonized and blackened into black nails). As a result, the density is 1.84Q/cm3 (true density 2.
1 q/cm3) and a bending strength of 930 KO/cm2, the sliding member of Example 4 was obtained. (Evaluation 2) In order to investigate the wear resistance of the sliding members obtained in Examples 3 and 4 above, under oil lubrication, a load of 15 kg, a rotation speed of 16 Or
A 60 minute wear test at pm was performed on an LFW friction wear tester. The results were compared to commercially available carbon fibers obtained by the conventional method of impregnating carbonized carbonaceous fibers with liquid carbonaceous material.
The results are shown in FIG. 1 together with the results for a sliding member manufactured from a carbon composite material and a sliding member manufactured from S45 steel. Note that 5UJ2 was used as the mating material. As is clear from the results shown in FIG. 1, the wear distance of the sliding member of Example 3 was about 200 μm, and the sliding member of Example 4 using uncarbonized carbon fibers surface-treated with tar. The wear distance of the moving member was approximately 65 μm, which was as small as the amount of wear of the sliding member made of 345 steel. On the other hand, the amount of wear of a sliding member made of a conventional carbon-carbon composite material was 1100 μm or more. Therefore, it can be seen that the sliding member according to this example has excellent wear resistance. This is because in the sliding member of Example 3, the carbonaceous fibers as the reinforcing material and the carbonaceous powder as the binding material were both uncarbonized, so when they are carbonized, they have the same degree of physical properties. physical properties (strength, shrinkage rate, etc.)
This is thought to be due to the increased interfacial adhesion between the carbonaceous fiber and the carbonaceous powder. In addition, in the sliding member of Example 4, since uncarbonized carbonaceous fibers that were surface-treated with tar were used, the wettability of the carbonaceous fibers was increased, and this resulted in the interfacial adhesion between the carbonaceous fibers and the carbonaceous powder. This is thought to be due to further improvement in performance. On the other hand, with conventional sliding members made of carbon-carbon composite materials,
The interfacial adhesion between the reinforcing material and the binding material decreases due to pores caused by volatile components generated when the liquid carbonaceous material used as the binding material is fired. In addition, carbonized or graphitized carbon fibers are used as reinforcing materials, and uncarbonized liquid carbonaceous materials are used as binding materials. It is thought that this is because the interfacial adhesion between the reinforcing material and the binding material decreased due to the difference in the bonding material. (Evaluation 3) In addition, - In Examples 3 and 4 above, the seizing nU width when the cart was raised by 25 kg every 2 minutes at an oil-lubricated motor and a rotation speed of iooorpm was Measurements were made using a laboratory-type friction and wear tester.The results are shown in Figure 2 together with the results for sliding members manufactured from conventional carbon-carbon composite materials on the market.The mating material was 5U.
J2 was used. As is clear from the results shown in FIG. 2, the sliding members of Examples 3 and 4 had a higher seizure load and wear due to abrasion than conventional sliding members made of carbon-carbon composite materials. It can be seen that it has excellent characteristics. Incidentally, FIG. 3 shows a reference photograph showing the grain structure 200 times larger in the cross section of the single motion member of Example 4. In the figure, the white part is the carbon fiber, and the black part is the bonded part of the carbon powder. Note that some of the parts that appear black include voids, but the amount of voids is small. In addition, Fig. 4 shows a reference photograph showing the particle structure of 200 (illi) in a cross section of a sliding member made of a conventional heavy membrane carbon-carbon fiber composite material. The cross section of the fiber is shown, and the white rod-shaped part on the left side shows the longitudinal cross section of the carbon fiber. In addition, the black part in the figure shows the voids. (Example 5) The part that looks black in the figure shows the voids. Tar-treated infusible fiber 10.2
To 0.30.40.50 parts by weight, 90.80.70.60.50 parts of self-sintering carbonaceous powder made of coal tar-based mesocarbon microbeads with a center particle diameter of 7 μm were added, respectively, to produce the above example. Five types of i-error members of Example 5 were obtained by the same method as in Example 4. (Example 6) An optically anisotropic pitch was used instead of the optically isotropic pitch of the above Example 4, and the tar-treated infusible 1 fiber was subjected to IJ in the same manner as the above Example 4. The same method as in Example 4 was carried out by adding 90.80.7 parts of self-sintering carbonaceous powder consisting of coal tar-based mesocarbon microbeads with a center particle diameter of 7 μm to 10 and 20.30 parts by weight of infusible fibers, respectively. The three types of sliding members of this Example 6 were evaluated. (Evaluation 4) The density and bending strength of each of the sliding members obtained in Examples 5 and 6 above were measured. Table 2 shows each sliding member of Example 5 using the optically isotropic infusible fiber obtained from the optically isotropic pitch, and the optical anisotropy obtained from the optically anisotropic pitch. In each of the surrounding members of Example 6 using directional infusible fibers, the density and bending strength improved as the amount of added fiber decreased. (Evaluation 5) In order to investigate the wear resistance of each sliding member, under oil lubrication, the load was 15 kg, and the rotation speed was 16 O.
LFW I? wear test for 15 minutes at rpm. It was conducted using an IQ abrasion tester. The results are shown in FIG. Hey,
5UJ2 was used as the mating material. As a result, each sliding member of Example 5 using optically isotropic infusible fibers had better wear resistance than each sliding member of Example 6 using optically anisotropic infusible fibers. It turns out that it is excellent. (iT value 6) 1 surrounding member in which the addition Fd of the optically isotropic infusible fiber of Example 5 is 30 folds and the optically anisotropic infusible m fiber of Example 6 above. The wear resistance of the sliding member, which requires an addition amount of 10 parts by weight, was examined by variously changing the conditions of the wear test in Evaluation 5 above. FIG. 6 shows the results of an investigation conducted under the same conditions as in Evaluation 5 above, except that the test time was varied. Figure 7 shows the results of an investigation conducted under the same conditions as in Evaluation 5 above, while changing the load. FIG. 8 shows the results of an investigation conducted under the same conditions as in Evaluation 5 above, except that the sliding speed was further varied. From these results, the sliding member of Example 5 using optically isotropic infusible fibers has higher durability than the sliding member of Example 6 using optically anisotropic infusible fibers. It can be seen that it has excellent abrasion resistance. In addition, it can be seen that the wear characteristics of the sliding member of Example 5, which uses optically isotropic infusible fibers, are less affected by the sliding speed and test time, and are load-dependent, with the wear length determined by the load. . (Evaluation 7) Regarding each sliding member q in Examples 5 and 6 above,
Under oil lubrication, load is applied every 2 minutes at rotation speed ”+ooorpm.
The seizure load was measured when the load was increased by 5 kCl using a mechanical abrasion testing machine. The results are shown in FIG. 9 together with the value of the friction coefficient when sintering occurred. Note that 5UJ2 was used as the mating material. As a result, the sliding members of Example 6 using optically anisotropic infusible fibers were more durable than the sliding members of Example 5 using optically isotropic infusible fibers. It can be seen that it has excellent seizability. (Evaluation 8) The amount of optically isotropic infusible fiber added in Example 5 was 3.
For the J moving member in which the addition amount of the optically anisotropic infusible fiber of Example 6 was 10 parts by weight, the load was applied every 2 minutes without oil lubrication. Seizure carts were measured using the same testing machine as in Evaluation 7 above when the sliding speed was varied by increasing the temperature by 10 kCl. The results are shown in FIG. It can be seen that this sliding member has better seizure resistance than the sliding member of Example 5 using fibers. [Effects of the Invention] As detailed above, the sliding member of the present invention has a self-sintering property in which the composite before sintering is made of uncarbonized carbon fibers and the uncarbonized carbon fibers are embedded. Since it is composed of uncarbonized carbonaceous powder, when this composite is sintered, the uncarbonized carbonaceous fibers and carbonaceous powder shrink to the same extent and are combined. Therefore, the interfacial adhesion between them is increased, and the strength and wear resistance of the sliding member are improved. Furthermore, the self-sintering carbonaceous powder used as the binding material in the sliding member of the present invention eliminates the need for a binding material made of a liquid carbonaceous material. Therefore, there is no need to repeat impregnation and firing in order to fill the pores generated by using the liquid binder, and the sliding member of the present invention can be manufactured at low cost. In general, when the surface of uncarbonized carbonaceous fibers used as a reinforcing material is treated with a material containing a cohesive component such as tar, pitch, or organic polymer, the wettability of the interface of the carbonaceous fibers increases and this This increases the compatibility with the carbonaceous powder as a binder, further increasing the interfacial adhesion between the carbonaceous fibers and the carbonaceous powder, and greatly improving the strength and abrasion resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本実施例3及び4の摺動部材、市販の従来炭
素−炭素繊維複合材よりなる摺動部材、並びに鋼材より
なる1昼勤部材についての耐摩耗性試験の結果を示すグ
ラフである。 第2図は、本実施例1及び2の摺動部材、並びに市販の
従来炭素−炭素繊維複合材よりなる1言動部材について
の焼付は試験の結果を示すグラフでおる。 第3図は、本実施例4の摺動部材の断面における200
倍の粒子構造を表す参考写真を示す。 第4図は、重膜の従来炭素−炭素繊維複合材よりなる1
言動部材の断面における200倍の粒子構造を表す参考
写真を示す。 第5図は、本実施例5及び6の摺動部材についての耐摩
耗性試験の結果を示すグラフである。 第6図は、本実施例5及び6の1言動部材について試験
時間を変化させたときの耐摩耗性試験の結果を示すグラ
フである。 第7図は、本実施例5及び6の摺動部材について付加荷
重を変化させたときの耐摩耗性試験の結果を示すグラフ
である。 第8図は、本実施例5及び6の18動部材についてすべ
り速度を変化させたときの耐摩耗性試験の結果を示すグ
ラフでおる。 第9図は、本実施例5及び6の摺動部材についての焼付
は試験の結果を示すグラフである。 第10図は、本実施例5及び6の1言動部材についてす
べり速度を変化ざぜたときの焼付り試験の結果を示すグ
ラフである。 特許出願人   トヨタ自動車株式会社同     大
阪瓦斯株式会社 代理人    弁理士 大川 宏 第1図 第5図 第8図 4片 ミ I[11111里 手続補正書 く方式) 平成2年3月6 日 特訂庁長官 吉  1) 文  毅  殿 平成1年特訂願第305281@ 2、fe明の名称 摺動部材 3、補1Fをする者 事件どの関係 (特許出願人) (i所 愛知県豊田市トヨタ町1番地 氏名 (320)トElり自動中株式会社代表者   
佐  々  木  紫  部イ1所 大阪府大阪市中央
区平野町四丁口1番2@氏名 (028)大阪瓦斯株式
会社 代表考    大  西  正  文 4、代理人 〒450愛知県名古屋市中村区名駅3丁目3番の45、
補正命令の日付 平成2年2月13日 (Ja送日;平成2年2月20日) 6、補正の対象 明細書の発明の詳細な説明の閏、及び明細書の
FIG. 1 is a graph showing the results of wear resistance tests on the sliding members of Examples 3 and 4, commercially available sliding members made of conventional carbon-carbon fiber composite materials, and day shift members made of steel. It is. FIG. 2 is a graph showing the seizure test results for the sliding members of Examples 1 and 2 and a commercially available conventional carbon-carbon fiber composite material. FIG. 3 shows a 200 mm cross section of the sliding member of Example 4.
A reference photo showing the double grain structure is shown. Figure 4 shows 1 made of a heavy-layer conventional carbon-carbon fiber composite material.
A reference photograph showing the particle structure 200 times larger in the cross section of the speech and behavior member is shown. FIG. 5 is a graph showing the results of the wear resistance test for the sliding members of Examples 5 and 6. FIG. 6 is a graph showing the results of the abrasion resistance test when the test time was varied for the single behavior members of Examples 5 and 6. FIG. 7 is a graph showing the results of a wear resistance test when the applied load was varied for the sliding members of Examples 5 and 6. FIG. 8 is a graph showing the results of the wear resistance test when the sliding speed was varied for the 18 moving members of Examples 5 and 6. FIG. 9 is a graph showing the results of seizure tests for the sliding members of Examples 5 and 6. FIG. 10 is a graph showing the results of a seizure test when the sliding speed was varied for one speech member of Examples 5 and 6. Patent Applicant Toyota Motor Corporation Osaka Gas Co., Ltd. Agent Patent Attorney Hiroshi Okawa Figure 1 Figure 5 Figure 8 Figure 8 4 Pieces I [11111 Procedure Amendment Form] March 6, 1990 Office of Special Correction Commissioner Yoshi 1) Moon Takeshi 1999 special revision application No. 305281 @ 2, fe Ming's name sliding member 3, supplementary 1F case and relationship (patent applicant) (i location 1 Toyota-cho, Toyota City, Aichi Prefecture) Address Name (320) Representative of TOELI Automatic Chuo Co., Ltd.
Murasaki Sasaki Department 1 1-2, Hirano-cho 4-chome, Chuo-ku, Osaka, Osaka Prefecture @Name (028) Osaka Gas Co., Ltd. Representative: Masafumi Ohnishi 4, Agent Address: 450 Name, Nakamura-ku, Nagoya, Aichi Prefecture Station 3-chome 3-45,
Date of amendment order: February 13, 1990 (Japanese date: February 20, 1990)

【図面の簡単な説明】[Brief explanation of drawings]

7、補正の内容 (1)明細書の第21頁第1行にある「参考]を削除す
る。 (2)明m書の第21頁第8行にある「宿イ」を削除す
る。 (3〉明細書の第28頁第11行にある「参考」を削除
する。 (4)明細内の第28頁第14 trにある「参考」を
削除する。 以」二
7. Contents of the amendment (1) Delete "Reference" in the first line of page 21 of the specification. (2) Delete "Sukui" in line 8 of page 21 of the Memorandum. (3> Delete "Reference" on page 28, line 11 of the specification. (4) Delete "reference" on page 28, line 14 tr of the specification.

Claims (1)

【特許請求の範囲】[Claims] (1)所定の形状をもち、未炭化炭素質繊維と、該未炭
化炭素質繊維を埋設した自己焼結性を有する炭素質粉末
とからなる複合体を焼結することによって得られる焼結
体からなることを特徴とする摺動部材。
(1) A sintered body having a predetermined shape and obtained by sintering a composite consisting of uncarbonized carbonaceous fibers and carbonaceous powder with self-sintering properties in which the uncarbonized carbonaceous fibers are embedded. A sliding member characterized by comprising:
JP1305281A 1989-01-17 1989-11-24 Sliding member Expired - Lifetime JPH068213B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1305281A JPH068213B2 (en) 1989-01-17 1989-11-24 Sliding member
EP90300422A EP0379328B1 (en) 1989-01-17 1990-01-15 Carbon fiber reinforced carbon
DE1990629209 DE69029209T2 (en) 1989-01-17 1990-01-15 Carbon fiber reinforced carbon
US07/892,481 US5202293A (en) 1989-01-17 1992-06-03 Carbon fiber reinforced carbon

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP913289 1989-01-17
JP1-9132 1989-01-17
JP1305281A JPH068213B2 (en) 1989-01-17 1989-11-24 Sliding member

Publications (2)

Publication Number Publication Date
JPH02275759A true JPH02275759A (en) 1990-11-09
JPH068213B2 JPH068213B2 (en) 1994-02-02

Family

ID=26343794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1305281A Expired - Lifetime JPH068213B2 (en) 1989-01-17 1989-11-24 Sliding member

Country Status (1)

Country Link
JP (1) JPH068213B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200928A (en) * 1992-11-05 1994-07-19 Imi Marston Ltd Plain bearing
WO2018096908A1 (en) * 2016-11-28 2018-05-31 ダイキン工業株式会社 Resin composition
CN115256927A (en) * 2022-09-30 2022-11-01 北京壹碳氢源科技有限公司 Carbon/carbon composite thermal insulation material prepared by 3D printing and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111963A (en) * 1984-11-05 1986-05-30 出光興産株式会社 Manufacture of carbon formed body
JPS62226860A (en) * 1986-03-28 1987-10-05 住友電気工業株式会社 Manufacture of carbon fiber reinforced carbon composite material
JPH01145374A (en) * 1987-11-30 1989-06-07 Ibiden Co Ltd Production of carbon fiber-reinforced carbonaceous material
JPH01239060A (en) * 1988-03-18 1989-09-25 Nkk Corp Production of carbon fiber reinforced carbon composite material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111963A (en) * 1984-11-05 1986-05-30 出光興産株式会社 Manufacture of carbon formed body
JPS62226860A (en) * 1986-03-28 1987-10-05 住友電気工業株式会社 Manufacture of carbon fiber reinforced carbon composite material
JPH01145374A (en) * 1987-11-30 1989-06-07 Ibiden Co Ltd Production of carbon fiber-reinforced carbonaceous material
JPH01239060A (en) * 1988-03-18 1989-09-25 Nkk Corp Production of carbon fiber reinforced carbon composite material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200928A (en) * 1992-11-05 1994-07-19 Imi Marston Ltd Plain bearing
WO2018096908A1 (en) * 2016-11-28 2018-05-31 ダイキン工業株式会社 Resin composition
JP2018087271A (en) * 2016-11-28 2018-06-07 ダイキン工業株式会社 Resin composition
CN115256927A (en) * 2022-09-30 2022-11-01 北京壹碳氢源科技有限公司 Carbon/carbon composite thermal insulation material prepared by 3D printing and preparation method thereof
CN115256927B (en) * 2022-09-30 2023-01-31 北京壹碳氢源科技有限公司 Carbon/carbon composite thermal insulation material prepared by 3D printing and preparation method thereof

Also Published As

Publication number Publication date
JPH068213B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
TWI338611B (en) Manufacture of carbon/carbon composites by hot pressing
US20090148699A1 (en) Carbon fiber containing ceramic particles
US5202293A (en) Carbon fiber reinforced carbon
US20070132126A1 (en) Method for debundling and dispersing carbon fiber filaments uniformly throughout carbon composite compacts before densification
JPH03237062A (en) Sliding member
JPH02275759A (en) Sliding part material
EP0379328B1 (en) Carbon fiber reinforced carbon
FR2626269A1 (en) Composite material based on carbon reinforced with carbon fibres and process for the preparation thereof
JPH0478333A (en) Clutch facing
JPH04220487A (en) Sliding member and manufacture thereof
JPH02192461A (en) Production of carbon-carbon composite material
JPH0478374A (en) Shift fork for transmission
JPH0476085A (en) Differential limiting device
JPH0477359A (en) Carbon fiber reinforced carbon sintered body
JPH04310568A (en) Carbon fiber reinforced carbon composite material having high coefficient of friction
JPH0478332A (en) Brake device
JPH05306166A (en) Carbon composite material
JP3314383B2 (en) Method for producing carbon fiber / carbon composite material
JPH06172767A (en) Sliding material comprising carbon-carbon composite
JPH0475819A (en) Composite electrode for electric discharge machining
JPH0478320A (en) Bush
JPH0476086A (en) Wet friction material
JPH01234367A (en) Production of carbon/carbon composite material
JPH02192462A (en) Fiber material for carbon-carbon composite material
JPH0476258A (en) Piston ring for internal combustion engine